首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Excitatory amino acids (EAA) have been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS). We have analyzed the distribution of the N-methyl-D-aspartate (NMDA) 1-(1-(2-thienyl)-cyclohexyl) piperidine (TCP), kainate and alpha-amino-3-hydroxy-5-methyl-4 isoxazole propionic acid (AMPA) quisqualate subtypes of EAA receptors using quantitative receptor autoradiography in the cervical and thoracic spinal cords of patients who have died with ALS, and of controls. We observed that in control spinal cords [3H]TCP/NMDA binding sites were located both in the ventral and dorsal horns with the highest densities being situated in lamina II. [3H]AMPA and [3H]kainate binding sites were present almost exclusively in the substantia gelatinosa of the dorsal horn. In ALS, the distribution of these 3 types of receptors was unchanged, but [3H]TCP/NMDA binding was decreased both in the dorsal and ventral horns. [3H]kainate binding was possibly decreased in substantia gelatinosa, of ALS cords. However, the limited sample size available for [3H]kainate binding did not permit statistical analysis. [3H]AMPA binding sites were unaltered in ALS. These results indicate that there is a preferential reduction in NMDA receptors in ALS. We suggest that should an excitotoxic mechanism be involved in the pathogenesis of ALS, then NMDA receptors may be the target of this effect.  相似文献   

2.
A new compound, 3-((±)-2-car☐ypiperazin-4-yl)-propyl-1-phosphonic acid (CPP), has been evaluated as an excitatory amino acid receptor antagonist using electrophysiological assays and radioligand binding. In autoradiographic preparations, CPP reduces l-[3H]glutama binding in regions of the hippocampus rich in N-methyl-d-aspartate (NMDA) receptors, but not in regions richin kainate sites. In isolated membrane fraction preparations, CPP displaces l-[3H]glutamate binding to NMDA sites, but does not compete with the binding of selective kainate or quisqualate site ligands. CPP potently reduces depolarizations produced by application of NMDA but not depolarizations produced by quisqualate or kainate. Its order of potency against excitatory amino acid-induced responses in the hippocampus is NMDA > homocysteate > aspartate > glutamate > quisqualate. CPP has no efect on lateral perforant path responses or on inhibition of these responses by 2-amino-4-phosphonobutyrate. Finally, at doses that do not affect Schaffer collateral synpatic transmission, CPP reversibly blocks the induction of long-term potentiation of Schaffer synaptic responses. This new compounds is, therefore, a higly selective brain NMDA receptor blocker, and the most potent such by nearly an order of magnitude.  相似文献   

3.
We used quantitative autoradiography to determine whether the development of glutamate receptors correlates with the plastic period for monocular deprivation in rat visual cortex. To study glutamate receptors, we incubated sections of rat visual cortex with tritiated (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]-cyclohepten-5,10imine maleate (MK-801), tritiated kainate, and tritiated amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA). [3H]MK-801 is a noncompetitive ligand for the N-methyl-D-aspartate (NMDA) receptor. [3H]kainate and [3H]AMPA are competitive ligands for non-NMDA receptors. To compare glutamate binding sites with a nonglutamate binding site, we studied [3H]muscimol, which binds to γ-aminobutyric acid (GABA)A receptors. [3H]MK-801 binding was maximal at postnatal day 26 (P26) and decreased in adulthood. [3H]AMPA binding was maximal at P18. [3H]kainate binding and [3H]muscimol binding were not age dependent. Dark rearing partially prevented the age-dependent decrease in [3H]MK-801 binding but had no effect on [3H]kainate or [3H]AMPA binding. Dark rearing decreased muscimol binding in adult animals. These results suggest that NMDA receptors, but not other glutamate receptors or GABAA receptors, are likely to be critical for developmental plasticity in rat visual cortex. J. Comp. Neurol. 383:73–81, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

4.
The binding of [alpha-3H]amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) to quisqualate receptors, [3H]kainate (KA) to KA receptors, and L-[3H]glutamate to N-methyl-D-aspartate (NMDA) receptors was determined by quantitative autoradiography in brains obtained from twelve aborted human fetuses ranging from 16.5 to 26 weeks of gestational age. Among the three receptor subtypes, specific binding to AMPA was the highest, followed by NMDA and KA, respectively, in all age groups. Receptor binding was already apparent by 16.5 weeks in the hippocampus, thalamus, and subthalamic nucleus, rose sharply by 20-21.5 weeks, and subsequently declined to their lowest levels by 24-26 weeks. Anatomically distinct binding patterns for each of the three major excitatory amino acid (EAA) receptor subtypes were well established by 20-21.5 weeks. Within the hippocampus, AMPA was localized primarily in the stratum pyramidale, NMDA in the stratum radiatum, and KA in the molecular layer of the dentate gyrus and in the stratum lucidum of the CA3 region. The cerebral cortex showed dense labeling of AMPA in the outer layers, whereas KA binding was more prominent within the inner layers. The putamen and globus pallidus also showed relatively dense receptor binding in all age groups. The sharp rise in receptor density at 20-21.5 weeks of age suggests involvement of EAA pathways in developmental plasticity, including reorganization of neuronal processes or synapses, during this period of development. Developmental changes in the density and distribution of EAA receptors, as shown in this study, may also provide insight into shifts in the localization of age-dependent selective vulnerability within the developing human fetal brain.  相似文献   

5.
Quantitative receptor autoradiography and immunoblotting were used to study the expression and distribution of AMPA, kainate and NMDA receptors in first trimester human spinal cord obtained from elective abortions ranging from 4 to 11.5 weeks of gestational age. Spinal cord tissue sections were processed for receptor autoradiography with the ligands [3H]AMPA, [3H]kainate and [3H]MK-801 and the optical density was measured separately in a dorsal region (alar plate) and ventral region (basal plate) of the autoradiographs. Binding sites for all three ligands were demonstrated already at 4-5.5 weeks of gestation and increased continuously during the first trimester both in the dorsal and ventral regions. [3H]AMPA binding to both high- and low-affinity sites increased from undetectable levels to about 35 and 400 fmol/mg tissue, respectively, during this period. A temporal difference in the distribution of [3H]AMPA binding sites was observed. The early homogeneous pattern of [3H]AMPA binding in both alar and basal plates had changed to a heterogeneous pattern at 11 weeks of gestation with the highest density of [3H]AMPA binding sites in the superficial layers of the immature dorsal horn. [3H]kainate and [3H]MK-801 binding sites were densely and homogeneously distributed already at 4 weeks, and steadily increased six- and two-fold, respectively, to about 100 fmol/mg tissue at 11.5 weeks of gestation. Immunoreactive bands corresponding to the NMDA receptor subunits NR1, NR2A, NR2B, NR2C and NR2D were demonstrated by immunoblotting at the earliest between 4.5 and 7 weeks and increasing concentrations were seen up to 11 weeks of gestation. These results suggest that AMPA, kainate and NMDA receptors are expressed in the human spinal cord early in embryogenesis.  相似文献   

6.
We examined NMDA-sensitive [3H]glutamate, [3H]AMPA, [3H]kainate and metabotropic-sensitive [3H]glutamate binding sites in neostriatum and substantia nigra pars reticulata (SNr) in rats after unilateral 6-hydroxydopamine lesions of the medial forebrain bundle. One week after the lesion, NMDA, AMPA, kainate and metabotropic receptors were decreased in the ipsilateral neostriatum, whereas at three months NMDA receptors were increased while AMPA, kainate and metabotropic receptors were not changed. In the SNr at one week, only AMPA and metabotropic receptors were significantly decreased whereas three months after the lesion NMDA, AMPA and kainate binding sites were decreased. The early decrease of excitatory amino acid receptors in the striatum is likely to reflect degeneration of dopaminergic fibers, suggesting that specific subpopulations of excitatory amino acid binding sites are located on dopaminergic terminals.  相似文献   

7.
The anatomical distribution of L-[3H]glutamate binding sites was determined in the presence of various glutamate analogues using quantitative autoradiography. The binding of L-[3H]glutamate is accounted for by the presence of 3 distinct binding sites when measured in the absence of Ca2+, Cl- and Na+ ions. The anatomical distribution and pharmacological specificity of these binding sites correspond to that reported for the 3 excitatory amino acid binding sites selectively labelled by D-[3H]2-amino-5-phosphonopentanoate (D-[3H]AP5), [3H]kainate ([3H]KA) and [3H] alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid ([3H]AMPA) which are thought to be selective ligands for the N-methyl-D-aspartate (NMDA), KA and quisqualate (QA) receptors, respectively.  相似文献   

8.
The ontogeny of N-methyl-d-aspartate (NMDA) and non-NMDA excitatory amino acid receptors in rat barrel field cortex were characterized using receptor autoradiography. NMDA receptors showed a different pattern of development than that of non-NMDA receptors recognizing quisqualate (QUIS sites). During the first 14 days, high densities of QUIS sites were localized in barrel centers forming a sensory map of the rat whisker pad. After that time, the density of QUIS sites in barrel centers decreased so that the pattern was no longer apparent by postnatal day 21. In contrast to QUIS sites, NMDA sites did not exhibit a somatotopic pattern until postnatal day 21, when the lower density of sites in barrel septa formed an outline of barrel centers. At all ages examined, the density of NMDA sites did not differ significantly between barrel centers and surrounding cortex. Of the non-NMDA receptors examined in the postnatal day 10 old rat, both metabotropic sites and the NNKQ sites, which are [3H]glutamate binding sites that are not displaceable by NMDA, kainate or QUIS, showed a pattern of higher densities in barrel centers than surrounding tissue, whereas AMPA sites exhibited a complementary pattern. [3H]Glutamate binding to metabotropic sites was not significantly displaced by QUIS, whereas both NNKQ sites and metabotropic sites were potently blocked by the metabotropic agonist trans-ACPD. These results suggest that the NNKQ sites are low affinity QUIS metabotropic receptors, which, due to their high density in the immature barrel field, are in a position to influence barrel formation.  相似文献   

9.
Binding sites for excitatory amino acids have been determined by autoradiographical procedures in the rat hippocampus and striatum during hippocampal kindling. The binding sites measured were the N-methyl-D-aspartate (NMDA)-sensitive sites for L-[3H]glutamate and [3H]MK-801 sites (transmitter recognition site and ion channel of the NMDA receptor, respectively), [3H]alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) sites (quisqualate receptor), [3H]kainate sites (kainate receptor) and NMDA-insensitive sites for L-[3H]glutamate. In general, little change was apparent in the hippocampus or striatum for any of these binding sites when assessed 48 h after attaining stages 1/2, 3 or 5 of kindling. These results suggest that hippocampal kindling does not bring about a change in the excitatory amino acid receptor binding sites examined, and that the appearance of an NMDA receptor-mediated component to synaptic responses in the hippocampus produced by kindling, cannot be explained on this basis.  相似文献   

10.
We used quantitative autoradiography to determine whether the development of glutamate receptors correlates with the sensitive period for monocular deprivation in the visual cortex. To study glutamate receptors, we incubated sections of cat visual cortex with tritiated (+)-5-methyl-10, 11-dihydro-5H-dibenzo[a,d]-cyclohepten-5,10imine-maleate (MK-801), tritiated kainate, and tritiated amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA). [3H]MK-801 is a noncompetitive ligand for the N-methyl-D-aspartate (NMDA) receptor. [3H]kainate and [3H]AMPA are competitive ligands for non-NMDA receptors. We used [3H]muscimol, which binds to GABAA receptors, so that we would have one control ligand that binds to a nonglutamate receptor. When all layers were combined, the results confirmed our previous studies with homogenate binding. [3H]MK-801 and [3H]kainate binding were significantly greater at 42 days than at earlier or later times. [3H]AMPA and [3H]muscimol binding did not show such a peak. This suggests that MK-801 and kainate binding sites are more likely to be involved in plasticity than are AMPA and muscimol binding sites. In layers 2/3, MK-801 had the greatest age-dependent changes; in layers 5 and 6, kainate binding changed most with age. This suggests that the mechanisms of plasticity may vary with cortical layer. © 1996 Wiley-Liss, Inc.  相似文献   

11.
D.T. Chalmers  J. McCulloch   《Brain research》1991,540(1-2):255-265
Glutamate is the major excitatory neurotransmitter in the rat visual system. Using quantitative autoradiography the effect of unilateral orbital enucleation on [3H]kainate, [3H]-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid ([3H]AMPA) and [3H]glutamate binding to kainate, quisqualate and NMDA receptors respectively has been examined within anatomical components of the visual pathway at 4 time points up to 20 days post-lesion. The time course for the degeneration of retinal projection fibres was assessed in a separate group of animals by quantifying [3H]cyclohexyladenosine ([3H]CHA) binding to presynaptic adenosine A1 receptors. Over the first 5 days after orbital enucleation, there were no significant alterations in glutamate or adenosine A1 receptor binding in visual structures of the visually deprived hemisphere. However, at 10 days post-lesion [3H]AMPA binding was significantly reduced (30%) in the visually deprived superior colliculus but unaltered in other visual structures. At this time point there was also a significant reduction (50%) in [3H]CHA binding in the visually deprived superior colliculus but not in other retino-recipient nuclei. There were similar changes in [3H]AMPA and [3H]CHA binding at 20 days post-enucleation. [3H]Kainate binding was significantly increased in the visually deprived superior colliculus only at 20 days post-enucleation. Saturation analysis of [3H]kainate and [3H]AMPA binding at this time point indicated a selective increase in the bmax value for the high affinity [3H]kainate binding site and a concomitant decrease in the bmax value for the high affinity [3H]AMPA binding site in the visually deprived superior colliculus. There were, however, no significant alterations in [3H]AMPA or [3H]kainate binding in other primary projection areas or in secondary visual areas (e.g. visual cortex) at any time point. NMDA sensitive [3H]glutamate binding was unaltered in the visually deprived hemisphere up to 20 days post-enucleation. These results suggest an upregulation of kainate receptors in the visually deprived superior colliculus after orbital enucleation and a loss of presynaptic quisqualate receptors on degenerating retinal fibres. The plastic alterations in kainate receptors in the superior colliculus are supportive of electrophysiological data suggesting a physiological role for these sites in mediating excitatory postsynaptic potentials in tectal neurons.  相似文献   

12.
The postnatal development of excitatory amino acid receptor types including kainate, N-methyl-D-aspartate (NMDA), and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) was assessed in the hippocampus, entorhinal cortex, and adjacent neocortex in normal and prenatally protein malnourished rats ages 15, 30, 90, and 220 postnatal days by quantitative autoradiography. Tritiated ligands used to measure binding site density were (3)[H]kainate, (3)[H]MK-801, and (3)[H]AMPA, respectively. Kainate receptors showed statistically significant increases in binding density in stratum lucidum of CA3 (hippocampal mossy fiber zone) in 90- and 220-day-old malnourished rats compared with age- and sex-matched controls but not in 15- or 30-day-old malnourished rats. Compared with previous anatomic studies, these results are mostly in agreement with a significantly decreased hippocampal mossy fiber plexus in 15-, 90-, and 220-day-old rats but not in 30-day-old rats. These results suggested that the increased density of postsynaptic kainate receptors located mainly on proximal apical dendrites of CA3 pyramidal cells may be compensatory to decreased glutamate release due to the reduction in mossy fiber plexus. In contrast, the density of putative NMDA and AMPA receptors quantified in prenatally malnourished rats was comparable to the density quantified in age- and sex-matched control rats, as were all three receptor types in entorhinal cortex and adjacent neocortex. Thus, the selectivity of the compensation of (3)[H]kainate-labeled mossy fiber plexus in adult but not in early postnatal developing malnourished rats may help ensure continued breeding and survival of the species under otherwise adverse environmental conditions.  相似文献   

13.
Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) is a potent neuroexcitatory compound which acts at the quisqualate class of excitatory amino acid receptors. In this study we describe the pharmacological characteristics and anatomical distribution of [3H]AMPA binding sites in rat brain using quantitative autoradiography. These binding sites exhibit the appropriate pharmacological characteristics and are found in high concentrations in the hippocampus, cerebral cortex (especially layers I–III), induseum griseum, and dorsal lateral septum. Intermediate concentrations are found in the corpus striatum and deeper layers of cerebral cortex. Lower concentrations are found in the diencephalon, midbrain and brainstem. These results demonstrate that [3H]AMPA binding sites are found throughout the CNS and suggest brain regions which may use quisqualate receptors as glutamate neurotransmitter receptors.  相似文献   

14.
Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) is a potent neuroexcitatory compound which acts at the quisqualate class of excitatory amino acid receptors. In this study we describe the pharmacological characteristics and anatomical distribution of [3H]AMPA binding sites in rat brain using quantitative autoradiography. These binding sites exhibit the appropriate pharmacological characteristics and are found in high concentrations in the hippocampus, cerebral cortex (especially layers I-III), induseum griseum, and dorsal lateral septum. Intermediate concentrations are found in the corpus striatum and deeper layers of cerebral cortex. Lower concentrations are found in the diencephalon, midbrain and brainstem. These results demonstrate that [3H]AMPA binding sites are found throughout the CNS and suggest brain regions which may use quisqualate receptors as glutamate neurotransmitter receptors.  相似文献   

15.
Epileptiform activity was previously described [ Luhmann et al. (1998 ) Eur.J. Neurosci., 10, 3085–3094] in the neocortex of the adult rat following freeze lesioning of the newborn neocortex. After a survival time of 3 months, a small area of dysplastic cortex surrounded by histologically normal (exofocal) neocortex was observed. The dysplastic cortex is characterized by the formation of a small sulcus and a three- to four-layered architecture. Two questions are addressed here: (i) is the hyperexcitability associated with changes in binding to major excitatory and inhibitory transmitter receptors in the dysplastic cortex?; and (ii) do such changes also occur in the exofocal cortex? Alterations in binding to glutamatergic N-methyl-d -aspartate (NMDA), (±)-α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA), kainate and GABAA and GABAB (γ-aminobutyric acid) receptors are demonstrated with quantitative in vitro receptor autoradiography by using the ligands [3H]MK-801, [3H]AMPA, [3H]kainate, [3H]muscimol and [3H]baclofen, respectively. In the dysplastic cortex, the binding to NMDA, AMPA and kainate receptors is significantly increased, whereas the binding to GABAA and GABAB receptors is reduced. Exofocal areas of the lesioned hemisphere show an imbalance between excitatory and inhibitory receptor binding with an up-regulation of the binding to AMPA and kainate, and a down-regulation to GABAA receptors. The binding to GABAB and NMDA receptors is not significantly changed in the exofocal areas. The imbalance between excitatory and inhibitory receptors may cause the hyperexcitability, as previously found in the identical experimental model, and may also induce epileptiform activity in the human cortex with migration disorders.  相似文献   

16.
Association of NMDA receptor sites and seizures of El mice.   总被引:1,自引:0,他引:1  
To investigate the possible role of N-methyl-D-aspartate (NMDA) receptors in the seizures of El mice, a genetic animal model of epilepsy, we measured [3H]3-[(+)-2-(carboxypiperazin-4-yl)][1,2-3H]- propyl-1-phosphonic acid (CPP) binding in several brain regions of El and ddY mice. At 22-24 weeks of age, the maximum number of binding sites (Bmax) of [3H]CPP was lower only in the cerebral cortex of both stimulated and unstimulated El mice (El(+) and El(-), respectively) than in that of ddY mice. A reduction in Bmax values of cortical [3H]CPP binding of El mice was detected after the age of 12 weeks. Cortical [3H]CPP binding in El(+) mice decreased further transiently after evoked seizures. No significant change was observed in El(-) mice after postural stimulation. These results suggest that El(+) and El(-) mice share seizure propensity and that activation of NMDA receptors is involved in the seizures of El mice.  相似文献   

17.
Binding of [3H]glutamate, [3H]AMPA (RS-alpha-amino-3-hydroxy-5-methyl-4-isoxazolo-propionate) and [3H]kainate was investigated in membranes prepared from cerebral cortex of 4-day-old and adult mice and from cerebral cortex neurons cultured for different periods of time (2, 4, 8 and 14 days). For all ligands, the number of binding sites increased as a function of development both in vivo and in culture. A significant number of binding sites for the ligands could be demonstrated on the cultured neurons already after 2 days in culture. Scatchard analysis of the binding data showed a single population of binding sites for glutamate (KD approximately 200 nM) and kainate (approximately 6 nM) regardless of the developmental stage in vivo or in culture. In case of [3H] AMPA binding two binding sites with KD values of approximately 6 nM and 100-200 nM could be demonstrated both in vivo and in culture. Binding of [3H]glutamate to cultured neurons could be displaced by N-methyl-D-aspartate (100 microM) and quisqualate (3 microM) in an additive manner but D,L-4-aminophosphonobutyrate (100 microM) had no effect. AMPA binding to cultured neurons was much more (40-fold) sensitive than kainate binding to the newly developed AMPA selective antagonist NBQX (2,3-dihydroxy-6-nitro-7-sulphamoyl-benzo(F)quinoxaline) indicating that kainate and AMPA bind to independent binding sites. Monitoring membrane potentials in the cultured neurons using the lipophilic cation TPP+ (tetraphenylphosphonium) it was demonstrated that potassium (55 mM) as well as glutamate, AMPA and kainate (100 microM) could depolarize the neurons both at early (2 days) and late (9 days) developmental stages in culture. The demonstration of functionally active receptors for the 3 excitatory amino acids in both immature (2 days in culture) and mature (8-9 days in culture) neurons is discussed in the light of previous studies of the development as a function of the culture period of effects of excitatory amino acids in neurons. It is concluded that no simple correlation exists between expression of binding sites for the excitatory amino acids and their ability to induce cytotoxicity and neurotransmitter release.  相似文献   

18.
The subthalamic nucleus plays a pivotal role in the regulation of basal ganglia output. Recent electrophysiologic, lesion and immunocytochemical studies suggest that the subthalamic nucleus uses an excitatory amino acid as a neurotransmitter. After complete ablation of the subthalamic nucleus, we have examined the NMDA, AMPA, kainate and metabotropic subtypes of excitatory amino acid receptors in two major subthalamic projection areas (globus pallidus and substantia nigra pars reticulata) with quantitative autoradiography. Two weeks after ablation, binding sites for [3H]AMPA and [3H]kainate increased in substantia nigra pars reticulata ipsilateral to the lesion. In globus pallidus on the lesioned side, [3H]glutamate binding to the NMDA recognition site decreased. The results suggest that glutamate receptors regulate after interruption of subthalamic nucleus output.  相似文献   

19.
The anatomical localization of glutamate receptor subtype-selective ligand binding sites was investigated in 1-day-old chick brain using quantitative autoradiography. Under the conditions used, the regional distributions of [3H]glutamate, [3H]AMPA (a selective quisqualate receptor ligand) and [3H]kainate binding sites are manifestly different. [3H]l-glutamate binding is densely localized in the telencephalon, particularly in the neostriatum (2.8 pmol/mg protein). In addition, [3H]l-glutamate labels the thalamus, the nucleus mesencephalicus lateralis pars dorsalis, the superficial layers of the optic tectum and the molecular layer of the cerebellum. [3H]AMPA binding sites are most densely localized in the hippocampus (0.90 pmol/mg protein), with an otherwise relatively uniform distribution of binding within the telencephalon. [3H]AMPA also labels the striatum griseum et fibrosum superficiale of the optic tectum and the molecular layer of the cerebellum. [3H]Kainate binding sites are extremely densely packed in the molecular layer of the cerebellum (10 pmol/mg protein). Other regions of [3H]kainate binding include the hyperstriatum and the thalamus. The binding of the NMDA receptor channel blocker [3H]MK-801 is increased in the presence of 1 mM l-glutamate. [3H]MK-801 binding is generally widespread in the telencephalon but is notably absent from the ectostriatum. No evidence of [3H]MK-801 binding sites was detected in the cerebellum, even in the presence of 1 mM l-glutamate. The relatively high densities and the well-defined localizations of the glutamate receptor subtype binding sites suggest that chick brain provides a useful system for the further study of excitatory amino acid receptors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号