首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Intracellular recordings from post-ganglionic neurones of the rat superior cervical ganglion revealed two non-synaptic potentials dependent upon Ca2+, a hyperpolarizing afterpotential (h.a.p.) and a tetrodotoxin (TTX)-insensitive spike. 2. The h.a.p. followed regeneration discharge of the membrane potential in normal and TTX-containing Locke solution. 3. The h.a.p. appeared to arise from an increased K+ conductance because it was associated with a decrease in input resistance, reversed at -90 mV, and was proportional in magnitude to the extracellular K+ concentration. 4. Tetraethylammonium (TEA) and 4-aminopyridine (4-AP) apparently antagonized a voltage-sensitive K+ conductance because they broadened the action potential. However, these substances reduced only slightly the peak amplitude and earliest phases of the h.a.p. 5. The TTX-insensitive spike was most apparent when TEA was present and was invariably followed by an h.a.p. with a magnitude proportional to that of the spike. 6. The magnitude of the h.a.p. and the TTX-insensitive spike was directly proportional to the external Ca2+ concentration and was antagonized by Co2+ and Mn2+ in a dose-dependent fashion. 7. In normal Locke solution, Ba2+ antagonized the h.a.p. and allowed the neurone to sustain discharge during prolonged depolarization. In Locke solution containing TTX and TEA, Ba2+ reduced the magnitude of the h.a.p. but greatly increased the duration of the TTX-insensitive spike. 8. The h.a.p. was not significantly affected by altering external Cl- concentration and the TTX-insensitive spike was not reduced by altering external Na+ concentration. 9. It is concluded that the post-ganglionic neurone supports a regenerative Ca2+ conductance mechanism which in turn triggers an increased K+ conductance. The h.a.p. appears to result from outward K+ current in both a Ca2+ and voltage-dependent fashion.  相似文献   

2.
1. The directly evoked action potential of dissociated, embryonic, chick, dorsal root ganglion (DRG) neurones maintained in cell culture is prolonged compared to spinal cord cell spikes and the re-polarization phase is marked by a plateau. 2. Evidence was obtained that both Ca2+ and Na+ carry inward current across the active soma membrane. Ca2+ because: overshooting spikes persist in tetrodotoxin (TTX) or Na+-free media; in the presence of TTX (or absence of Na+) spike size varies directly with extracellular Ca2+ and spikes are eliminated by Co2+. Na+ because: spikes persist in the presence of Co2+ or Ca2+-free media; in the presence of Co2+ (or absence of Ca2+) spike varies directly with extracellular Na+ and spikes are blocked by TTX. 3. On the other hand, Ca2+ plays less if any role in action potentials conducted along sensory nerve cell processes. Conducted spikes could not be evoked in TTX containing or Na+-free media. 4. A long-lasting depolarization follows the action potential in some neurones. This depolarization is associated with an increase in membrane conductance and appears to drive the membrane potential to ca. -30mV. It persists when conducted impulses are blocked so it is probably not a recurrent synaptic potential. 5. It is suggested that combined Ca2+-Na+ spikes observed in isolated sensory neurones in vitro reflect the action potential of adult sensory cells but the possibility that they represent an early stage in development is also discussed.  相似文献   

3.
We have used the rat hippocampal slice preparation as a model system for studying the epileptogenic consequences of a reduction in neuronal Na+-K+ pump activity. The cardiac glycosides (CGs) strophanthidin and dihydroouabain were used to inhibit the pump. These drugs had readily reversible effects, provided they were not applied for longer than 15-20 min. Hippocampal CA1 pyramidal cells were studied with intracellular recordings; population spike responses and changes in extracellular potassium concentration ([K+]o) were also measured in some experiments. This investigation focused on the possibility that intrinsic neuronal properties are affected by Na+-K+ pump inhibitors. The CGs altered the CA1 population response evoked by an orthodromic stimulus from a single spike to an epileptiform burst. Measurements of [K+]o showed that doses of CGs sufficient to cause bursting were associated with only minor (less than 1 mM) changes in resting [K+]o. However, the rate of K+ clearance from the extracellular space was moderately slowed, confirming that a decrease in pump activity had occurred. Intracellular recording indicated that CG application resulted in a small depolarization and apparent increase in resting input resistance of CA1 neurons. Although CGs caused a decrease in fast gamma-aminobutyric acid mediated inhibitory postsynaptic potentials (IPSPs), CGs could also enhance the latter part of the epileptiform burst induced by picrotoxin, an antagonist of these IPSPs. Since intrinsic Ca2+ conductances comprise a significant part of the burst, this suggested the possibility that Na+-K+ pump inhibitors affected an intrinsic neuronal conductance. CGs decreased the threshold for activation of Ca2+ spikes (recorded in TTX and TEA) without enhancing the spikes themselves, indicating that a voltage-dependent subthreshold conductance might be involved. The action of CGs on Ca2+ spike threshold could not be mimicked by increasing [K+]o up to 10 mM. A variety of K+ conductance antagonists, including TEA, 4-AP, Ba2+ (in zero Ca2+), and carbachol were ineffective in preventing the CG-induced threshold shift of the Ca2+ spike. The shift was also seen in the presence of a choline-substituted low Na+ saline. Enhancement of a slow inward Ca2+ current is a possible mechanism for the decrease in Ca2+ spike threshold; however, it is impossible to use the Ca2+ spike as an assay when testing the effects of blocking Ca2+ conductances. Therefore, we studied the influence of CGs on the membrane current-voltage (I-V) curve, since persistent voltage-dependent conductances appear as nonlinearities in the I-V plot obtained under current clamp.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
1. The postnatal development of membrane properties and outward K+ currents in CA1 neurons in rat hippocampal slices was studied with the use of whole-cell patch-clamp techniques. 2. Neurons at all postnatal ages (2-30 days; P2-30) were capable of generating tetrodotoxin (TTX)-sensitive action potentials in response to intracellular injection of depolarizing current pulses. There was a gradual increase in the amplitude and a decrease in the duration of these action potentials with age. Stable values for spike duration were reached by P15, whereas spike amplitude increased until P20-25. In P2-5 neurons, the duration of action potentials was greatly prolonged by depolarization from the resting membrane potential, indicating a weak spike repolarizing mechanism at depolarized potentials. In contrast, the duration of spikes evoked in P20-30 neurons was not affected by similar changes in the membrane potential. 3. Application of tetraethylammonium (TEA, 10 mM) had no effect on the duration of spikes in P3-5 neurons, whereas application of 4-aminopyridine (4-AP, 2 mM) produced large increases in spike duration. In contrast, the duration of spikes in P26 neurons was greatly increased after TEA application, whereas 4-AP had smaller effects on spike duration in these neurons. 4. The input resistance and membrane time constant decreased with age from P2 to P15. The values for both parameters were considerably greater than those reported with conventional intracellular recording electrodes in the immature hippocampus. The resting membrane potential became more hyperpolarized with age. When the recording pipettes contained KCl (140 mM), the resting potential of P3-4 neurons was 34 mV depolarized compared with resting potentials observed with potassium gluconate-filled pipettes. Only a 13-mV change in resting potential was observed during similar comparisons in P27-28 neurons. 5. Outward currents activated by depolarization were examined with the use of voltage-clamp techniques in P2-30 neurons. In P2-5 cells, a small, slowly inactivating outward current was evoked with depolarizing commands from holding potentials near -50 mV. By preceding the depolarizing commands with a hyperpolarizing prepulse, an additional early transient outward current was evoked. The sustained and transient outward currents were separated by their kinetic properties and their sensitivity to cobalt (Co2+), TEA, and 4-AP.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
R L Parsons  L M Konopka 《Neuroscience》1991,43(2-3):647-660
Previously, we showed that the neuropeptide galanin hyperpolarizes and decreases membrane excitability of mudpuppy parasympathetic neurons [Konopka L. M., McKeon T. W. and Parsons R. L. (1989) J. Physiol. 410, 107-122]. We also demonstrated that membrane excitability remains depressed when the agonist-induced potential change is negated electrotonically. We hypothesized that galanin inhibits the membrane conductances associated with spike generation. However, we cannot rule out the possibility that the decreased excitability is due to a galanin-induced increase in membrane potassium conductance which reduces the effectiveness of subsequent depolarizing stimuli. Therefore, in the present study we tested, with the galanin-induced hyperpolarization negated, whether the galanin-induced increased membrane potassium conductance was responsible for the decreased excitability. The results showed that the galanin-induced decreased excitability was not dependent on the peak amplitude of the galanin-induced hyperpolarization. Furthermore, the decreased excitability occurred in cells in which there was no measurable galanin-induced hyperpolarization. Moreover, in most cells the galanin-induced decrease in input resistance, measured at the peak of the hyperpolarization (3-25 mV), was less than 15% and when the hyperpolarization was negated electronically, the decrease was even less (approximately 2%). These results indicated that when the hyperpolarization was negated, the galanin-induced increase in potassium conductance was not responsible for the decreased excitability. In preparations pretreated with 5 mM tetraethylammonium, galanin decreased excitability which indicated that a galanin-induced decrease in the calcium-dependent potassium current was not necessary for the decreased excitability. Galanin also decreased excitability in preparations exposed to either 1-3 microM tetrodotoxin or 100-200 microM cadmium. Following galanin application, the threshold for initiation of tetrodotoxin-insensitive spikes was shifted to more positive membrane potentials. Galanin also decreased the amplitude and hyperpolarizing afterpotential of barium spikes in the absence of any agonist-induced hyperpolarization. These observations confirmed that galanin decreased the voltage-dependent calcium conductance. In the present study, we showed that when the hyperpolarization was negated, galanin decreased excitability by shifting the threshold for spike generation regardless of whether voltage-dependent sodium or calcium currents were primarily responsible for the depolarizing component of the action potential.  相似文献   

6.
Electrophysiological properties of the ventral giant axon in the abdominal nerve cord of the cockroach were studied by recording intracellular potentials following partial or complete block of the K+ conductance. When the K+ conductance was completely blocked by tetraethylammonium (TEA) and 3,4-diaminopyridine, the intensity of depolarizing currents necessary for eliciting the action potential was markedly decreased, and the action potential was followed by a prolonged plateau potential. During the plateau potential following the spike, the input resistance was significantly reduced. The plateau potential was not affected by changing the external Ca2+ concentration but depended on the external Na+ concentration in a manner expected from the Nernst equation and was blocked by tetrodotoxin (TTX). During the plateau potential, the Na+ conductance responsible for the spike was inactivated, whereas immediately after the plateau potential a newly evoked spike was not followed by a plateau potential, suggesting different inactivation kinetics between the spike and plateau Na+ conductances. When the K+ conductance was partially blocked by TEA alone, slow depolarizing responses were evoked at voltage levels a few millivolts more positive than the resting potential. The "threshold" for the slow potential was much lower than that for the spike potential. The slow potential produced after partial block of the K+ conductance was not affected by alterations of the external Ca2+ concentration but was blocked by TTX or in a Na+-free solution. Even in normal medium, a small TTX-sensitive depolarizing response was discernible. This response was similar in its time course and threshold to the slow potential observed after partial block of the K+ conductance. It is concluded that the cockroach giant axon has two populations of Na+ channels, which can be distinguished by differences in time course and voltage levels for activation and that the slow, low-threshold Na+-dependent potential is largely masked by delayed increases in the K+ conductance under normal conditions. It remains uncertain whether the low-threshold slow potential and the plateau potential originate from the same or different populations of Na+ channels.  相似文献   

7.
Current clamp and modeling studies of low-threshold calcium spikes in cells of the cat's lateral geniculate nucleus. All thalamic relay cells display a voltage-dependent low-threshold Ca2+ spike that plays an important role in relay of information to cortex. We investigated activation properties of this spike in relay cells of the cat's lateral geniculate nucleus using the combined approach of current-clamp intracellular recording from thalamic slices and simulations with a reduced model based on voltage-clamp data. Our experimental data from 42 relay cells showed that the actual Ca2+ spike activates in a nearly all-or-none manner and in this regard is similar to the conventional Na+/K+ action potential except that its voltage dependency is more hyperpolarized and its kinetics are slower. When the cell's membrane potential was hyperpolarized sufficiently to deinactivate much of the low-threshold Ca2+ current (IT) underlying the Ca2+ spike, depolarizing current injections typically produced a purely ohmic response when subthreshold and a full-blown Ca2+ spike of nearly invariant amplitude when suprathreshold. The transition between the ohmic response and activated Ca2+ spikes was abrupt and reflected a difference in depolarizing inputs of <1 mV. However, activation of a full-blown Ca2+ spike was preceded by a slower period of depolarization that was graded with the amplitude of current injection, and the full-blown Ca2+ spike activated when this slower depolarization reached a sufficient membrane potential, a quasithreshold. As a result, the latency of the evoked Ca2+ spike became less with stronger activating inputs because a stronger input produced a stronger depolarization that reached the critical membrane potential earlier. Although Ca2+ spikes were activated in a nearly all-or-none manner from a given holding potential, their actual amplitudes were related to these holding potentials, which, in turn, determined the level of IT deinactivation. Our simulations could reproduce all of the main experimental observations. They further suggest that the voltage-dependent K+ conductance underlying IA, which is known to delay firing in many cells, does not seem to contribute to the variable latency seen in activation of Ca2+ spikes. Instead the simulations indicate that the activation of IT starts initially with a slow and graded depolarization until enough of the underling transient (or T) Ca2+ channels are recruited to produce a fast, "autocatalytic" depolarization seen as the Ca2+ spike. This can produce variable latency dependent on the strength of the initial activation of T channels. The nearly all-or-none nature of Ca2+ spike activation suggests that when a burst of action potentials normally is evoked as a result of a Ca2+ spike and transmitted to cortex, this signal is largely invariant with the amplitude of the input activating the relay cell.  相似文献   

8.
1. Local application of 5-hydroxytryptamine (5-HT) in the area in which a dense 5-HT plexus is located in the lamprey spinal cord leads to a marked depression of the late phase of the afterhyperpolarization (AHP) following the action potential. This effect was observed in motoneurons, premotor interneurons, and giant interneurons, whereas no effect was observed in the sensory dorsal cells and edge cells. 2. The late 5-HT sensitive phase of the AHP was increased in amplitude when calcium entry was enhanced during the prolongation of action potentials caused by tetraethylammonium (TEA). Conversely, a blockade of Ca2+ entry by manganese reduced the AHP amplitude, suggesting that a calcium-dependent current, most likely carried by potassium, underlies the late phase of the AHP in these cells, as is the case in many other types of neurons. 3. The late phase of the AHP could be depressed by 5-HT although no effects were exerted on either the resting input resistance or on the shape of the action potential in 54% of the cells. The membrane conductance increase associated with the late phase of the AHP was markedly attenuated by 5-HT application. 4. In voltage-clamp experiments, Na+ currents and most K+ currents were blocked by tetrodotoxin (TTX) and TEA, respectively. Under these conditions, voltage steps elicited a slow outward current, most likely representing a Ca2+-activated K+ current, which was depressed by 5-HT application. 5. 5-HT does not appear to reduce AHP amplitude by blocking the calcium entry occurring during the action potential. No evidence was obtained for an involvement of second messengers such as adenosine-3':5'-cyclic monophosphate (cAMP), guanosine-3':5'-cyclic monophosphate (cGMP), diacyglycerol, or arachidonic acid. The effect of 5-HT on the late AHP may be due to a direct action on the calcium-dependent potassium channels or on the intracellular handling of Ca2+ ions. 6. The amplitude reduction of the AHP has a profound influence on the spike frequency regulation of any given cell; the frequency of spikes evoked by a given excitatory stimulus is therefore markedly increased by application of 5-HT. 5-HT thus increases the "gain" of the input-output relation of interneurons and motoneurons responsible for generating the locomotor rhythm. In addition, 5-HT causes a prolongation of the depolarized plateau of the N-methyl-D-aspartate (NMDA) receptor-induced membrane potential oscillations, as expected from the 5-HT-induced effects on the Ca2+-activated K+ channels that contribute to the repolarization.  相似文献   

9.
Rat hippocampal neurons grown in dissociated cell culture were studied in a medium containing 1 microM tetrodotoxin (TTX) and 25 mM tetraethylammonium (TEA), which eliminated the Na+ and K+ conductances normally activated by depolarizing current injections. In this medium depolarizing current pulses evoked depolarizing regenerative potentials and afterhyperpolarizations in most cells. Both of these events were blocked by close application of Co2+ or Cd2+. These events resemble Ca2+ spikes reported previously in hippocampal pyramidal cells. The membrane potential at which these Ca2+ spikes could be triggered and the rheobase current necessary were dependent on the potential at which the cell was conditioned: the more depolarized the holding potential, the more negative the absolute potential at which a spike could be triggered and the less rheobase current required. The duration of these Ca2+ spikes was also sensitive to the holding potential: the more depolarized the holding level, the longer the duration of the triggered spikes. The amplitude and duration of the Ca2+ spikes were enhanced in a reversible manner by 0.5-1.0 mM 4-aminopyridine (4-AP) delivered in the vicinity of the cell. Two-electrode voltage-clamp analysis of cells studied in TTX, TEA-containing medium revealed an inward current response that peaked in 25-50 ms during depolarizing commands. This response first became detectable during commands to -30 mV. It peaked in amplitude during commands to -10 mV and was enhanced in medium containing elevated [Ca2+]0. It was blocked by either 20 mM Mg2+, 0.2 mM Cd2+, 5 mM Co2+, or 5 mM Mn2+. These results have led us to identify this inward current response as ICa2+. 4-AP enhanced the magnitude and duration of ICa2+ independent of the drug's depressant effects on a transient K+ current also observed under these same experimental conditions. In many but not all cells the Ca2+ spike was followed by a long-lasting hyperpolarization associated with an increase in membrane conductance. This was blocked by Co2+. Under voltage clamp ICa2+ was followed by a slowly developing outward current response that was attenuated by Co2+ or Cd2+. These properties observed under current- and voltage-clamp recording conditions are superficially similar to those previously reported for Ca2+-dependent K+ conductance mechanisms (IC) recorded in these and other membranes. Long-lasting tail currents following activation of IC inverted in the membrane potential range for the K+ equilibrium potential found in these cells.  相似文献   

10.
1. The effects of norepinephrine (NE) and related agonists and antagonists were examined on large neurons from layer V of cat sensorimotor cortex ("Betz cells") were examined in a brain slice preparation using intracellular recording, constant current stimulation and single microelectrode voltage clamp. 2. Application of NE (0.1-100 microM) usually caused a small depolarization from resting potential; hyperpolarizations were rare. Application of NE reversibly reduced rheobase and both the Ca2+- and Na+-dependent portions of the slow afterhyperpolarization (sAHP) that followed sustained firing evoked by constant current injection. The faster Ca2+-dependent medium afterhyperpolarization (mAHP), the fast afterhyperpolarization (fAHP), the action potential, and input resistance were unaffected. 3. The changes in excitability produced by NE application were most apparent during prolonged stimulation. The cells exhibited steady repetitive firing to currents that were formerly ineffective. The slow phase of spike frequency adaptation was reduced selectively and less habituation occurred during repeated long-lasting stimuli. The relation between firing rate and injected current became steeper if firing rate was averaged over several hundred milliseconds. 4. During voltage clamp in TTX, NE application selectively reduced the slow component of Ca2+-mediated K+ current. The faster Ca2+-mediated K+ current was unaffected, as were two voltage-dependent, transient K+ currents, the anomalous rectifier and leakage conductance measured at resting potential. Depolarizing voltage steps in the presence of Cd2+ revealed an apparent time- and voltage-dependent increase of the persistent Na+ current after NE application. The voltage-clamp results suggested ionic mechanisms for all effects seen during constant current stimulation except the depolarization from resting potential. The latter was insensitive to Cd2+ and TTX and occurred without a detectable change in membrane conductance. 5. NE application did not alter Ca2+ spikes evoked in the presence of TTX and 10 mM TEA. Inward Ca2+ currents examined during voltage clamp in TTX (with K+ currents reduced) became slightly larger after NE application. We conclude that NEs reduction of the slow Ca2+-mediated K+ current is not caused by reduction of Ca2+ influx. 6. Effects on membrane potential, rheobase, and the sAHP were mimicked by the beta-adrenergic agonist isoproterenol, but not by the alpha-adrenergic agonists clonidine or phenylephrine at higher concentrations.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Sharp electrode current-clamp recording techniques were used to characterize the response of nigral dopamine (DA)-containing neurons in rat brain slices to injected current pulses applied in the presence of TTX (2 microM) and under conditions in which apamin-sensitive Ca2+-activated K+ channels were blocked. Addition of apamin (100-300 nM) to perfusion solutions containing TTX blocked the pacemaker oscillation in membrane voltage evoked by depolarizing current pulses and revealed an afterdepolarization (ADP) that appeared as a shoulder on the falling phase of the voltage response. ADP were preceded by a ramp-shaped slow depolarization and followed by an apamin-insensitive hyperpolarizing afterpotential (HAP). Although ADPs were observed in all apamin-treated cells, the duration of the response varied considerably between individual neurons and was strongly potentiated by the addition of TEA (2-3 mM). In the presence of TTX, TEA, and apamin, optimal stimulus parameters (0.1 nA, 200-ms duration at -55 to -68 mV) evoked ADP ranging from 80 to 1,020 ms in duration (355.3 +/- 56.5 ms, n = 16). Both the ramp-shaped slow depolarization and the ensuing ADP were markedly voltage dependent but appeared to be mediated by separate conductance mechanisms. Thus, although bath application of nifedipine (10-30 microM) or low Ca2+, high Mg2+ Ringer blocked the ADP without affecting the ramp potential, equimolar substitution of Co2+ for Ca2+ blocked both components of the voltage response. Nominal Ca2+ Ringer containing Co2+ also blocked the HAP evoked between -55 and -68 mV. We conclude that the ADP elicited in DA neurons after blockade of apamin-sensitive Ca2+-activated K+ channels is mediated by a voltage-dependent, L-type Ca2+ channel and represents a transient form of the regenerative plateau oscillation in membrane potential previously shown to underlie apamin-induced bursting activity. These data provide further support for the notion that modulation of apamin-sensitive Ca2+-activated K+ channels in DA neurons exerts a permissive effect on the conductances that are involved in the expression of phasic activity.  相似文献   

12.
Granule cells excitability in the turtle olfactory bulb was analyzed using whole cell recordings in current- and voltage-clamp mode. Low-threshold spikes (LTSs) were evoked at potentials that are subthreshold for Na spikes in normal medium. The LTSs were evoked from rest, but hyperpolarization of the cell usually increased their amplitude so that they more easily boosted Na spike initiation. The LTS persisted in the presence of TTX but was antagonized by blockers of T-type calcium channels. The voltage dependence, kinetics, and inactivation properties of the LTS were characteristic of a low-threshold calcium spike. The threshold of the LTS was slightly above the resting potential but well below the Na spike threshold, and the LTS was often evoked in isolation in normal medium. Tetraethylammonium (TEA) and 4-aminopyridine (4-AP) had only minimal effects on the LTS but revealed the presence of a high-threshold Ca2+ spike (HTS), which was antagonized by Cd2+. The LTS displayed paired-pulse attenuation, with a timescale for recovery from inactivation of about 2 s at resting membrane potential. The LTS strongly boosted Na spike initiation; with repetitive stimulation, the long recovery of the LTS governed Na spike initiation. Thus the olfactory granule cells possess an LTS, with intrinsic kinetics that contribute to sub- and suprathreshold responses on a timescale of seconds. This adds a new mechanism to the early processing of olfactory input.  相似文献   

13.
Summary Tetrodotoxin (TTX) is widely used to block the sodium dependent action potential in excitable cells to study their other ionic properties. TTX applied outside, selectively blocks voltage dependent sodium channels and is thought to have no other effects. We report here that TTX, applied to slices of rat cerebellum, suppressed sodium spikes of the Purkinje cells and induced firing in bursts of slower spikes. This activity was blocked by cobalt (2 mM) or cadmium (0.2 mM) in the medium as well as by hyperpolarizing currents showing that the slow spikes were due to voltage dependent calcium channels. The membrane potential was not significantly changed by TTX and the spikes during the bursts had the same threshold potentials and peak spike amplitudes as the voltage and Ca2+ dependent dendritic spikes evoked by injected current before adding TTX. This indicated that no marked changes in the membrane conductances were produced by the TTX. Unlike the burst firing induced by removing extracellular sodium, the TTX induced bursts were not followed by a large hyperpolarization. The same kind of results were obtained with extracellular recording in the in-vivo preparation with TTX applied topically or by pressure near the recording sites. TTX induced burst firing was not due to blocking afferent inhibitory input to the PC, since bicuculline (10-6 M) applied without TTX, produced only increased firing of fast action potentials and no bursts. The bursts could be arrested within 1 to 2 min by intravenously administering 2 mg/kg sodium pentobarbital, the blockage lasted from 5 to 15 min. These effects of TTX were not due to a contaminant as TTX from two different suppliers produced the same effects. A possible mechanism based on a decrease of intracellular free sodium is discussed.  相似文献   

14.
Activation of N-methyl-D-aspartate (NMDA) receptors can induce tetrodotoxin (TTX)-resistant membrane potential oscillations as well as fictive locomotion in the in vitro preparation of the lamprey spinal cord. The ionic basis of these oscillations were investigated in the presence of N-methyl-D,L-aspartate and TTX. Addition of blocking agents (2-amino-5-phosphonovalerate and tetraethylammonium (TEA)) and selective removal or substitution of certain ions (Mg2+, Ca2+, Na+, Ba2+) were used in the analysis of the oscillations. The depolarizing phase of the oscillation requires Na+ ions but not Ca2+ ions. The depolarization becomes larger if TEA is administered in the bath, which presumably is due to a blockade of potassium (K+) channels activated during the depolarizing phase. The repolarization appears to depend on a Ca2+ entry, which presumably acts indirectly by an activation of Ca2+-dependent K+ channels. Together with the NMDA-induced voltage dependence, this will bring the membrane potential back down to a hyperpolarized level.  相似文献   

15.
A long-lasting afterhyperpolarization (AHP) follows the antidromic or current-induced action potential of sympathetic preganglionic neurons (SPNs) studied in slices of cat spinal cord maintained in vitro. Duration and amplitude of the AHP that follows a single spike were 2.8 +/- 0.3 s and 16.0 +/- 0.7 mV (mean +/- SE), respectively. In most cases two components could be distinguished, an initial faster and usually larger component [fast (F) AHP] followed by a slowly decaying component [slow (S) AHP]. An increase in membrane conductance was associated with the AHP. The amplitude of both components increased with membrane depolarization and decreased with hyperpolarization. Both fast and slow component were nullified at a voltage of -90 mV in 3.6 mM K+. Peak AHP amplitude decreased as K+ was increased from 1.5 to 7.0 mM. The null point for both fast (F) AHP and slow (S) AHP shifted in the depolarizing or hyperpolarizing direction when K+ was increased or decreased, respectively. These data suggest that an increase in K+-conductance is the mechanism underlying the AHP. The two components of the AHP could be separated by their differential sensitivity to superfusion with the Ca2+-channel blocker cobalt (2 mM) or with low Ca2+ (0.25 mM). These procedures resulted in an AHP of much shorter duration (330 ms, range 150-600), presumably the FAHP. These observations indicate that a Ca2+-activated K+-conductance is likely to be involved in the generation of the SAHP. The FAHP was depressed during superfusion with tetraethylammonium (TEA) (20 mM) and intracellular cesium injection. The SAHP was enhanced by TEA and enhanced or depressed by cesium. In 3.6 mM K+ the FAHP reversed in polarity at membrane voltages more negative than -90 mV. This component had an approximately linear relation of amplitude to membrane potential. The SAHP did not reverse in most cells. In the few cases in which it reversed, the change in amplitude for a given change in membrane voltage was much smaller on the negative than on the positive side of the null potential. Thus the SAHP shows voltage-dependent, nonlinear characteristics. This difference in behavior of the two components was also observed when the null point was displaced in high or low K+. In the presence of tetrodotoxin (TTX) the AHP persisted in temporal association with a high-threshold, TTX-resistant, cobalt-sensitive spike. During the time course of the AHP the efficacy of synaptic input decreased, suggesting that the AHP has an important role in regulating the firing rate of the SPN.  相似文献   

16.
Action potentials (APs) of long duration (up to 1 s) followed by prolonged (0.5-5 s) hyperpolarizing afterpotentials (HAP) were recorded in lamprey primary mechanosensory neurons (dorsal cells) in isolated spinal cords exposed to either or both of the potassium channel blockers, tetrathylammonium (TEA) and 3,4-diaminopyridine (DAP). The membrane events underlying the prolonged AP and HAP were investigated in current clamp studies and were shown to be a Ca spike- and a Ca-dependent K conductance, respectively. The prolonged AP was accompanied by an increased membrane conductance and, unlike the normal Na AP in these cells, was not blocked by tetrodotoxin (TTX) or by replacement of external Na with choline or TEA. Reduction of [Ca]o from 10 to 0 mM reduced the amplitude and duration of the prolonged TTX-resistant AP but did not eliminate it within the 15-min washout period, probably because of Ca buffering in the spinal cord. The overshoot of the prolonged AP varied in amplitude as a linear function of the log of the external Ca concentration (2.5-10 mM) with a slope of 31.5 mV for a 10-fold change in Ca concentration, a value close to the 28 mV expected from the Nernst relation. Co (2 mM) and Cd (1 mM) blocked the prolonged APs. Ba and Sr substituted for Ca. The APs in Ba were extremely long lasting (up to 40 s). The HAPs following Ca spikes were 0.5-5 s in duration (peak to half amplitude) and were accompanied by an increased membrane conductance. The HAP varied in amplitude with the extracellular K concentration, reversed in sign at the presumed K equilibrium potential (-90 mV), and was insensitive to injected Cl. We conclude that HAP is a result of increased K conductance. The increase in K conductance during the HAP appeared to be dependent on Ca influx, because the amplitude and duration of the HAP varied with the extracellular Ca concentration and increased in duration during repetitive Ca spike activation, presumably as a result of accumulation of Ca intracellularly. Further, the HAP was absent following even very long lasting spikes in Ba, an ion that in other cells does not activate the Ca-dependent K conductance. Small regenerative depolarizations sometimes followed Ca spikes in dorsal cell somata. These are believed to reflect Ca spikes in discrete axonal regions at various electrotonic distances from the soma.  相似文献   

17.
1. The sucrose-gap technique was employed to examine the different types of after potentials that follow, in desheathed rabbit vagus nerves, a single action potential (AP) elicited by a short (0.4 ms) supramaximal depolarizing pulse. 2. A fast and a slow hyperpolarizing after potential (fHAP and sHAP) as well as a depolarizing after potential (DAP) followed a single spike. Both the fHAP and the sHAP showed a dependence on the K+ electrochemical gradient, indicating that they are due to an outwardly oriented current of K+ ions. 3. The fHAP was sensitive to low concentrations of tetraethylammonium (TEA; 1 mM) and 4-aminopyridine (4-AP; 10 microM) and to millimolar concentrations of Ba2+. We conclude that the fHAP reflects the tail of the delayed rectifier K+ current. 4. The sHAP contained a Ca(2+)-sensitive component that showed a requirement for voltage-dependent Ca2+ entry during the AP. This component was completely blocked by low concentration of TEA (1 mM) and by Cd2+ (1 mM), but unaffected by 4-AP. These observations suggest that it reflects a current flowing through Ca(2+)-activated K+ channels. The remaining, apparently Ca(2+)-insensitive, component was insensitive to 4-AP and could be blocked by TEA only at concentrations greater than 50 mM. 5. The DAP usually appeared when the external concentration of K+ was increased to above approximately 8 mM, but sometimes it was clearly visible even at lower [K+]o. The DAP was TEA insensitive and entirely Ca2+ dependent. This latter property is inconsistent with the widely accepted hypothesis according to which the DAP reflect the accumulation of K+ in the extracellular space during the AP. 6. The origins of both the Ca(2+)-insensitive component of the sHAP and the DAP are not clear. However, in view of the fact that the sucrose-gap technique records not only the membrane potential of the nerve fibers but also of the surrounding glia, there is the possibility that these after potentials reflect changes in the electrical properties of the satellite Schwann cells.  相似文献   

18.
To obtain a clearer understanding of the mechanisms by which somatostatin modulates stimulus-secretion coupling in neuroendocrine cells, we investigated the pharmacology of the somatostatin-activated inward rectifier in mouse pituitary tumour cells (AtT-20 corticotrophs). Individual AtT-20 cells displayed spontaneous, long-lasting action potentials that caused transient spikes in cytosolic [Ca2+] ([Ca]i). Application of 1-10 nM somatostatin led to membrane hyperpolarization and loss of [Ca]i spiking activity. Voltage-clamp recordings revealed that the somatostatin-induced hyperpolarization was due to an inwardly rectifying K+ current. Tetrabutyl-ammonium (TBA+) inhibited both outward and inward currents through the inward rectifier, whereas Cs+ blocked only inward current and tetraethylammonium (TEA+) was completely ineffective in blocking somatostatin-activated currents. However TEA+, but neither TBA+ nor Cs+, blocked voltage-gated outward currents. Correspondingly, TBA+ abolished the hyperpolarizing effects of somatostatin and, of the three K+ channel blockers, only TBA+ prevented the somatostatin-induced inhibition of [Ca]i spiking. TBA+ may thus prove a useful tool in elucidating the underlying mechanisms by which somatostatin affects the secretory activity of neuroendocrine cells.  相似文献   

19.
Cartwheel cells are glycinergic interneurons that modify somatosensory input to the dorsal cochlear nucleus. They are characterized by firing of mixtures of both simple and complex action potentials. To understand what ion channels determine the generation of these two types of spike waveforms, we recorded from cartwheel cells using the gramicidin perforated-patch technique in brain slices of mouse dorsal cochlear nucleus and applied channel-selective blockers. Complex spikes were distinguished by whether they arose directly from a negative membrane potential or later during a long depolarization. Ca(2+) channels and Ca(2+)-dependent K(+) channels were major determinants of complex spikes. Onset complex spikes required T-type and possibly R-type Ca(2+) channels and were shaped by BK and SK K(+) channels. Complex spikes arising later in a depolarization were dependent on P/Q- and L-type Ca(2+) channels as well as BK and SK channels. BK channels also contributed to fast repolarization of simple spikes. Simple spikes featured an afterdepolarization that is probably the trigger for complex spiking and is shaped by T/R-type Ca(2+) and SK channels. Fast spikes were dependent on Na(+) channels; a large persistent Na(+) current may provide a depolarizing drive for spontaneous activity in cartwheel cells. Thus the diverse electrical behavior of cartwheel cells is determined by the interaction of a wide variety of ion channels with a prominent role played by Ca(2+).  相似文献   

20.
1. Intracellular recordings were made from supraoptic neurones in vitro from hypothalamic explants prepared from adult male rats. Neurones were injected with biotinylated markers, and of thirty-nine labelled neurones, nineteen were identified immunocytochemically as containing oxytocin-neurophysin and twenty as containing vasopressin-neurophysin. 2. Vasopressin and oxytocin neurones did not differ in their resting membrane potential, input resistance, membrane time constant, action potential height from threshold, action potential width at half-amplitude, and spike hyperpolarizing after-potential amplitude. Both cell types exhibited spike broadening during brief, evoked spike trains (6-8 spikes), but the degree of broadening was slightly greater for vasopressin neurones. When hyperpolarized below -75 mV, all but one neurone exhibited a transient outward rectification to depolarizing pulses, which delayed the occurrence of the first spike. 3. Both cell types exhibited a long after-hyperpolarizing potential (AHP) following brief spike trains evoked either with a square wave pulse or using 5 ms pulses in a train. There were no significant differences between cell types in the size of the AHP evoked with nine spikes, or in the time constant of its decay. The maximal AHP evoked by a 180 ms pulse was elicited by an average of twelve to thirteen spikes, and neither the size of this maximal AHP nor its time constant of decay were different for the two cell types. 4. In most oxytocin and vasopressin neurones the AHP, and concomitantly spike frequency adaptation, were markedly reduced by the bee venom apamin and by d-tubocurarine, known blockers of a Ca(2+)-mediated K+ conductance. However, a minority of neurones, of both cell types, were relatively resistant to both agents. 5. In untreated neurones, 55% of vasopressin neurones and 32% of oxytocin neurones exhibited a depolarizing after-potential (DAP) after individual spikes or, more commonly, after brief trains of spikes evoked with current pulses. For each neurone with a DAP, bursts of spikes could be evoked if the membrane potential was sufficiently depolarized such that the DAP reached spike threshold. In four out of five vasopressin neurones a DAP became evident only after pharmacological blockade of the AHP, whereas in six oxytocin neurones tested no such masking was found. 6. The firing patterns of neurones were examined at rest and after varying the membrane potential with continuous current injection. No identifying pattern was strictly associated with either cell type, and a substantial number of neurones were silent at rest.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号