首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Friedreich's ataxia is a neurodegenerative disorder caused by mutations in the frataxin gene that produces a predominantly mitochondrial protein whose primary function appears to be mitochondrial iron-sulfur cluster (ISC) biosynthesis. Previously we demonstrated that frataxin interacts with multiple components of the mammalian ISC assembly machinery. Here we demonstrate that frataxin interacts with the mammalian mitochondrial chaperone HSC20. We show that this interaction is iron-dependent. We also show that like frataxin, HSC20 interacts with multiple proteins involved in ISC biogenesis including the ISCU/Nfs1 ISC biogenesis complex and the GRP75 ISC chaperone. Furthermore, knockdown of HSC20 caused functional defects in activity of mitochondrial ISC-containing enzymes and also defects in ISC protein expression. Alterations up or down of frataxin expression caused compensatory changes in HSC20 expression inversely, as expected of two cooperating proteins operating in the same pathway and suggesting a potential therapeutic strategy for the disease. Knockdown of HSC20 altered cytosolic and mitochondrial iron pools and increased the expression of transferrin receptor 1 and iron regulatory protein 2 consistent with decreased iron bioavailability. These results indicate that HSC20 interacts with frataxin structurally and functionally and is important for ISC biogenesis and iron homeostasis in mammals. Furthermore, they suggest that HSC20 may act late in the ISC pathway as a chaperone in ISC delivery to apoproteins and that HSC20 should be included in multi-protein complex studies of mammalian ISC biogenesis.  相似文献   

3.
4.
Intracellular iron homeostasis of vertebrates and invertebrates is mediated through the interaction of iron-regulatory proteins (IRPs) with mRNAs containing a bulged hairpin-loop structure termed the iron-responsive element (IRE). We detected a protein within extracts prepared from Leishmania tarentolae that specifically interacts with a mammalian IRE; mutations to the IRE that inhibit the interaction with the mammalian protein have a corresponding effect on the interaction with the L. tarentolae protein. The disassociation constant noted for the interaction of the mammalian IRE with the L. tarentolae protein was 0.7 ± 0.3 μM, whereas that recorded for the interaction with the mammalian IRP under these conditions was 5 ± 2 nM. The interacting L. tarentolae protein potentially places the RNA-binding site of the IRP near the root of the eukaryotic evolutionary tree. However, unlike that of the mammalian IRPs, the L. tarentolae IRE-binding activity was not induced by growth in iron-depleted media. Received: 21 June 1999 / Accepted: 15 September 1999  相似文献   

5.
Cho H  Lee HC  Jang SK  Kim YK 《Virus genes》2008,37(2):154-160
Although increased liver iron in individuals with chronic hepatitis C virus (HCV) is associated with a poor response to interferon therapy, the underlying molecular mechanisms are poorly understood. In this study, we show that iron enhances the translation initiation mediated by the internal ribosome entry site (IRES) of HCV. We also demonstrate by UV cross-linking analysis that specific cellular proteins bind to HCV 5' untranslated region (5' UTR) in an iron-dependent manner. Notably, p85 and p110 are competed out for their binding to HCV 5' UTR when excess amounts of iron-responsive element (IRE) competitor RNAs are treated. This indicates that at least these two factors are common proteins for binding to HCV 5' UTR and IRE. Our results, taken together, suggest that intracellular iron modulates the iron sensing pathway and HCV IRES-dependent translation by changing the binding affinities of the common cellular factors to IRE and HCV IRES, respectively. As a consequence, the coordinated regulation of gene expression by intracellular iron could provide favorable conditions for HCV proliferation.  相似文献   

6.
7.
Considerable evidence suggests that oxidative stress may be involved in the pathogenesis of Transmissible Spongiform Encephalopathies (TSEs). To investigate the involvement of iron metabolism in TSEs, we examined the expression levels of iron regulatory proteins (IRPs), ferritins, and binding activities of IRPs to iron-responsive element (IRE) in scrapie-infected mice. We found that the IRPs-IRE-binding activities and ferritins were increased in the astrocytes of hippocampus and cerebral cortex in the brains of scrapie-infected mice. These results suggest that alteration of iron metabolism contributes to development of neurodegeneration and that some protective mechanisms against iron-induced oxidative damage may occur during the pathogenesis of TSEs.  相似文献   

8.
Iron is an essential element for almost all living organisms, but can be extremely toxic in high concentrations. All organisms must therefore employ homeostatic mechanisms to finely regulate iron uptake, usage and storage in the face of dynamic environmental conditions. The critical step in mammalian systemic iron homeostasis is the fine regulation of dietary iron absorption. However, as the gastrointestinal system is also home to >1014 bacteria, all of which engage in their own programmes of iron homeostasis, the gut represents an anatomical location where the inter-kingdom fight for iron is never-ending. Here, we explore the molecular mechanisms of, and interactions between, host and bacterial iron homeostasis in the gastrointestinal tract. We first detail how mammalian systemic and cellular iron homeostasis influences gastrointestinal iron availability. We then focus on two important human pathogens, Salmonella and Clostridia; despite their differences, they exemplify how a bacterial pathogen must navigate and exploit this web of iron homeostasis interactions to avoid host nutritional immunity and replicate successfully. We then reciprocally explore how iron availability interacts with the gastrointestinal microbiota, and the consequences of this on mammalian physiology and pathogen iron acquisition. Finally, we address how understanding the battle for iron in the gastrointestinal tract might inform clinical practice and inspire new treatments for important diseases.  相似文献   

9.
Iron is an essential metal not only in oxygen delivery, but also in cell proliferation and drug metabolism, while it is a very toxic metal producing reactive oxygen species(ROS). In order to avoid the toxicity and shortage of iron, the level of iron is strictly regulated in the body and cells. The central player regulating the amount of iron in the body is hepcidin. Hepcidin inhibits the release of iron from enterocytes and macrophages by accelerating the degradation of ferroportin, which is an exporter of iron. The amount of cellular iron is regulated by the IRE (iron responsive element) and IRP (iron regulatory protein) system. IRP1 and 2, whose activities depend on the concentration of cellular iron, bind to IRE, and regulate the translation of iron-related genes, which have IRE in 5' or 3'-UTR to balance iron uptake and utilization. Iron is utilized for the generation of heme and the iron-sulfur (Fe-S) cluster in mitochondoria. Mutations of genes involved in heme biosynthesis, iron-sulfur (Fe-S) cluster biogenesis, or Fe-S cluster transport cause an accumulation of iron in mitochondoria, leading to the onset of inherited sideroblastic anemia. The most common inherited sideroblastic anemia is X-linked sideroblastic anemia (XLSA) caused by mutations of the erythroid-specific delta-aminolevulinate synthase gene (ALAS2), which is the first enzyme involved in heme biosynthesis in erythroid cells. However, there are still significant numbers of cases with genetically undefined, inherited sideroblastic anemia. Molecular analysis of these cases will contribute to the understanding of mitochondrial iron metabolism.  相似文献   

10.
11.
12.
The mitochondrion plays vital roles in various aspects of cellular metabolism, ranging from energy transduction and apoptosis to the synthesis of important molecules such as heme. Mitochondria are also centrally involved in iron metabolism, as exemplified by disruptions in mitochondrial proteins that lead to perturbations in whole-cell iron processing. Recent investigations have identified a host of mitochondrial proteins (e.g., mitochondrial ferritin; mitoferrins 1 and 2; ABCBs 6, 7, and 10; and frataxin) that may play roles in the homeostasis of mitochondrial iron. These mitochondrial proteins appear to participate in one or more processes of iron storage, iron uptake, and heme and iron-sulfur cluster synthesis. In this review, we present and critically discuss the evidence suggesting that the mitochondrion may contribute to the regulation of whole-cell iron metabolism. Further, human diseases that arise from a dysregulation of these mitochondrial molecules reveal the ability of the mitochondrion to communicate with cytosolic iron metabolism to coordinate whole-cell iron processing and to fulfill the high demands of this organelle for iron. This review highlights new advances in understanding iron metabolism in terms of novel molecular players and diseases associated with its dysregulation.  相似文献   

13.
Mitochondrial ferritin (FtMt) is a nuclear-encoded iron-sequesteringprotein that specifically localizes in mitochondria. In miceit is highly expressed in cells characterized by high-energyconsumption, while is undetectable in iron storage tissues likeliver and spleen. FtMt expression in mammalian cells was shownto cause a shift of iron from cytosol to mitochondria, and inyeast it rescued the defects associated with frataxin deficiency.To study the role of FtMt in oxidative damage, we analyzed theeffect of its expression in HeLa cells after incubation withH2O2 and Antimycin A, and after a long-term growth in glucose-freemedia that enhances mitochondrial respiratory activity. FtMtreduced the level of reactive oxygen species (ROS), increasedthe level of adenosine 5'triphosphate and the activity of mitochondrialFe-S enzymes, and had a positive effect on cell viability. Furthermore,FtMt expression reduces the size of cytosolic and mitochondriallabile iron pools. In cells grown in glucose-free media, FtMtlevel was reduced owing to faster degradation rate, howeverit still protected the activity of mitochondrial Fe-S enzymeswithout affecting the cytosolic iron status. In addition, FtMtexpression in fibroblasts from Friedreich ataxia (FRDA) patientsprevented the formation of ROS and partially rescued the impairedactivity of mitochondrial Fe-S enzymes, caused by frataxin deficiency.These results indicate that the primary function of FtMt involvesthe control of ROS formation through the regulation of mitochondrialiron availability. They are consistent with the expression patternof FtMt observed in mouse tissues, suggesting a FtMt protectiverole in cells characterized by defective iron homeostasis andrespiration, such as in FRDA.  相似文献   

14.
15.
Pantothenate kinase-associated neurodegeneration (PKAN) is a neurodegenerative disease belonging to the group of neurodegeneration with brain iron accumulation disorders. It is characterized by progressive impairments in movement, speech and cognition. The disease is inherited in a recessive manner due to mutations in the Pantothenate Kinase-2 (PANK2) gene that encodes a mitochondrial protein involved in Coenzyme A synthesis. To investigate the link between a PANK2 gene defect and iron accumulation, we analyzed primary skin fibroblasts from three PKAN patients and three unaffected subjects. The oxidative status of the cells and their ability to respond to iron were analyzed in both basal and iron supplementation conditions. In basal conditions, PKAN fibroblasts show an increase in carbonylated proteins and altered expression of antioxidant enzymes with respect to the controls. After iron supplementation, the PKAN fibroblasts had a defective response to the additional iron. Under these conditions, ferritins were up-regulated and Transferrin Receptor 1 (TfR1) was down-regulated to a minor extent in patients compared with the controls. Analysis of iron regulatory proteins (IRPs) reveals that, with respect to the controls, PKAN fibroblasts have a reduced amount of membrane-associated mRNA-bound IRP1, which responds imperfectly to iron. This accounts for the defective expression of ferritin and TfR1 in patients' cells. The inaccurate quantity of these proteins produced a higher bioactive labile iron pool and consequently increased iron-dependent reactive oxygen species formation. Our results suggest that Pank2 deficiency promotes an increased oxidative status that is further enhanced by the addition of iron, potentially causing damage in cells.  相似文献   

16.
Plasmodium falciparum iron regulatory-like protein (PfIRPa, accession AJ012289) has homology to a family of iron-responsive element (IRE)-binding proteins (IRPs) found in different species. We have previously demonstrated that erythrocyte P. falciparum PfIRPa binds a mammalian consensus IRE and that the binding activity is regulated by iron status. In the work we now report, we have cloned a C-terminus histidine-tagged PfIRPa and overexpressed it in a bacterial expression system in soluble form capable of binding IREs. To overexpress PfIRPa, we used the T7 promoter-driven vector, pET28a(+), in conjunction with the Rosetta(DE3)pLysS strain of E. coli, which carries extra copies of tRNA genes usually found in organisms such as P. falciparum whose genome is (A+T)-rich. The histidine-tagged recombinant protein (rPfIRPa) in soluble form was partially purified using His-bind resin. We searched the plasmodial database, plasmoDB, to identify sequences capable of forming IRE loops using a specially developed algorithm, and found three plasmodial sequences matching the search criteria. In gel retardation assays, rPfIRPa bound three 32P-labeled putative plasmodial IREs with affinity exceeding the affinity for the mammalian consensus IRE. The binding was concentration-dependent and was not inhibited by heparin, an inhibitor of non-specific binding. Immunodepletion of rPfIRPa resulted in substantial inhibition of the signal intensity in the gel retardation assays and in Western blot-determinations of rPfIRPa protein levels. Endogenous PfIRPa retained all three putative 32P-IREs at the same position on the gel as the recombinant PfIRPa.  相似文献   

17.
18.
19.
Mammalian TLRs in adult animals serve indispensable functions in establishing innate and adaptive immunity and contributing to the homeostasis of surrounding tissues. However, the expression and function of TLRs during mammalian embryonic development has not been studied so far. Here, we show that CD45+ CD11b+ F4/80+ macrophages from 10.5‐day embryo (E10.5) co‐express TLRs and CD14. These macrophages, which have the capability to engulf both apoptotic cells and bacteria, secrete a broad spectrum of proinflammatory cytokines and chemokines upon TLR stimulation, demonstrating that their TLRs are functional. Comparative microarray analysis revealed an additional set of genes that were significantly upregulated in E10.5 TLR2+ CD11b+ macrophages. This analysis, together with our genetic, microscopic, and biochemical evidence, showed that embryonic phagocytes express protein machinery that is essential for the recycling of cellular iron and that this expression can be regulated by TLR engagement in a MyD88‐dependent manner, leading to typical inflammatory M1 responses. These results characterize the utility of TLRs as suitable markers for early embryonic phagocytes as well as molecular triggers of cellular responses, the latter being demonstrated by the involvement of TLRs in an inflammation‐mediated regulation of embryonic homeostasis via iron metabolism.  相似文献   

20.
Siderophores are low-molecular-weight iron chelators secreted by microbes to obtain iron under deprivation. We hypothesized that the catecholate siderophore enterobactin, produced by Enterobacteriaceae, serves as a proinflammatory signal for respiratory epithelial cells. Respiratory tract responses were explored, since at this site siderocalin, an enterobactin-binding mammalian gene product, is expressed inducibly at high levels and enterobactin-secreting respiratory flora is rare, suggesting selection against a dependence on enterobactin. Addition of aferric, but not iron-saturated, enterobactin elicits a dose-dependent increase in secretion of the proinflammatory chemokine interleukin-8 by human respiratory epithelial cells in culture. This response to purified enterobactin is potentiated by recombinant siderocalin at physiologically relevant concentrations. Conditioned media from genetically modified Escherichia coli strains expressing various levels of enterobactin induce an enterobactin-mediated proinflammatory response. Siderocalin has been shown to deliver enterobactin to other mammalian cell types, exogenously supplied siderocalin can be detected within epithelial cells, and siderocalin increases delivery of enterobactin to the intracellular compartment. Although many siderophores perturb labile cellular iron pools, only enterobactin elicits interleukin-8 secretion, suggesting that iron chelation is necessary but not sufficient. Thus, aferric enterobactin may be a proinflammatory signal for respiratory epithelial cells, permitting detection of microbial communities that have disturbed local iron homeostasis, and siderocalin expression by the host amplifies this signal. This may be a novel mechanism for the mucosa to respond to metabolic signals of expanding microbial communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号