首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dental disease due to osteoclast (OC) overactivity reaches epidemic proportions in older domestic cats and has also been reported in wild cats. Feline odontoclastic resorptive lesions (FORL) involve extensive resorption of the tooth, leaving it liable to root fracture and subsequent loss. The etiopathogenesis of FORL remains unclear. Here, we explore the hypothesis that FORL is associated with hypoxia in the oral microenvironment, leading to increased OC activity. To investigate this, we developed a method of generating OCs from cat blood. Reducing O2 from 20% to 2% increased the mean area of OC eightfold from 0.01 to 0.08 mm2. In hypoxic cultures, very large OCs containing several hundred nuclei were evident (reaching a maximum size of ∼14 mm2). Cultures exposed to 2% O2 exhibited an increase of ∼13-fold in the area of bone slices covered by resorption lacunae. In line with this finding, there was a significant increase in cells differentiating under hypoxic conditions, reflected in increased expression of cathepsin K and proton pump enzymes. In conclusion, these results demonstrate that oxygen tension is a major regulator of OC formation in the cat. However, in this species, hypoxia induces the formation of “giant” OCs, which can be so large as to be visible with the naked eye and yet also actively resorb. This suggests that local hypoxia is likely to play a key role in the pathogenesis of FORL and other inflammatory conditions that are associated with bone resorption in cats.  相似文献   

2.
Background With the identification of hyperhomocysteinemia as a risk factor for developing osteoporosis, the contribution of thiols metabolically linked with homocysteine (tHcy) may be of importance. Cysteine (Cys) is formed from tHcy and is involved in bone metabolism via incorporation into collagen and cysteine protease enzymes. Methods We investigated the association of plasma Cys and related thiols, the bone turnover markers C-telopeptide (CTX) and procollagen type 1 N propeptide (P1NP) and folate and vitamin B6 with calcaneal bone mineral density (BMD) in 328 postmenopausal British women grouped according to their BMD measurement. Results Subjects with low BMD had a significantly lower plasma Cys concentration (146.3 vs. 177.7 μmol/l, p < 0.0001), a significantly higher recent fracture rate (30.9% vs. 16.4%, p = 0.017), and a significantly higher percentage of current smokers (26.4% vs. 7.3%. p = 0.003) than those with normal BMD. Additionally, they had a significantly lower plasma Cys, and higher plasma tHcy and CTX, than those with osteopenia. In the whole population, Cys was significantly associated with BMD, weight, height, smoking habit, log creatinine, Cys-Gly, log tHcy, and log folate, but the significant positive association of Cys with BMD was maintained after correction for all other variables (r = 0.197, p = 0.003). After weight, Cys was the next most significant predictor of BMD in a stepwise multiple linear regression model. Conclusion Our study suggests a significant association between plasma Cys and BMD. A reduced Cys concentration, possibly modulated by smoking, or reduced flux from tHcy, may lead to reduced availability for collagen formation. Increased osteoclast activation, possibly as a result of relative hyperhomocysteinemia, may lead to increased Cys utilization in cysteine proteases.  相似文献   

3.
目的研究致敏淋巴细胞对破骨细胞分化及骨吸收功能的影响.方法从被骨水泥单体甲基丙烯酸甲酯(MMA)致敏的新西兰兔外周血中分离淋巴细胞并提取培养介质(LCM),分离培养兔颅骨成骨细胞和兔骨髓细胞,通过抗酒石酸酸性磷酸酶(TrACP)染色和骨磨片扫描电镜观察对破骨细胞进行鉴定.在成骨细胞与骨髓细胞的培养体系中,分别在无LCM,未经MMA刺激的LCM和经MMA刺激的LCM等3种情况下,进行成熟破骨细胞计数和TrACP活性检测.结果骨髓细胞能够分化成破骨细胞并且能在骨磨片上形成骨吸收陷窝,致敏淋巴细胞培养介质能够明显促进破骨细胞数量的增加和TrACP的分泌,在加入MMA刺激后,这种作用更加显著.结论致敏淋巴细胞能够促进骨髓破骨细胞的分化和骨吸收能力.  相似文献   

4.
Aseptic loosening and periprosthetic infection leading to inflammatory osteolysis is a major complication associated with total joint arthroplasty (TJA). The liberation of bacterial products and/or implant‐derived wear particles activates immune cells that produce pro‐osteoclastogenic cytokines that enhance osteoclast recruitment and activity, leading to bone destruction and osteolysis. Therefore, agents that prevent the inflammatory response and/or attenuate excessive osteoclast (OC) formation and bone resorption offer therapeutic potential by prolonging the life of TJA implants. Alexidine dihydrochloride (AD) is a bisbiguanide compound commonly used as an oral disinfectant and in contact lens solutions. It possesses antimicrobial, anti‐inflammatory and anticancer properties; however, its effects on OC biology are poorly described. Here, we demonstrate that AD inhibits OC formation and bone resorption in vitro and exert prophylatic protection against LPS‐induced osteolysis in vivo. Biochemical analysis demonstrated that AD suppressed receptor activator of NF‐κB ligand (RANKL)‐induced activation of mitogen‐activated protein kinases (ERK, p38, and JNK), leading to the downregulation of NFATc1. Furthermore, AD disrupted F‐actin ring formation and attenuated the ability of mature OC to resorb bone. Collectively, our findings suggest that AD may be a promising prophylactic anti‐osteoclastic/resorptive agent for the treatment of osteolytic diseases caused by excessive OC formation and function. © 2015 American Society for Bone and Mineral Research.  相似文献   

5.
Osteoblast‐mediated bone formation is coupled to osteoclast‐mediated bone resorption. These processes become uncoupled with age, leading to increased risk for debilitating fractures. Therefore, understanding how osteoblasts are recruited to sites of resorption is vital to treating age‐related bone loss. Osteoclasts release and activate TGF‐β from the bone matrix. Here we show that osteoclast‐specific inhibition of TGF‐β receptor signaling in mice results in osteopenia due to reduced osteoblast numbers with no significant impact on osteoclast numbers or activity. TGF‐β induced osteoclast expression of Wnt1, a protein crucial to normal bone formation, and this response was blocked by impaired TGF‐β receptor signaling. Osteoclasts in aged murine bones had lower TGF‐β signaling and Wnt1 expression in vivo. Ex vivo stimulation of osteoclasts derived from young or old mouse bone marrow macrophages showed no difference in TGF‐β–induced Wnt1 expression. However, young osteoclasts expressed reduced Wnt1 when cultured on aged mouse bone chips compared to young mouse bone chips, consistent with decreased skeletal TGF‐β availability with age. Therefore, osteoclast responses to TGF‐β are essential for coupling bone resorption to bone formation, and modulating this pathway may provide opportunities to treat age‐related bone loss. © 2015 American Society for Bone and Mineral Research.  相似文献   

6.
7.
Immunotherapies use components of the immune system, such as T cells, to fight cancer cells, and are changing cancer treatment, causing durable responses in some patients. Bone metastases are a debilitating complication in advanced breast and prostate cancer patients. Approved treatments fail to cure bone metastases or increase patient survival and it remains unclear whether immunotherapy could benefit patients. The bone microenvironment combines various immunosuppressive factors, and combined with T cell products could increase bone resorption fueling the vicious cycle of bone metastases. Using syngeneic mouse models, our study revealed that bone metastases from 4T1 breast cancer contain tumor-infiltrating lymphocyte (TILs) and their development is increased in normal mice compared to immunodeficient and T-cell depleted mice. This effect seemed caused by the TILs specifically in bone, because T-cell depletion increased 4T1 orthotopic tumors and did not affect bone metastases from RM-1 prostate cancer cells, which lack TILs. T cells increased osteoclast formation ex vivo and in vivo contributing to bone metastasis vicious cycle. This pro-osteoclastic effect is specific to unactivated T cells, because activated T cells, secreting interferon γ (IFNγ) and interleukin 4 (IL-4), actually suppressed osteoclastogenesis, which could benefit patients. However, non-activated T cells from bone metastases could not be activated in ex vivo cultures. 4T1 bone metastases were associated with an increase of functional polymorphonuclear and monocytic myeloid-derived suppressor cells (MDSCs), potent T-cell suppressors. Although effective in other models, sildenafil and zoledronic acid did not affect MDSCs in bone metastases. Seeking other therapeutic targets, we found that monocytic MDSCs are more potent suppressors than polymorphonuclear MDSCs, expressing programmed cell death receptor-1 ligand (PD-L1)+ in bone, which could trigger T-cell suppression because 70% express its receptor, programmed cell death receptor-1 (PD-1). Collectively, our findings identified a new mechanism by which suppressed T cells increase osteoclastogenesis and bone metastases. Our results also provide a rationale for using immunotherapy because T-cell activation would increase their anti-cancer and their anti-osteoclastic properties. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).  相似文献   

8.
9.
10.
Fibroblast growth factor receptor 3 (FGFR3) participates in bone remodeling. Both Fgfr3 global knockout and activated mice showed decreased bone mass with increased osteoclast formation or bone resorption activity. To clarify the direct effect of FGFR3 on osteoclasts, we specifically deleted Fgfr3 in osteoclast lineage cells. Adult mice with Fgfr3 deficiency in osteoclast lineage cells (mutant [MUT]) showed increased bone mass. In a drilled‐hole defect model, the bone remodeling of the holed area in cortical bone was also impaired with delayed resorption of residual woven bone in MUT mice. In vitro assay demonstrated that there was no significant difference between the number of tartrate‐resistant acid phosphatase (TRAP)‐positive osteoclasts derived from wild‐type and Fgfr3‐deficient bone marrow monocytes, suggesting that FGFR3 had no remarkable effect on osteoclast formation. The bone resorption activity of Fgfr3‐deficient osteoclasts was markedly decreased accompanying with downregulated expressions of Trap, Ctsk, and Mmp 9. The upregulated activity of osteoclastic bone resorption by FGF2 in vitro was also impaired in Fgfr3‐deficient osteoclasts, indicating that FGFR3 may participate in the regulation of bone resorption activity of osteoclasts by FGF2. Reduced adhesion but not migration in osteoclasts with Fgfr3 deficiency may be responsible for the impaired bone resorption activity. Our study for the first time genetically shows the direct positive regulation of FGFR3 on osteoclastic bone resorption. © 2016 American Society for Bone and Mineral Research.  相似文献   

11.
Bisphosphonates are being increasingly used to treat pediatric patients with skeletal disorders. However, the effects of long‐term bisphosphonate therapy and cessation of therapy during growth are unclear. Thus, studies were undertaken to determine the effects of alendronate discontinuation after treatment of C57Bl/6 mice during the period of rapid skeletal growth. Compared with vehicle‐treated mice, 16 weeks of alendronate treatment starting at age 18 days resulted in a 3.7‐fold increase in trabecular bone in the setting of suppressed bone formation. Alendronate therapy for 8 weeks followed by 8 weeks of vehicle treatment resulted in a more pronounced increase in trabecular bone compared with mice treated with alendronate for 16 weeks (1.7‐fold) and to vehicle‐treated controls (6.5‐fold). Mice that received alendronate for 8 weeks followed by 8 weeks of vehicle exhibited increased osteoblast surface (2.5‐fold), mineralizing surface (5.7‐fold), and bone formation rate (5.1‐fold) compared with mice treated continuously with alendronate. However, these parameters were not restored to the levels observed in the vehicle‐treated mice. Thus, partial resumption of bone formation upon cessation of bisphosphonate therapy leads to a greater increase in trabecular bone than that found when bisphosphonates are administered continuously to growing mice. These data suggest that intermittent administration of bisphosphonates may optimize their beneficial effects on the growing skeleton. © 2017 American Society for Bone and Mineral Research.  相似文献   

12.
13.
Physical activity is essential to maintain skeletal mass and structure, but its effect seems to diminish with age. To test the hypothesis that bone becomes less sensitive to mechanical strain with age, we used a combined in vivo/in silico approach. We investigated how maturation and aging influence the mechanical regulation of bone formation and resorption to 2 weeks of noninvasive in vivo controlled loading in mice. Using 3D in vivo morphometrical assessment of longitudinal microcomputed tomography images, we quantified sites in the mouse tibia where bone was deposited or resorbed in response to controlled in vivo loading. We compared the (re)modeling events (formation/resorption/quiescent) to the mechanical strains induced at these sites (predicted using finite element analysis). Mice of all age groups (young, adult, and elderly) responded to loading with increased formation and decreased resorption, preferentially at high strains. Low strains were associated with no anabolic response in adult and elderly mice, whereas young animals showed a strong response. Adult animals showed a clear separation between strain ranges where formation and resorption occurred but without an intermediate quiescent “lazy zone”. This strain threshold disappeared in elderly mice, as mechanically induced (re)modeling became dysregulated, apparent in an inability to inhibit resorption or initiate formation. Contrary to what is generally believed until now, aging does not shift the mechanical threshold required to initiate formation or resorption, but rather blurs its specificity. These data suggest that pharmaceutical strategies augmenting physical exercise should consider this dysfunction in the mechanical regulation of bone (re)modeling to more effectively combat age‐related bone loss. © 2015 American Society for Bone and Mineral Research.  相似文献   

14.
Serum and urinary assays of bone markers provide a noninvasive alternative to bone biopsy in the study of bone metabolism in humans. Many of the commercial assays that were originally developed for use in humans have been shown to cross-react in dogs, and it should therefore be possible to use these assays to study bone remodeling in dogs. The interpretation of bone marker data in humans is hampered by extensive inter- and intra-subject variability. The specific aim of this study was therefore to determine the extent of biological variability in bone markers in dogs. Serum and urine samples were collected every 4 hours over a 24-hour period (short-term study), and every week over a 12-week period (long-term study). Serum bone-specific alkaline phosphatase (BALP) and urinary deoxypyridinoline (Dpd) and N-terminal telopeptide of collagen (NTx) were measured with commercial enzyme immunoassays. Serum osteocalcin (OC) and carboxyterminal crosslinked telopeptide of type I collagen (ICTP) were measured with commercial radioimmunoassays. In the short-term study, statistically significant diurnal rhythms were identified for OC, BALP, ICTP, and Dpd. No clear rhythm was evident for NTx. There was no evidence of statistically significant long-term variability in marker excretion over the 12 weeks. Our findings confirm the utility of these assays in dogs. However, as in humans, care must be taken to ensure that specimens are collected at a consistent time of day. Moreover, given the inherent variability in marker excretion in individual animals, the most appropriate use for these assays is as a screening tool for cohort studies, rather than as a diagnostic or prognostic tool in the individual animal.  相似文献   

15.
16.
The development of the potential of osteoblasts to support bone resorption by osteoclasts in response to roughness on bone slices was examined in the co-incubation cell system of immature osteoclasts and osteoblastic cells. The immature osteoclasts, which need alkaline phospatase (ALP)-positive osteoblastic cells for bone resorption, were generated in mouse spleen cultures with 1, 25-dihydroxyvitamin D3 and prostaglandin E2. ALP-negative osteoblastic cells from mouse calvaria were incubated on rough surfaced bone slices for 3 days. The number of ALP-positive cells increased greatly on the rough surface, but little on the smooth surface. When immature osteoclasts were added and incubated for 1 more day, the resorption pit number and the total pit areas on the smooth surface were not much different from those before incubation but were approximately four times higher on the rough surface. Received: 21 July 1998 / Accepted: 12 March 1999  相似文献   

17.
Mononuclear precursors of the human osteoclast have been identified in both bone marrow and the circulation in man, but osteoclast membership of the mononuclear phagocyte system (MPS) and its precise cellular ontogeny remain controversial. We isolated human hematopoietic marrow cells, blood monocytes, and peritoneal macrophages and incubated each of these cell populations with UMR106 osteoblast-like cells on glass coverslips and dentine slices in both the presence and absence of 1,25 dihydroxyvitamin D3 (1,25(OH)2D3), macrophage-colony stimulating factor (M-CSF), and dexamethasone. Cells isolated from peripheral blood and peritoneal dialysis fluid were positive only for monocyte/macrophage markers (CD11a, CD11b, CD14, and HLA-DR) and negative for osteoclast markers [tartrate-resistant acid phosphatase (TRAP), vitronectin reception (VNR), and calcitonin (CT) receptors and did not form resorption pits on dentine slices after 24 hours in culture. Similarly marrow cells did not form resorption pits on dentine slices after 24 hours in culture. However, after 14 days in co-culture with UMR106 cells, in the presence of 1,25(OH)2D3 and M-CSF, numerous TRAP, CT receptor, and VNR-positive multinucleated cells capable of extensive lacunar resorption were formed in co-cultures of all these preparations. The presence of 1,25 (OH)2D3, M-CSF, and UMR106 were absolute requirements for osteoclast differentiation. It is concluded that precursor cells capable of osteoclast differentiation are present in the marrow compartment, the monocyte fraction of peripheral blood, and in the macrophage compartment of extraskeletal tissues and that these cells are capable of differentiating into mature functional osteoclasts. These findings argue in favor of osteoclast membership of the human MPS. Received: 3 January 1997 / Accepted: 14 November 1997  相似文献   

18.
19.
Cathepsin K deficiency in humans causes pycnodysostosis, which is characterized by dwarfism and osteosclerosis. Earlier studies of 10-week-old male cathepsin K-deficient (knockout, KO) mice showed their bones were mechanically more brittle, while histomorphometry showed that both osteoclasts and osteoblasts had impaired activity relative to the wild type (WT). Here, we report detailed mineral and matrix analyses of the tibia of these animals based on Fourier transform infrared microspectroscopy and imaging. At 10 weeks, there was significant hypercalcification of the calcified cartilage and cortices in the KO. Carbonate content was elevated in the KO calcified cartilage as well as cortical and cancellous bone areas. These data suggest that cathepsin K does not affect mineral deposition but has a significant effect on mineralized tissue remodeling. Since growth plate abnormalities were extensive despite reported low levels of cathepsin K expression in the calcified cartilage, we used a differentiating chick limb-bud mesenchymal cell system that mimics endochondral ossification but does not contain osteoclasts, to show that cathepsin K inhibition during initial stages of mineral deposition retards the mineralization process while general inhibition of cathepsins can increase mineralization. These data suggest that the hypercalcification of the cathepsin K-deficient growth plate is due to persistence of calcified cartilage and point to a role of cathepsin K in bone tissue development as well as skeletal remodeling.  相似文献   

20.
Anabolic osteoporosis drugs improve bone mineral density by increasing bone formation. The objective of this study was to evaluate the early effects of abaloparatide on indices of bone formation and to assess the effect of abaloparatide on modeling-based formation (MBF), remodeling-based formation (RBF), and overflow MBF (oMBF) in transiliac bone biopsies. In this open-label, single-arm study, 23 postmenopausal women with osteoporosis were treated with 80 μg abaloparatide daily. Subjects received double fluorochrome labels before treatment and before biopsy collection at 3 months. Change in dynamic histomorphometry indices in four bone envelopes were assessed. Median mineralizing surface per unit of bone surface (MS/BS) increased to 24.7%, 48.7%, 21.4%, and 16.3% of total surface after 3 months of abaloparatide treatment, representing 5.5-, 5.2-, 2.8-, and 12.9-fold changes, on cancellous, endocortical, intracortical, and periosteal surfaces (p < .001 versus baseline for all). Mineral apposition rate (MAR) was significantly increased only on intracortical surfaces. Bone formation rate (BFR/BS) was significantly increased on all four bone envelopes. Significant increases versus baseline were observed in MBF on cancellous, endocortical, and periosteal surfaces, for oMBF on cancellous and endocortical surfaces, and for RBF on cancellous, endocortical, and intracortical surfaces. Overall, modeling-based formation (MBF + oMBF) accounted for 37% and 23% of the increase in bone-forming surface on the endocortical and cancellous surfaces, respectively. Changes from baseline in serum biomarkers of bone turnover at either month 1 or month 3 were generally good surrogates for changes in histomorphometric endpoints. In conclusion, treatment with abaloparatide for 3 months stimulated bone formation on cancellous, endocortical, intracortical, and periosteal envelopes in transiliac bone biopsies obtained from postmenopausal women with osteoporosis. These increases reflected stimulation of both remodeling- and modeling-based bone formation, further elucidating the mechanisms by which abaloparatide improves bone mass and lowers fracture risk. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号