首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Omsk hemorrhagic fever virus (OHFV) is a member of the tick-borne encephalitis serocomplex of flaviviruses, and causes hemorrhagic disease in humans. To investigate the molecular mechanisms involved in OHFV pathogenesis, we constructed several subgenomic OHFV replicons containing large deletions in the structural region. Replicon RNA was introduced into BHK cells by transfection and the production of viral proteins was monitored by IFA. GFP and luciferase genes were inserted into the OHFV replicon, and these reporter genes were expressed in cells harboring replicating replicon RNA. OHFV replicons were packaged into single-round infectious virus-like particles (VLPs) by sequential transfection with replicon RNA and a plasmid expressing the viral structural proteins. Reporter genes were expressed in cells infected with VLPs, and the infection was inhibited by neutralizing antibodies. These replicon and VLP systems will be useful tools for investigating the molecular mechanism of OHFV pathogenicity.  相似文献   

2.
Alphavirus vectors demonstrate high expression of heterologous proteins in a broad range of host cells. Replication-deficient as well as replication-competent variants exist. Systemic delivery of many viral antigens has elicited strong antibody responses in immunized mice and primates, and protection against challenges with lethal viruses was obtained. Similarly, prophylactic vaccination was established against tumor challenges. Attention has been paid to the engineering of improved targeting to immunologically active cells, such as dendritic cells. In the area of gene therapy, intratumoral injections of alphavirus vectors have resulted in potentially promising tumor rejection. Moreover, encapsulation of alphavirus particles into liposomes demonstrated efficient tumor targeting in mice with severe combined immunodeficiency, which permitted the initiation of clinical trials for patients with advanced kidney carcinoma and melanoma.  相似文献   

3.
Summary. The subgenomic (SG) mRNA of rubella virus (RUB) contains the structural protein open reading frame (SP-ORF) that is translated to produce the three virion structural proteins: capsid (C) and glycoproteins E2 and E1. RUB expression vectors have been developed that express heterologous genes from the SG RNA, including replicons which replace the SP-ORF with a heterologous gene, and these expression vectors are candidate vaccine vectors. In the related alphaviruses, translational enhancing elements have been identified in both the 5′ untranslated region (UTR) of the SG RNA and the N-terminal region of the C gene. To optimize expression from RUB vectors, both the 5′UTR of the SG RNA and the C gene were surveyed for translational enhancing elements using both plasmids and replicons expressing reporter genes from the SG RNA. In replicons, the entire 5′UTR was necessary for translation; interestingly, when plasmids were used the 5′UTR was dispensable for optimal translation. The RUB C gene contains a predicted long stem-loop starting 62 nts downstream from the initiation codon (SLL) that has a structure and stability similar to SL’s found in the C genes of two alphaviruses, Sindbis virus (SIN) and Semliki Forest virus, that have been shown to enhance translation of the SG RNA in infected cells. However, a series of fusions of various lengths of the N-terminus of the RUB C protein with reporter genes showed that the SLL had an attenuating effect on translation that was overcome by mutagenesis that destabilized the SLL or by adding downstream sequences of the C gene to the fusion. Thus, for optimal expression efficiency from RUB expression vectors, only the 5′UTR of the SG RNA is required. Further investigation of the differing effects of the SLL on RUB and alphavirus SG RNA translation revealed that the SIN and RUB SLLs could enhance translation when expressed from a SIN cytopathic replicon, but not when expressed from a plasmid, a RUB replicon, or a SIN noncytopathic replicon. Thus, the SLL only functions in a “cytopathic environment” in which cell translation has been altered. These co-authors contributed equally to the study.  相似文献   

4.
Human rhinovirus (HRV) replicons have the potential to serve as respiratory vaccine vectors for mucosal immunization in humans. However, since many vaccine immunogens of interest are glycosylated, an important concern is whether HRV replicons are capable of expressing glycosylated proteins. The human respiratory syncytial virus (RSV) fusion (F) protein was chosen as a model glycoprotein and the HRV replicon DeltaP1FVP3 was generated by inserting the F protein-coding sequence in frame and in lieu of the 5' proximal 1489 nucleotides of the capsid-coding segment in the HRV-14 genome. When transfected into H1-HeLa cells, DeltaP1FVP3 replicated and led to the expression of the F protein. Inhibition with guanidine demonstrated that F-protein expression was dependent on DeltaP1FVP3 replication and did not result from translation of input RNA. Although most of the F protein remained as an immature, glycosylated precursor (F0), a readily detectable fraction of the protein was processed into the mature glycosylated subunit F1, an event known to occur within the Golgi apparatus. Packaged DeltaP1FVP3 replicons were generated in transfected HeLa cells by coexpression of homologous HRV capsid proteins using the vaccinia virus/T7 RNA polymerase hybrid system. Packaged replicon RNAs were capable of infecting fresh cells, leading to accumulation of the F protein as in RNA-transfected cells. Mice immunized with HeLa cell lysates containing F protein expressed from DeltaP1FVP3 produced neutralizing antibodies against RSV. These results indicate that an HRV-14 replicon can express a foreign glycosylated protein, providing further support for the potential of HRV replicons as a vaccine delivery system.  相似文献   

5.
6.
High-titer alphavirus vectors have been generated for efficient gene delivery both in vitro and in vivo. Studies on CNS infection via intranasal and peripheral injections with virulent and avirulent replication-competent Semliki Forest virus (SFV) strains has demonstrated the potential of gene delivery. Replication-deficient alphavirus particles have shown high local transgene expression of a transient nature in rodent brain. Alphavirus vectors have been demonstrated to induce apoptosis in infected human tumor cell lines and SFV vectors expressing interleukin-12 resulted in tumor regression in a B16 murine melanoma model. Repeated SFV injections led to stronger anti-tumor effects without immunogenic response detected against SFV. It has also been shown that intra-tumoral SFV-injections into nude mice with implanted human lung carcinomas led to tumor regression. Likewise, injection of replicative SFV-LacZ RNA resulted in tumor response as well as prophylactic protection against tumor formation. Alphaviruses have also showed potential in vaccine production. Additionally, modifications in the envelope structure of Sindbis virus resulted in substantial change in host range and demonstrated the feasibility of targeting alphavirus vectors. Moreover, SFV has been used as an expression vector for the generation of high-titer retrovirus-like particles. Recent alphavirus vector development has introduced novel non-cytopathogenic vectors, tightly temperature-regulated vectors as well as replication-persistent forms that should prolong the duration of expression. Alphavirus vectors can therefore be considered as highly potential gene delivery vehicles for future gene therapy applications, especially where only short-term expression is required, or even preferred.  相似文献   

7.
Development of vaccines against cytomegalovirus (CMV) is an important public health priority. We used a propagation-defective, single-cycle RNA replicon vector system derived from an attenuated strain of an alphavirus, Venezuelan equine encephalitis virus, to produce virus-like replicon particles (VRP) expressing various combinations of pp65, IE1, or gB proteins of human CMV. Protein expression in VRP-infected cells was highest with single-promoter replicons expressing pp65, IE1, a pp65/IE1 fusion protein, or the extracellular domain of gB and with double-promoter replicons expressing pp65 and IE1. Protein expression was lower with double- and triple-promoter replicons expressing gB, especially the full-length form of gB. BALB/c mice immunized with VRP expressing gB developed high titers of neutralizing antibody to CMV, and mice immunized with VRP expressing pp65, IE1, or a pp65/IE1 fusion protein developed robust antigen-specific T-cell responses as measured by gamma interferon enzyme-linked immunospot assay. Three overlapping immunodominant pp65 peptides contained a nine-amino-acid sequence (LGPISGHVL) that matches the consensus binding motif for a major histocompatibility complex H2-D(d) T-cell epitope. These data provide the basis for further development and clinical evaluation of an alphavirus replicon vaccine for CMV expressing the pp65, IE1, and gB proteins.  相似文献   

8.
Molecular virology of hepatitis E virus   总被引:1,自引:0,他引:1  
This review details the molecular virology of the hepatitis E virus (HEV). While replicons and in vitro infection systems have recently become available, a lot of information on HEV has been generated through comparisons with better-studied positive-strand RNA viruses and through subgenomic expression of viral open reading frames. These models are now being verified with replicon and infection systems. We provide here the current knowledge on the HEV genome and its constituent proteins - ORF1, ORF2 and ORF3. Based on the available information, we also modify the existing model of the HEV life cycle.  相似文献   

9.
《Seminars in immunology》2013,25(2):152-159
Nucleic acid vaccines have the potential to address issues of safety and effectiveness sometimes associated with vaccines based on live attenuated viruses and recombinant viral vectors. In addition, methods to manufacture nucleic acid vaccines are suitable as generic platforms and for rapid response, both of which will be very important for addressing newly emerging pathogens in a timely fashion. Plasmid DNA is the more widely studied form of nucleic acid vaccine and proof of principle in humans has been demonstrated, although no licensed human products have yet emerged. The RNA vaccine approach, based on mRNA and engineered RNA replicons derived from certain RNA viruses, is gaining increased attention and several vaccines are under investigation for infectious diseases, cancer and allergy. Human clinical trials are underway and the prospects for success are bright.  相似文献   

10.
During the last decade, alphaviruses became widely used for expression of heterologous genetic information and development of recombinant vaccines against a variety of human and animal pathogens. In this study, we compared a number of vectors based on the genome of Sindbis (SINV) and Venezuelan equine encephalitis (VEEV) viruses for their ability to express the Rift Valley fever virus (RVFV) envelope glycoprotein Gn and induce a protective immune response against RVFV infection. Our results suggest that (i) application of VEEV-based expression systems appears to be advantageous, when compared to similar systems designed on the basis of the SINV genome. (ii) Alphavirus-specific E3 and E2 proteins and furin-specific cleavage sites can be used for engineering secreted forms of the proteins. (iii) Alphaviruses can be modified for expression of the large fragments of heterologous proteins on the surface of chimeric, infectious viral particles. Thus, alphavirus-based expression systems may have the potential for a broader application beyond their current use as replicons or double-subgenomic vectors.  相似文献   

11.
The genome RNA of the flavivirus West Nile (WN) virus has been transcribed into cDNA, the cDNA has been cloned, and the nucleotide sequences coding for the structural proteins have been determined (Castle et al., 1985; Wengler et al., 1985). We have now determined the nucleotide sequence coding for all viral nonstructural proteins which comprises 7929 nucleotides. Together with our earlier sequence analyses these data show that a long open reading frame (ORF) containing 10,290 nucleotides is present on the genome of WN virus. The two largest nonstructural proteins which can be detected in flavivirus-infected cells are the proteins NV5 and NV4 which have an apparent molecular mass of 97,000 and 74,000 Da, respectively. Both proteins were isolated by preparative polyacrylamide gel electrophoresis, and partial amino acid sequences of peptides derived from these proteins were determined. These analyses allow us to localize the nucleotide regions which code for these proteins and show that the region coding for the NV5 protein is located at the 3'-terminus of the long ORF. Together with our earlier analyses these data show that the protein sequences of virus-specific proteins are present on the viral polyprotein translated from the long ORF in the order V2-NV2-V3-(nonstructural proteins of up to 75,000 Da)-NV4-(nonstructural proteins of up to 45,000 Da)-NV5. Our data indicate that virus-specific structural and nonstructural proteins which are synthesized from a single long ORF accumulate in large amounts in infected cells. A possible role of the presence of these molecules, which are associated to cellular membranes, in the accumulation of membrane vesicles which characteristically occurs in flavivirus-infected cells is discussed.  相似文献   

12.
Conventional virus-like particles are usually composed of a single structural protein which spontaneously assembles into particles. L-particles, a little-known type of virus-like particle, are produced as part of the natural infectious process of many, if not all, alpha-herpesviruses. L-particles lack the nucleocapsid present in the infectious virion but contain all of the virus envelope and tegument proteins. L-particles contain no virus DNA and are noninfectious, though they are biologically competent, since they are capable of delivering viral envelope and tegument proteins to cells. When cells are infected with herpes simplex virus Type 1 under conditions where viral DNA synthesis is blocked, previral DNA replication enveloped particles are produced. These are similar to L-particles, but differ slightly in protein composition. This article reviews the available data regarding these vaccine candidates and explores the wide-ranging potential applications, including vaccine candidates against infectious diseases and cancer, as well as a protein delivery vector.  相似文献   

13.
Construction and applications of yellow fever virus replicons   总被引:10,自引:0,他引:10  
Jones CT  Patkar CG  Kuhn RJ 《Virology》2005,331(2):247-259
Subgenomic replicons of yellow fever virus (YFV) were constructed to allow expression of heterologous reporter genes in a replication-dependent manner. Expression of the antibiotic resistance gene neomycin phosphotransferase II (Neo) from one of these YFV replicons allowed selection of a stable population of cells (BHK-REP cells) in which the YFV replicon persistently replicated. BHK-REP cells were successfully used to trans-complement replication-defective YFV replicons harboring large internal deletions within either the NS1 or NS3 proteins. Although replicons with large deletions in either NS1 or NS3 were trans-complemented in BHK-REP, replicons that contained deletions of NS3 were trans-complemented at lower levels. In addition, replicons that retained the N-terminal protease domain of NS3 in cis were trans-complemented with higher efficiency than replicons in which both the protease and helicase domains of NS3 were deleted. To study packaging of YFV replicons, Sindbis replicons were constructed that expressed the YFV structural proteins in trans. Using these Sindbis replicons, both replication-competent and trans-complemented, replication-defective YFV replicons could be packaged into pseudo-infectious particles (PIPs). Although these results eliminate a potential role of either NS1 or full-length NS3 in cis for packaging and assembly of the flavivirus virion, they do not preclude the possibility that these proteins may act in trans during these processes.  相似文献   

14.
Hepatitis E virus (HEV) is a polyadenylated, positive-stranded RNA virus which is a major cause of enterically transmitted non-A, non-B hepatitis in many developing countries. The viral genome contains three different open reading frames (ORFs): ORF1, which is believed to encode nonstructural proteins, and ORF2 and ORF3, which are believed to encode structural proteins. The full-length putative structural proteins encoded by ORF2 and ORF3 of HEV have been cloned and expressed in recombinant vaccinia virus. Proteins encoded by ORF2 and ORF3 when expressed in vaccinia virus are recognized by pooled sera obtained from individuals with acute hepatitis E. Vaccinia-expressed viral gene products of HEV will have utility in characterizing the cell-mediated immune response to HEV.  相似文献   

15.
The classic development of vaccines is lengthy, tedious, and may not necessarily be successful as demonstrated by the case of HIV. This is especially a problem for emerging pathogens that are newly introduced into the human population and carry the inherent risk of pandemic spread in a naïve population. For such situations, a considerable number of different platform technologies are under development. These are also under development for pathogens, where directly derived vaccines are regarded as too complicated or even dangerous due to the induction of inefficient or unwanted immune responses causing considerable side-effects as for dengue virus. Among platform technologies are plasmid-based DNA vaccines, RNA replicons, single-round infectious vector particles, or replicating vaccine-based vectors encoding (a) critical antigen(s) of the target pathogens. Among the latter, recombinant measles viruses derived from vaccine strains have been tested. Measles vaccines are among the most effective and safest life-attenuated vaccines known. Therefore, the development of Schwarz-, Moraten-, or AIK-C-strain derived recombinant vaccines against a wide range of mostly viral, but also bacterial pathogens was quite straightforward. These vaccines generally induce powerful humoral and cellular immune responses in appropriate animal models, i.e., transgenic mice or non-human primates. Also in the recent first clinical phase I trial, the results have been quite encouraging. The trial indicated the expected safety and efficacy also in human patients, interestingly independent from the level of prevalent anti-measles immunity before the trial. Thereby, recombinant measles vaccines expressing additional antigens are a promising platform for future vaccines.  相似文献   

16.
S A Moyer 《Virology》1989,172(1):341-345
We have tested the ability of heterologous viral proteins to support the in vivo and in vitro replication of the RNA of defective interfering (DI) particles of two serotypes of VSV and of Sendai virus. In all the combinations of heterologous coinfections in vivo, DI particle replication was observed only in the coinfection with the VSV-Indiana DI particle and wild-type VSV-New Jersey. By quantitating RNA synthesis in reconstitution experiments we showed that with DI nucleocapsids isolated from infected cells, however, the soluble protein fraction from heterologous wild-type virus-infected cells could substitute in vitro to varying degrees for the homologous proteins in the elongation reaction of RNA replication and encapsidation. In these cases successful replication was confirmed by demonstrating the specific association of the heterologous N protein with the product nucleocapsid RNA. The initiation step, that is, the initial binding of the nucleocapsid protein to the leader RNA, in contrast, requires the homologous protein, since heterologous viral proteins could not support RNA replication and encapsidation from purified DI particles.  相似文献   

17.
The lack of efficient systems for the propagation of the hepatitis C virus in vitro, in the past decade, led to the development of several heterologous expression systems for the study of the HCV proteins and the HCV life cycle. HSV-1 amplicon vectors encoding the HCV structural and some of the non structural proteins were generated initially for the expression of high levels of these proteins into mammalian cells. The recent developments in the production of amplicon vectors, allowing the elimination of the contaminating helper HSV-1 virus have given a novel impulse in the study of these vectors as possible vaccine candidates. In this review, an extensive list of the existing amplicon vectors expressing HCV proteins is provided, together with a brief overview of the results obtained by these studies.  相似文献   

18.
Reimann I  Meyers G  Beer M 《Virology》2003,307(2):213-227
Autonomously replicating Bovine viral diarrhea virus (BVDV) genomes (replicons) were constructed from the full-length BVDV cDNA clone pA/BVDV/Ins- (G. Meyers et al., J. Virol. 70, 8606-8613, 1996). The sequences coding for envelope protein E2, for E2 without the C-terminal transmembrane region, or for E2 and nonstructural protein p7 were deleted, and the resulting mutants were tested for their ability to replicate after transfection. All deletion mutants were able to replicate and to express the inserted green fluorescent protein but did not produce infectious progeny virus in bovine kidney PT cells. The replicons were also tested for their ability to be trans-complemented in the bovine cell line PT_805, which constitutively expresses BVDV structural proteins. E2-negative BVDV mutants were complemented and >10(6) infectious units were obtained at 24 h after transfection. Complementing PT_805 cells could only inefficiently be infected using trans-complemented virions, however, and low levels of virus production were observed when complemented BVDV was passaged using PT_805 cells. Similarly, infection of PT_805 cells with BVDV was highly inefficient, but transfection of full-length BVDV NCP7 RNA into PT_805 resulted in 10,000-fold higher virus titers when compared to those obtained 24 h after transfection of parental PT cells. We concluded that self-replicating E2-deleted BVDV RNAs can be efficiently trans-complemented by constitutively expressed E2, and that expression of BVDV structural proteins markedly influences susceptibility of cells to BVDV infection as well as BVDV titers after transfection of full-length BVDV RNA.  相似文献   

19.
Wilson JA  Bray M  Bakken R  Hart MK 《Virology》2001,286(2):384-390
Previous vaccine efforts with Ebola virus Zaire (EBOV-Z) emphasized the potential protective efficacies of immune responses to the surface glycoprotein and the nucleoprotein. To determine whether the VP24, VP30, VP35, and VP40 proteins are also capable of eliciting protective immune responses, these genes were expressed from alphavirus replicons and used to vaccinate BALB/c and C57BL/6 mice. Although all of the VP proteins were capable of inducing protective immune responses, no single VP protein protected both strains of mice tested. VP24, VP30, and VP40 induced protective immune responses in BALB/c mice, whereas C57BL/6 mice survived challenge only after vaccination with VP35. Passive transfer of immune sera to the VP proteins did not protect unvaccinated mice from lethal disease. The demonstration that the VP proteins are capable of eliciting protective immune responses to EBOV-Z indicates that they may be important components of a vaccine designed to protect humans from Ebola hemorrhagic fever.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号