首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Bulletin du cancer》2014,101(1):25-30
The MET receptor tyrosine kinase and its ligand HGF regulates many signalling pathways involved in proliferation and cell motility, invasion and angiogenesis. Deregulation of HGF-MET system by different biological mechanisms may contribute to the tumour development in many types of cancers. Some pharmacological approaches have been developed to inhibit the HGF-MET signalling pathway, using monoclonal antibodies against HGF or MET, or using tyrosine kinase inhibitors of MET receptor. In digestive cancers, several clinical studies have evaluated the safety and efficacy of these targeted therapies, with some promising results but requiring confirmation in phase III trials. Moreover, it appears that MET tumour expression could be a predictive marker of response to these targeted therapies for some gastrointestinal tumours. Thus, somatic alterations in HGF-MET system may represent interesting therapeutic targets and help to select patients who can favourably respond to such targeted treatment.  相似文献   

2.
Signaling driven by hepatocyte growth factor (HGF) and MET receptor facilitates conspicuous biological responses such as epithelial cell migration, 3‐D morphogenesis, and survival. The dynamic migration and promotion of cell survival induced by MET activation are bases for invasion–metastasis and resistance, respectively, against targeted drugs in cancers. Recent studies indicated that MET in tumor‐derived exosomes facilitates metastatic niche formation and metastasis in malignant melanoma. In lung cancer, gene amplification‐induced MET activation and ligand‐dependent MET activation in an autocrine/paracrine manner are causes for resistance to epidermal growth factor receptor tyrosine kinase inhibitors and anaplastic lymphoma kinase inhibitors. Hepatocyte growth factor secreted in the tumor microenvironment contributes to the innate and acquired resistance to RAF inhibitors. Changes in serum/plasma HGF, soluble MET (sMET), and phospho‐MET have been confirmed to be associated with disease progression, metastasis, therapy response, and survival. Higher serum/plasma HGF levels are associated with therapy resistance and/or metastasis, while lower HGF levels are associated with progression‐free survival and overall survival after treatment with targeted drugs in lung cancer, gastric cancer, colon cancer, and malignant melanoma. Urinary sMET levels in patients with bladder cancer are higher than those in patients without bladder cancer and associated with disease progression. Some of the multi‐kinase inhibitors that target MET have received regulatory approval, whereas none of the selective HGF‐MET inhibitors have shown efficacy in phase III clinical trials. Validation of the HGF‐MET pathway as a critical driver in cancer development/progression and utilization of appropriate biomarkers are key to development and approval of HGF‐MET inhibitors for clinical use.  相似文献   

3.
A better understanding of the pathophysiology and evolution of non‐small cell lung cancer (NSCLC) has identified a number of molecular targets and spurred development of novel targeted therapeutic agents. The MET receptor tyrosine kinase and its ligand hepatocyte growth factor (HGF) are implicated in tumor cell proliferation, migration, invasion, and angiogenesis in a broad spectrum of human cancers, including NSCLC. Amplification of MET has been reported in approximately 5%–22% of lung tumors with acquired resistance to small‐molecule inhibitors of the epidermal growth factor receptor (EGFR). Resistance to EGFR inhibitors is likely mediated through downstream activation of the phosphoinositide 3‐kinase /AKT pathway. Simultaneous treatment of resistant tumors with a MET inhibitor plus an EGFR inhibitor can abrogate activation of downstream effectors of cell growth, proliferation, and survival, thereby overcoming acquired resistance to EGFR inhibitors. Development and preclinical testing of multiple agents targeting the HGF–MET pathway, including monoclonal antibodies targeting HGF or the MET receptor and small‐molecule inhibitors of the MET tyrosine kinase, have confirmed the crucial role of this pathway in NSCLC. Several agents are now in phase III clinical development for the treatment of NSCLC. This review summarizes the role of MET in the pathophysiology of NSCLC and in acquired resistance to EGFR inhibitors and provides an update on progress in the clinical development of inhibitors of MET for treatment of NSCLC.  相似文献   

4.
Aberrant activation of the MET/hepatocyte growth factor (HGF) receptor participates in the malignant behavior of cancer cells, such as invasion‐metastasis and resistance to molecular targeted drugs. Many mutations in the MET extracellular region have been reported, but their significance is largely unknown. Here, we report the dysregulation of mutant MET originally found in a lung cancer patient with Val370 to Asp370 (V370D) replacement located in the extracellular SEMA domain. MET‐knockout cells were prepared and reconstituted with WT‐MET or V370D‐MET. HGF stimulation induced MET dimerization and biological responses in cells reconstituted with WT‐MET, but HGF did not induce MET dimerization and failed to induce biological responses in V370D‐MET cells. The V370D mutation abrogated HGF‐dependent drug resistance of lung cancer cells to epidermal growth factor receptor‐tyrosine kinase inhibitors (EGFR‐TKI). Compared with WT‐MET cells, V370D‐MET cells showed different activation patterns in receptor tyrosine kinases upon exposure to survival/growth‐stressed conditions. Surface plasmon resonance analysis indicated that affinity between the extracellular region of V370D‐MET and HGF was reduced compared with that for WT‐MET. Further analysis of the association between V370D‐MET and the separate domains of HGF indicated that the SP domain of HGF was unchanged, but its association with the NK4 domain of HGF was mostly lost in V370D‐MET. These results indicate that the V370D mutation in the MET receptor impairs the functional association with HGF and is therefore a loss‐of‐function mutation. This mutation may change the dependence of cancer cell growth/survival on signaling molecules, which may promote cancer cell characteristics under certain conditions.  相似文献   

5.
The N-methyl-N′-nitroso-guanidine human osteosarcoma transforming gene (MET) receptor tyrosine kinase and its ligand hepatocyte growth factor (HGF) control cellular signaling cascades that direct cell growth, proliferation, survival, and motility. Aberrant MET/HGF activation has been observed in many tumor types, can occur by multiple mechanisms, and promotes cellular proliferation and metastasis via growth factor receptors and other oncogenic receptor pathways. Thus, MET/HGF inhibition has emerged as targeted anticancer therapies. Preclinically, neoplastic and metastatic phenotypes of several tumor cells, including non-small cell lung cancer, hepatocellular carcinoma, and gastric cancer, were abrogated by MET inhibition. Ongoing clinical development with tivantinib, cabozantinib, onartuzumab, crizotinib, rilotumumab, and ficlatuzumab has shown encouraging results. These trials have established a key role for MET in a variety of tumor types. Evidence is emerging for identification of aberrant MET activity biomarkers and selection of patient subpopulations that may benefit from targeted MET and HGF inhibitor treatment.  相似文献   

6.
c-Met是酪氨酸激酶受体的一种,由MET基因编码产生.肝细胞生长因子(HGF)作为c-Met唯一的天然配体,与其结合后激活相关下游通路如PI3K、MAPK和STAT 3等,参与肿瘤的增殖、迁移、侵袭等方面.c-Met主要激活形式包括有配体依赖的自分泌或旁分泌机制和非配体依赖机制等,许多恶性肿瘤包括肺癌在内均存在c-M...  相似文献   

7.
The MET receptor tyrosine kinase and its ligand hepatocyte growth factor (HGF) have been implicated in transformation of a variety of malignancies. Chronic or dysregulated activation of the MET/HGF pathway may lead to increased cell growth, invasion, angiogenesis, and metastasis, reduced apoptosis, altered cytoskeletal functions and other biological changes. It has been suggested that ligand activated MET stimulation can be sufficient for a transforming phenotype. In addition, amplification and activation mutations (germline and/or somatic) within the tyrosine kinase domain, juxtamembrane domain, or semaphorin domain have been identified for MET. MET gain-of-function mutations lead to either deregulated or prolonged tyrosine kinase activity, which are instrumental to its transforming activity. A number of therapeutic strategies targeting ligand-dependent activation or the kinase domain have been employed to inhibit MET. The different structural requirements for activation of signaling events and biological functions regulated by MET will be summarized. Therapeutic targets and current pre-clinical and clinical approaches will be described. Targeting the HGF/MET pathway, alone or in combination with standard therapies, is likely to improve present therapies in MET-dependent malignancies.  相似文献   

8.
Nasopharyngeal carcinoma (NPC) represents a common cancer in endemic areas with high invasive and metastatic potential. It is now known that the HGF-MET signaling pathway plays an important role in mediating the invasive growth of many different types of cancer, including head and neck squamous cell carcinoma. HGF has been shown to stimulate NPC cell growth and invasion in cell line model. The current study aims at demonstrating the effect of MET inhibition by small molecule tyrosine kinase inhibitor PHA665752 on the growth and invasive potential of NPC cell lines. NPC cell lines were used for immunohistochemistry for the MET protein, as well as western blot analysis on MET together with its downstream cascade signaling proteins after treatment with PHA665752. The effect on cell growth, migration and invasion after PHA665752 treatment was also studied. MET inhibition by PHA665752 resulted in highly significant inhibition on NPC cell growth, migration and invasion in vitro. Down-regulation of phospho-MET, phospho-Akt, phospho-MAPK, phospho-STAT3, cyclin D1, β-catenin and PCNA was detected in NPC cells after PHA665752 treatment. MET inhibition with tyrosine kinase inhibitor resulted in suppression of NPC cell growth and invasive potential via down-regulation of a variety of signaling onco-proteins. MET is an important therapeutic target for NPC that warrants further studies and clinical trials.  相似文献   

9.
Dysregulated activation of the MET tyrosine kinase receptor is implicated in the development of solid tumors and can arise through several mechanisms, including gene amplification, overexpression of the receptor and/or its ligand hepatocyte growth factor (HGF), and the acquisition of activating mutations. The most common activating mutations cause exon 14 to be skipped during MET mRNA splicing. This in-frame deletion, known as MET exon 14, results in production of a shortened receptor that lacks a juxtamembrane domain but retains affinity for HGF. However, the negative regulatory function located within this protein sequence is lost, leading to receptor accumulation on the cell surface and prolonged activation by HGF. MET mutations causing exon 14 skipping appear to be true oncogenic drivers and occur in patients and tumors with distinct characteristics.Increasing evidence suggests that tumors carrying such mutations are sensitive to MET inhibition, raising the hope that selective MET inhibitors will provide patients with optimal anticancer activity with minimal toxicity.We discuss the prospects for selective MET inhibitors in the treatment of non-small cell lung cancer harboring MET exon 14 skipping.  相似文献   

10.
Small‐cell lung cancer (SCLC) accounts for approximately 15% of all lung cancers, and is characterized as extremely aggressive, often displaying rapid tumor growth and multiple organ metastases. In addition, the clinical outcome of SCLC patients is poor due to early relapse and acquired resistance to standard chemotherapy treatments. Hence, novel therapeutic strategies for the treatment of SCLC are urgently required. Accordingly, several molecular targeted therapies were evaluated in SCLC; however, they failed to improve the clinical outcome. The receptor tyrosine kinase MET is a receptor for hepatocyte growth factor (HGF), and aberrant activation of HGF/MET signaling is known as one of the crucial mechanisms enabling cancer progression and invasion. Here, we found that the HGF/MET signaling was aberrantly activated in chemoresistant or chemorelapsed SCLC cell lines (SBC‐5, DMS273, and DMS273‐G3H) by the secretion of HGF and/or MET copy number gain. A cell‐based in vitro assay revealed that HGF/MET inhibition, induced either by MET inhibitors (crizotinib and golvatinib), or by siRNA‐mediated knockdown of HGF or MET, constrained growth of chemoresistant SCLC cells through the inhibition of ERK and AKT signals. Furthermore, treatment with either crizotinib or golvatinib suppressed the systemic metastasis of SBC‐5 cell tumors in natural killer cell‐depleted SCID mice, predominantly through cell cycle arrest. These findings reveal the therapeutic potential of targeting the HGF/MET pathway for inhibition, to constrain tumor progression of SCLC cells showing aberrant activation of HGF/MET signaling. We suggest that it would be clinically valuable to further investigate HGF/MET‐mediated signaling in SCLC cells.  相似文献   

11.
12.
The c‐MET receptor tyrosine kinase is the receptor for hepatocyte growth factor. Recently, activation of the c‐MET/hepatocyte growth factor signaling pathway was associated with poor prognosis in various solid tumors and was one of the mechanisms of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitor, gefitinib. But the link between c‐MET activation and the cytotoxic anticancer drug has not been fully examined. Here, we found that the enhanced expression and activation of c‐MET in cytotoxic anticancer agent‐resistant small‐cell lung cancer cells. Downregulation of c‐MET expression by siRNA against the c‐MET gene or inhibition of c‐MET activation by SU11274, a c‐MET inhibitor, in the resistant cells altered resistance to the cytotoxic anticancer agent. These results indicated that c‐MET overexpression might play an important role in acquired resistance to cytotoxic anticancer drugs. Furthermore, the number of c‐MET gene loci was increased in the resistant cells compared to the parental cells. In conclusion, increased c‐Met expression through an increase in the number of c‐MET gene loci is one of the mechanisms of acquired resistance to cytotoxic anticancer drugs. Our results add a new strategy, the targeting of c‐MET, for overcoming resistance to cytotoxic agents in small‐cell lung cancer.  相似文献   

13.
MET is a versatile receptor tyrosine kinase within the human kinome which is activated by its specific natural ligand hepatocyte growth factor (HGF). MET signaling plays an important physiologic role in embryogenesis and early development, whereas its deregulation from an otherwise quiescent signaling state in mature adult tissues can lead to upregulated cell proliferation, survival, scattering, motility and migration, angiogenesis, invasion, and metastasis in tumorigenesis and tumor progression. Studies have shown that MET pathway is activated in many solid and hematological malignancies, including lung cancer, and can be altered through ligand or receptor overexpression, genomic amplification, MET mutations, and alternative splicing. The MET signaling pathway is known to be an important novel target for therapeutic intervention in human cancer. A number of novel therapeutic agents that target the MET/HGF pathway have been tested in early-phase clinical studies with promising results. Phase 3 studies of MET targeting agents have just been initiated. We will review the MET signaling pathway and biology in lung cancer and the recent clinical development and advances of MET/HGF targeting agents with emphasis on discussion of issues and strategies needed to optimize the personalized therapy and further clinical development.  相似文献   

14.
Hepatocyte growth factor receptor (HGFR), the product of the MET gene, plays an important role in normal cellular function and oncogenesis. In cancer, HGFR has been implicated in cellular proliferation, cell survival, invasion, cell motility, metastasis and angiogenesis. Activation of HGFR can occur through binding to its ligand, hepatocyte growth factor (HGF), overexpression/amplification, mutation, and/or decreased degradation. Amplification of HGFR can occur de novo or in resistance to therapy. Mutations of HGFR have been described in the tyrosine kinase domain, juxtamembrane domain, or semaphorin domain in a number of tumors. These mutations appear to have gain of function, and also reflect differential sensitivity to therapeutic inhibition. There have been various drugs developed to target HGFR, including antibodies to HGFR/HGF, small-molecule inhibitors against the tyrosine kinase domain of HGFR and downstream targets. Different HGFR inhibitors are currently in clinical trials in lung cancer and a number of solid tumors. Several phase I trials have already been completed, and two specific trials have been reported combining HGFR with epidermal growth factor receptor (EGFR) inhibition in non-small cell lung cancer. In particular, trials involving MetMAb and ARQ197 (tivantinib) have gained interest. Ultimately, as individualized therapies become a reality for cancers, HGFR will be an important molecular target.  相似文献   

15.
MET is a tyrosine kinase receptor that, upon binding of its natural ligand, the hepatocyte growth factor (HGF), is phosphorylated and subsequently activates different signalling pathways involved in proliferation, motility, migration and invasion. MET has been found to be aberrantly activated in human cancer via mutation, amplification or protein overexpression. MET expression and activation have been associated with prognosis in a number of tumour types and predict response to MET inhibitors in preclinical models. Here we review the HGF/MET signalling pathway, its role in human cancer and the different inhibitory strategies that have been developed for therapeutic use.  相似文献   

16.
Altered regulation of tyrosine kinase receptors (RTKs) is frequent in solid tumours and it is often associated with the acquisition of an aggressive phenotype. Thus, therapies targeting these receptors have been proposed as molecular approaches to treat human cancers. The MET proto-oncogene, encoding the tyrosine kinase receptor for hepatocyte growth factor (HGF), controls genetic programmes leading to cell growth, invasion and protection from apoptosis. Germ-line mutations of MET in patients affected by hereditary papillary renal carcinomas (HPRC) have provided strong genetic evidences for its role in human malignancies; moreover, constitutive activation of this receptor, as a consequence of different mechanisms such as over-expression, autocrine stimulation or point mutations, is frequent in sporadic cancers. Several strategies to block the activation of MET are under development, such as the use of tyrosine kinase inhibitors or monoclonal antibodies and some of these compounds have already been used in clinical trials. In this review, we will discuss the molecular mechanisms underlying MET involvement in tumourigenesis and present pre-clinical and clinical data obtained with compounds aimed at targeting MET in the frame of cancer therapy.  相似文献   

17.
The MET protooncogene encodes the receptor tyrosine kinase c-MET (MET). Aberrant activation of MET signaling occurs in a subset of advanced malignancies, including gastric cancer, and promotes tumor cell growth, survival, migration, and invasion as well as tumor angiogenesis, suggesting its potential importance as a therapeutic target. MET can be activated by two distinct pathways that are dependent on or independent of its ligand, hepatocyte growth factor (HGF), with the latter pathway having been attributed mostly to MET amplification in gastric cancer. Preclinical evidence has suggested that interruption of the HGF–MET axis either with antibodies to HGF or with MET tyrosine kinase inhibitors (TKIs) has antitumor effects in gastric cancer cells. Overexpression of MET occurs frequently in gastric cancer and has been proposed as a potential predictive biomarker for anti-MET therapy. However, several factors can trigger such MET upregulation in a manner independent of HGF, suggesting that gastric tumors with MET overexpression are not necessarily MET driven. On the other hand, gastric cancer cells with MET amplification are dependent on MET signaling for their survival and are thus vulnerable to MET TKI treatment. Given the low prevalence of MET amplification in gastric cancer (approximately 8 %), testing for this genetic change would substantially narrow the target population but it might constitute a better biomarker than MET overexpression for MET TKI therapy. We compare aberrant MET signaling dependent on the HGF–MET axis or on MET amplification as well as address clinical issues and challenges associated with the identification of appropriate biomarkers for MET-driven tumors.  相似文献   

18.
《Annals of oncology》2013,24(1):14-20
MET is a tyrosine kinase receptor for hepatocyte growth factor (HGF), primarily expressed on epithelial cells; the activation of MET induces several biological responses relevant for the development and growth of many human cancers. Several human malignancies present altered expression of MET and this is usually associated with poor prognosis and aggressive phenotype. The majority of MET inhibitors in clinical development target directly the receptor through the use of monoclonal antibodies (MAbs) or through small molecule inhibitors of MET kinase activity; small molecule inhibitors are very potent but less specific than MAbs. MET inhibitors are of great clinical interest because of the extensive crosstalk of the HGF/MET axis with many other signaling pathways, including growth factor-dependent pathways (like PI3K/AKT/mTOR,RAS/RAF/ERK) and vascular endothelial growth factor (VEGF) axis. In preclinical studies, the treatment with MET inhibitors could prevent or reverse resistance to inhibitors of growth factor-dependent signaling; this hypothesis is currently tested in phase III trials with anti-epidermal growth factor receptor (EGFR) inhibitors in non-small-cell lung cancer (NSCLC). Based on preclinical and preliminary clinical results, a rational strategy for the clinical development of MET antagonists should include a selection of the tumors with MET overexpression, the identification of prognostic/predictive biomarkers, the evaluation of combinations with anti-VEGF compounds.  相似文献   

19.
The hepatocyte growth factor receptor (MET) is a potential therapeutic target in a number of cancers, including NSCLC. In NSCLC, MET pathway activation is thought to occur through a diverse set of mechanisms that influence properties affecting cancer cell survival, growth, and invasiveness. Preclinical and clinical evidence suggests a role for MET activation as both a primary oncogenic driver in subsets of lung cancer and as a secondary driver of acquired resistance to targeted therapy in other genomic subsets. In this review, we explore the biology and clinical significance behind MET proto-oncogene receptor tyrosine kinase (MET) exon 14 alterations and MET amplification in NSCLC, the role of MET amplification in the setting of acquired resistance to EGFR tyrosine kinase inhibitor therapy in EGFR-mutant NSCLC, and the history of MET pathway inhibitor drug development in NSCLC, highlighting current strategies that enrich for biomarkers likely to be predictive of response. Whereas previous trials that focused on MET pathway–directed targeted therapy in unselected or MET-overexpressing NSCLC yielded largely negative results, more recent investigations focusing on MET exon 14 alterations and MET amplification have been notable for meaningful clinical responses to MET inhibitor therapy in a substantial proportion of patients.  相似文献   

20.
Receptor tyrosine kinases are often aberrantly activated in human malignancies and contribute to cancer development and progression. Specific receptor tyrosine kinase inhibitors have been shown to be clinically effective therapies in subsets of cancer patients with either hematologic or solid tumors. Activation of the hepatocyte growth factor (HGF)/MET signaling pathway has been found to play a critical role in oncogenesis, cancer metastasis, and drug resistance. These observations have led to the development of agents that can effectively inhibit HGF/MET signaling through direct inhibition of the receptor (anti-MET antibodies), through inactivation of its ligand HGF (AMG102, L2G7), by interfering with HGF binding to MET (NK4), or by inhibiting MET kinase activity (PHA-665752 and SU11274). Moreover, the combination of anti-MET therapeutic agents with either signal transduction inhibitors (ERBB family or mTOR inhibitors) or with cytotoxic chemotherapy has been evaluated in preclinical models. These studies provide insight into the rational development of combination therapeutic strategies that can be evaluated in clinical trials. This review will discuss different strategies of MET inhibition with a specific focus on combination therapeutic approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号