首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The anterior cruciate ligament (ACL) of the knee fails to heal after primary repair. Here we hypothesize that a beneficial biologic repair response can be induced by placing a collagen-platelet rich plasma (collagen-PRP) material into a central ACL defect. A collagen-PRP scaffold was used to treat a central ACL defect in vivo. In the first experiment, the histologic response in treated and untreated defects was evaluated at 3 (n = 5) and 6 weeks (n = 5). In the second experiment, biomechanical testing of the treated ligaments (n = 8) was performed at 6 weeks and compared with the results of biomechanical testing of untreated defects at the same time-point (n = 6). The percentage filling of the defects in the treated ACLs was significantly higher at both the 3- and 6-week time-points when compared with the untreated contralateral control defects (50 +/- 21% vs. 2 +/- 2% at 3 weeks, and 43 +/- 11% vs. 23 +/- 11 at 6 weeks; all values mean +/- SEM. Biomechanically, the treated ACL defects had a 40% increase in strength at 6 weeks, which was significantly higher than the 14% increase in strength previously reported for untreated defects (p < 0.02). Placement of a collagen-PRP bridging scaffold in a central ACL defect can stimulate healing of the ACL histologically and biomechanically.  相似文献   

2.
The anterior cruciate ligament (ACL) fails to heal after suture repair. One hypothesis for this failure is the premature loss of the fibrin clot, or provisional scaffolding, between the two ligament ends in the joint environment. To test this hypothesis, a substitute provisional scaffold of collagen-platelet rich plasma (PRP) hydrogel was used to fill the ACL wound site at the time of suture repair and the structural properties of the healing ACLs evaluated 4 weeks after surgery. Bilateral ACL transections were performed in five 30-kg Yorkshire pigs and treated with suture repair. In each animal, one of the repairs was augmented with placement of a collagen-PRP hydrogel at the ACL transection site, while the contralateral knee had suture repair alone. In addition, six control knees with intact ACLs from three additional animals were used as a control group. No postoperative immobilization was used. After 4 weeks the animals underwent in vivo magnetic resonance imaging to assess the size of the healing ACL, followed by biomechanical testing to determine tensile properties. The supplementation of suture repair with a collagen-PRP hydrogel resulted in significant improvements in load at yield, maximum load, and linear stiffness at 4 weeks. We conclude that use of a stabilized provisional scaffold, such as a collagen-PRP hydrogel, to supplement primary repair of the ACL can result in improved biomechanical properties at an early time point. Further studies to determine the long-term effect of primary repair enhancement are needed.  相似文献   

3.
Healing and repair of ligament injuries in the knee   总被引:11,自引:0,他引:11  
Although methods of treating ligamentous injuries have continually improved, many questions remain about enhancing the rate, quality, and completeness of ligament healing. It is known that the ability of a torn ligament to heal depends on a variety of factors, including anatomic location, presence of associated injuries, and selected treatment modality. A grade III injury of the medial collateral ligament (MCL) of the knee usually heals spontaneously. Surgical repair followed by immobilization of an isolated MCL tear does not enhance the healing process. In contrast, tears of the anterior cruciate ligament (ACL) and the posterior cruciate ligament often require surgical reconstruction. The MCL component of a combined ACL-MCL injury has a worse prognosis than an isolated MCL injury. The results of animal studies suggest that nonoperative treatment of an MCL injury is effective if combined with operative reconstruction of the ACL. Experimentation using animal models has helped to define the effects of ligament location, associated injuries, intrinsic factors, surgical repair, reconstruction, and exercise on ligament healing. New techniques utilizing growth factors and cell and gene therapies may offer the potential to enhance the rate and quality of healing of ligaments of the knee, as well as other ligaments in the body.  相似文献   

4.
The anterior cruciate ligament (ACL) does not heal after an interstitial tear, in contrast to the medial collateral ligament (MCL), whose interstitial tears heal readily. The light microscopic and ultrastructural differences between the cells of the two ligaments were studied in rabbit knees to observe the healing characteristics of the two ligaments. A rabbit knee was chosen because the rabbit ACL, like that of humans, does not heal following interstitial injury. The cells populating the MCL have the characteristics of fibroblasts. The cells of the ACL resemble fibrocartilage cells. The phenotypic differences in the cells of the two ligaments may be important determinants of the differences in healing.  相似文献   

5.
The purpose of this study was to compare the levels of procollagen type I messenger RNA (mRNA) in normal and healing medial collateral ligament (MCL) and anterior cruciate ligament (ACL) in a rabbit model. Our method of injury involved a surgical model with identical partial lacerations in the midsubstance of the MCL and ACL. Paraffin sections of normal ligaments, and ligaments 3, 7, 14, and 28 days postlaceration were studied by in situ hybridization to compare and follow the level of type I procollagen mRNA in the two ligaments. A complementary DNA (cDNA) probe corresponding to alpha 1(I) procollagen mRNA was labeled with [32P]d-CTP. After hybridization, autoradiography, and staining of the sections, the level of procollagen mRNA was assessed by microscopic examination. A higher level of procollagen mRNA was consistently detected in normal MCL than in normal ACL, suggesting higher collagen synthetic activity in the MCL. At the injury sites of the MCL and ACL, the levels of type I procollagen mRNA increased at all post-laceration periods, reaching its highest level at 14 days postsurgery. The MCL healing site had a considerably higher level of procollagen mRNA than the ACL healing site (i.e., injury site) at all postoperative intervals. The results demonstrate that procollagen mRNA levels in MCL tissue are higher than those in ACL tissue under normal conditions, as well as in response to injury. The differences in the procollagen mRNA levels of MCL and ACL may reflect the synthesis of collagen in these tissues, and may contribute to the differences in their healing capacities.  相似文献   

6.
OBJECTIVE: To culture fibroblast cells from the knee ligaments and to study the biological characteristics of these cells. METHODS: Cells of the anterior cruciate ligament (ACL) and the medial collateral ligament (MCL) from New Zealand white rabbit were cultured in vitro. Cellular growth and expression of the collagen were analyzed. Moreover, an in vitro wound closure model was established and the healing of the ACL and the MCL cells was compared. RESULTS: Maximal growth for all these cells were obtained with Dulbecco's modified Eagle's medium supplemented with 10% fetal bovine serum, but RPMI 1640 and Ham's F12 media were not suitable to maintain these cells. Morphology of both ACL and MCL cells from New Zealand white rabbit was alike in vitro, but the MCL cells grew faster than the ACL cells. Both cell types produced similar amount of collagen in culture, but the ratio of collage type I to type III produced by ACL cells was higher than that produced by MCL cells. Wound closure assay showed that at 36 hours after injury, cell-free zones created in the ACL cultures were occupied partially by the ACL cells; in contrast, the wounded zone in the MCL cultures was almost completely covered by the cells. CONCLUSIONS: Although the ACL cells and the MCL cells from New Zealand white rabbit show similar appearance in morphology in culture, the cellular growth and the biochemical synthesis of collagen as well as the healing in vitro were significantly different. These differences in intrinsic properties of the two types of cells in vitro might contribute to the differential healing potentials of these ligaments in vivo.  相似文献   

7.
Anterior cruciate ligament (ACL) injuries often lead to significant functional impairment, and are associated with increased risk for induction of degenerative joint disease. However, few studies have described the effect of ligament transection on the remaining intact knee ligaments. This study sought to determine specifically what impact combined ACL/medial collateral ligament (MCL) transection had on the remaining intact knee ligaments, particularly from the histological, biochemical, and molecular perspectives. Twenty weeks post-ACL/MCL transection, the cut ends of sheep MCLs were bridged by scar, while the posterior cruciate ligaments (PCLs) and lateral collateral ligaments (LCLs) seemed gross morphologically normal. Water content and cell density increased significantly in the MCL scars and the intact PCLs but were unchanged in the LCLs. Collagen fibril diameter distribution was significantly altered in both MCL scar tissue and uninjured PCLs from transected joints. MMP-13 mRNA levels in MCL scars and PCLs from ligament transected joints were increased, while TIMP-1 mRNA levels were significantly decreased in the PCLs only. This study has shown that some intact ligaments in injured joints are impacted by the injury. The joint appears to behave like an integrated organ system, with injury to one component affecting the other components as the "organ" attempts to adapt to the loss of integrity.  相似文献   

8.
There has been recent interest in the biologic stimulation of anterior cruciate ligament (ACL) healing. However, the effect of age on the ability of ligaments to heal has not yet been defined. In this study, we hypothesized that skeletal maturity would significantly affect the cellular and vascular repopulation rate of an ACL wound site. Skeletally Immature (open physes), Adolescent (closing physes), and Adult (closed physes) Yucatan minipigs underwent bilateral ACL transection and suture repair using a collagen‐platelet composite. The response to repair was evaluated histologically at 1, 2, and 4 weeks. All three groups of animals had completely populated the ACL wound site with fibroblasts at 1 week. The Immature animals had a higher cellular density in the wound site than the Adult animals at weeks 2 and 4. Cells in the Immature ligament wounds were larger and more ovoid than in the Adult wounds. There were no significant differences in the vascular density in the wound site. Animal age had a significant effect on the density of cells populating the ACL wound site. Whether this observed cellular difference has an effect on the later biomechanical function of the repaired ACL requires further study. © 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 28:1100–1106, 2010  相似文献   

9.
The ideal treatment of a combined anterior cruciate ligament (ACL) and medial collateral ligament (MCL) injury to the knee is still debated. In particular, the question of whether reconstruction of the ACL can provide the knee with sufficient multidirectional stability to allow for effective MCL healing needs to be better elucidated. Therefore, the first objective of this study was to quantify the changes in the function of goat knees between time-zero and 6 weeks following a combined ACL/MCL injury treated with ACL reconstruction. Using a robotic/universal force-moment sensor testing system, the kinematics of the knee and in situ forces in the ACL/ACL graft as well as in the sham-operated and healing MCL were evaluated in response to (1) a 67 N anterior-posterior (A-P) tibial load and (2) a 5 Nm varus-valgus (V-V) moment. The second objective was to evaluate the structural properties of the healing femur-MCL-tibia complex (FMTC) and the mechanical properties of the healing MCL at 6 weeks under uniaxial tension.In response to the 67 N A-P tibial load, the A-P translations for the experimental knee increased by as much as 4.5 times from time-zero to 6 weeks (p<0.05). Correspondingly, the in situ forces in the ACL graft decreased by as much as 45% (p<0.05). There was no measurable changes of the in situ force in the healing MCL. In response to a 5 Nm V-V moment, V-V rotations were twice as much as controls, but similar for both time periods. From time-zero to 6 weeks, the in situ forces in the ACL graft dropped by over 71% (p<0.05), while the in situ force in the healing MCL was as much as 35+/-19 N.In terms of the structural properties of the healing FMTC, the stiffness and ultimate load values at 6 weeks reached 53% and 29% of sham-operated contralateral controls, respectively (p<0.05). For the mechanical properties of the healing MCL substance, the values for tangent modulus and tensile strength were only 13% and 10% of sham-operated controls, respectively (p<0.05). These results suggest that the ACL graft stabilized the knee initially, but became loose over time. As a result, the healing MCL may have been required to take on excessive loads and was unable to heal sufficiently as compared to an isolated MCL injury.  相似文献   

10.
Loss of the posterior cruciate ligament (PCL) of the knee has a significant impact on joint stability and biomechanical function. Changes in joint biomechanics may result in mal-adaptive tissue degeneration and functional alteration of supporting ligaments. This study examines the effects of joint laxity on the vascular physiology of the intact anterior cruciate (ACL) and medial collateral (MCL) ligaments after PCL transection in rabbits.One-year-old female New Zealand white rabbits were assigned to control (n=12), sham-operated (n=12) or PCL transected (2, 6 or 16 weeks, n=12 per time point) groups. Half of the animals (n=6 per group) were used for ACL and MCL blood flow determination using coloured microsphere infusion (ml/min/100 g), and half were used for vascular volume determination (given as vascular index, micro l/g).In the MCL, PCL transection induced large, significant (4-5-fold) increases in blood flow (peak at 2 weeks) and vascular index (peak at 6 weeks) compared to sham-operated animals that returned towards control values by 16 weeks. In contrast, the ACL showed no increase in blood flow in lax joints, and a relatively small (2-fold) increase in vascular index at 6 weeks only. The wet weight and water content of both the MCL and ACL were significantly increased in PCL-deficient joints.We conclude that joint laxity (instability) subsequent to loss of the PCL in rabbits impacts the vascular physiology of intact supporting ligaments, inducing both vasomotor and angiogenic responses in the MCL. Changes in wet weight and water content of both the MCL and ACL demonstrate prolonged physiological adaptation of intact structures in lax joints.  相似文献   

11.
The central ACL defect as a model for failure of intra-articular healing.   总被引:3,自引:0,他引:3  
Intra-articular soft tissues, such as the anterior cruciate ligament (ACL), fail to heal in contrast to the extra-articular medial collateral ligament (MCL), which undergoes classic healing. The goal of this study was to validate a model for failure of intra-articular healing that could be used in the future to test new repair strategies. We conducted a two-part experiment, the first part ex vivo, and the second in vivo. Our initial ex vivo experiments were used to determine the optimal width of the central defect in the canine ACL that would produce reproducible structural properties at time zero. The second experimental series used this optimal scalpel blade width to create a central defect in the canine ACL followed by measurement of structural properties in the ACL after either a 3- or 6-week in vivo healing period. A 3.5-mm beaver blade resulted in a maximum tolerated load of 56.8 +/- 4.7% (mean +/- SEM) of control at time zero. After the 3- and 6-week in vivo healing periods, the maximum load was 74.6 +/- 5.3 at 3 weeks and 64.9 +/- 3.8% at 6 weeks compared to control. Thus, biomechanical parameters tested at 6 weeks after creation of a defect showed no significant gains from defects tested immediately after the creation of injury. The centrally placed ACL defect in this canine model demonstrates failure to mechanically heal, which should prove suitable for future in vivo evaluation of the biomechanical and histological response to tissue engineering repair strategies for intra-articular soft tissues.  相似文献   

12.
The poor healing abilities of the anterior cruciate ligament (ACL) in contrast to those of the medial collateral ligament (MCL) are well known. Different intrinsic properties of the constituent cells of these ligaments have been proposed to be one of the factors in the differential repair mechanisms. To examine this hypothesis, we have established primary cell lines of ACL and MCL from the tissue explants of approximately similar dimensions and have studied their behavior in vitro. The outgrowth of cells from ACL explants was slower than from MCL explants, as shown by the size of the surrounding clusters of cells. Both ACL and MCL cultures exhibited typical fibroblastic morphology. No significant differences were observed in either attachment or growth of cells from the attached explants derived from various segments of ACL and MCL. Growth curves of ACL and MCL cultures at both passage numbers 2 and 6 showed a slower rate of proliferation of ACL cells than MCL cells (p less than 0.005). DNA synthesis measured in terms of [3H]thymidine incorporation (CPM/10(3) cells) of both log phase (ACL = 607.5 +/- 5.4 vs. MCL = 1356.4 +/- 11.3) and confluent (ACL = 83.0 +/- 3.6 vs. MCL = 189.8 +/- 5.4) cultures, supports the conclusion that differential proliferation rates of these cells exist in culture. FITC-phalloidin staining (for actin) of later passage cultures (P3-P5) showed a spread-out appearance of ACL cells and an elongated appearance of MCL cells. Relatively more stress fibers were seen within ACL cells. SDS-PAGE and Western blot analysis of cellular proteins revealed higher actin (43 kDa) content in ACL cells than in MCL cells. In vitro wound closure assay was performed by creating a uniform wound of 0.6 mm width in the confluent layer of ACL and MCL cultures. By 48 h postwounding, cell-free zones created in ACL cultures were occupied partially by single cells in a nonconfluent fashion. In contrast, the wounded zone in the MCL cultures was almost completely covered by the cells. Results presented in this report demonstrate a lower proliferation and migration potential of ACL cells in comparison with MCL cells. These differences in intrinsic properties of ACL and MCL cells that were observed in vitro might contribute to the differential healing potentials of these ligaments in vivo.  相似文献   

13.
The influences and mechanisms of the physiology,rupture and reconstruction of the anterior cruciate ligament(ACL)on kinematics and clinical outcomes have been investigated in many biomechanical and clinical studies over the last several decades.The knee is a complex joint with shifting contact points,pressures and axes that are affected when a ligament is injured.The ACL,as one of the intra-articular ligaments,has a strong influence on the resulting kinematics.Often,other meniscal or ligamentous injuries accompany ACL ruptures and further deteriorate the resulting kinematics and clinical outcomes.Knowing the surgical options,anatomic relations and current evidence to restore ACL function and considering the influence of concomitant injuries on resulting kinematics to restore full function can together help to achieve an optimal outcome.  相似文献   

14.
目的内侧副韧带损伤后,关节镜下可见内侧半月板上滑膜缘完全显示,类似海湾形状,称为"海湾全景征"(简称"湾征"),判断其作为诊断膝内侧副韧带断裂标志体征的可靠性及意义。方法 2007年3月-2011年3月,纳入59例MRI检查提示内侧副韧带断裂患者作为观察组,其中男38例,女21例;年龄16~39岁,平均23.2岁;单纯内侧副韧带断裂12例,合并外侧半月板损伤16例,前交叉韧带损伤27例,前、后交叉韧带损伤3例,髌骨脱位1例。68例MRI检查提示无内侧副韧带断裂患者作为对照组,其中男45例,女23例;年龄25~49岁,平均31.8岁;前交叉韧带损伤38例,前、后交叉韧带损伤4例,前交叉韧带合并外侧半月板损伤26例。两组治疗前后行关节镜探查比较"湾征"出现情况。结果观察组膝内侧副韧带修复重建前关节镜探查均见"湾征",明确内侧副韧带断裂;修复重建后"湾征"消失。对照组交叉韧带重建前后均未见"湾征"。结论 "湾征"可作为关节镜下膝内侧副韧带断裂的诊断指征,以及术中韧带修复重建成功与否的判断依据。  相似文献   

15.
To assess the mRNA expression of extracellular matrix genes which might correlate with or contribute to mechanically weaker medial collateral ligament (MCL) scars in the ACL-deficient rabbit knee joint compared to those in anterior cruciate ligament (ACL) intact knee joints, a bilateral MCL injury was induced in 10 skeletally mature female NZW rabbits. As part of the same surgical procedure, the ACL was transected in one of the knees while the contralateral knee had a sham procedure. The side having the combined MCL and ACL injury was randomly assigned. After six weeks, the rabbits were euthanized. Histological assessments were performed on samples of the MCL scars from each operated knee (n = 3 animals) and mRNA levels for collagen type I, III, V, decorin, biglycan, lumican, fibromodulin, TGF-beta, IL-1, TNF-alpha, MMP-1, MMP-13, and a housekeeping gene (GAPDH) were assessed using semiquantitative RT-PCR on RNA isolated from the MCL scar tissue of the remaining animals (n = 7 animals). Levels of mRNA for each gene were normalized using the corresponding GAPDH value. Results showed that the total RNA yield (per mg wet weight) in the MCL scar of the ACL-deficient knee was significantly greater than that in the MCL scar from the ACL-intact knee. Collagen type I mRNA levels were significantly lower and mRNA levels for TNF-alpha were significantly greater in the scars of ACL-deficient knees compared to scars from ACL-intact joints. There were no significant differences between ACL-deficient and ACL-intact knees with respect to MCL scar mRNA levels for the remaining genes assessed. Histologically, the "flaw" area, which has been shown to correlate with mechanical properties in previous studies, was significantly greater in MCL scars from ACL-deficient knees than in the ACL-intact MCL scars. The mean number of cells/mm2 in MCL scars from ACL-deficient knees was significantly greater than in MCL scars from ACL-intact knees. The present study suggests that MCL scar cell metabolism is differentially influenced by the combined injury environment.  相似文献   

16.
In this study, the short-term effects of immobilization on joint damage and medial collateral ligament (MCL) healing were investigated in unstable, anterior cruciate ligament (ACL)-deficient knees in rabbits. Forty-six 12-month-old female New Zealand white rabbits were separated into three groups. Animals from each group had surgery on their right knees: group I, sham controls (n = 9); group II, complete transection of the ACL and removal of a 4 mm segment (gap injury) of MCL midsubstance with no immobilization of the limb (n = 19); and group III, same injuries to the ACL and MCL (as group II) but with immobilization of the limb (n = 18). No surgical repair of disrupted ligaments was performed. Left knees served as unoperated contralateral controls. All animals were allowed unrestricted cage activity until sacrifice in subgroups at 3, 6, and 14 weeks of healing when biomechanical properties of all MCLs were measured. All knee joints were systematically examined for gross evidence of damage to articular cartilage, menisci, and periarticular soft tissues. To monitor relative in vivo loads on injured limbs during healing, hindlimb weight bearing was assessed at biweekly intervals. Results indicated that animals in both groups II and III bore relatively lower loads (compared to preinjury values) on their injured hindlimbs. Mechanical testing of MCLs showed only minor changes in sham controls, while group II and III healing MCLs demonstrated significantly lower force and stress at MCL complex failure compared to contralateral controls. In specific comparisons of group III to group II animals, we noted that immobilization prevented joint damage over the early intervals studied. In addition, immobilization resulted in MCL laxity similar to contralateral control values but inhibited development of structural strength and stiffness in healing MCLs. These results suggest that in the rabbit, short-term immobilization of an ACL-deficient knee offers some advantages to the joint and to certain low load behaviors of the healing MCL, but it also results in a smaller quantity of scar tissue that is less able to resist higher loads. Longer-term studies involving remobilization are necessary before the effects of brief immobilization on joint damage and MCL healing in this ACL-deficient model can be fully defined.  相似文献   

17.
Vascular physiology and long-term healing of partial ligament tears.   总被引:1,自引:0,他引:1  
Functional outcomes of anterior cruciate ligament (ACL) injury are generally poorer than those of medial collateral ligament (MCL) tears. Following ligament damage, all phases of ligament healing require an adequate blood supply. We hypothesized that the differences in healing properties of the ACL and MCL would reflect their vascular responses to joint injury. This paper examines the long-term changes in blood flow and vascular volume of rabbit knee ligaments after direct injury, and under conditions of chronic joint instability induced by section of the posterior cruciate ligament (PCL). Standardized injuries were surgically induced in adult rabbit knee ligaments: partial MCL transection, partial ACL transection, or complete PCL transection (joint instability). Sixteen weeks later the blood flow and vascular volume of the ACL and MCL were measured and compared to control and sham-operated animals. Direct ligament injury induced significant increases in standardized blood flow and vascular volume of both ACL and MCL after 16 weeks; however, the vascular volume of the ACL was not higher than the control levels in the MCL. We conclude that direct injury to both the anterior cruciate and MCLs induces long-term physiological responses. Joint laxity is a common sequel to PCL injury. Chronic joint laxity failed to induce adaptive vascular responses in the ACL, while the MCL shows significant amplification of blood supply. Although both MCL and ACL showed increased weight after PCL transection, the lack of a long-term vascular response in the ACL may be a major factor in its the diminished healing potential.  相似文献   

18.
Pantibial ligamentous injury including knee dislocation and tibiotalar joint subluxation is an uncommon severe rotational injury. A 21-year-old male injured his right knee falling from a motorcycle. Physical examination revealed effusion on the right knee and ankle, and posterior translation of the tibia as well. The MRI of the right knee and ankle demonstrated the following findings: a complete disruption of cruciate ligaments, the medial collateral ligament, posteromedial corner injury together with a peripheric tear in the medial meniscus, the ruptured deltoid ligament, ankle syndesmosis space widening (>5 mm) and lateral subluxation of talus. Deltoid ligament of the right ankle was repaired and ankle syndesmosis was fixed with a cortical screw. The PCL and ACL were reconstructed arthroscopically with autogeneous bone-patellar tendon-bone graft. The midsubstance tear of MCL, posteromedial corner and medial meniscus tear were primarily repaired with nonabsorbable sutures. 3 years after the surgery, the patient was called for the final examination. MRI and X-ray findings of the knee and ankle joint demonstrated the continuity of ACL, PCL, MCL, and deltoid ligament. The patient, who is a farmer, can go back to his job and perform his daily activities. We presented a previously unreported case that involves both simultaneous occurrence of knee dislocation and tibiotalar joint subluxation. We used the term “Pantibial ligamentous injury” for this case.  相似文献   

19.
Medial collateral ligament (MCL) injuries heal by a wound repair scar response controlled by a complex cellular and cytokine environment. Many enzymes participate in wound repair, particularly the matrix metalloproteinases. We hypothesize macrophage metalloelastase (MME/MMP-12) deficiency results in impaired healing of MCL injury. One hundred fifty MME-deficient and 150 WT (MME+/+) mice underwent knee MCL transection with the opposite knee as a sham operated control. Mice were sacrificed at 3, 7, 28, 42, and 56 days. At each of the five time points, 15 mice were utilized for biological and 15 were utilized for biomechanical testing. Outcome measures were the presence of macrophages to represent the inflammatory phase of wound healing, collagen synthesis to assay for matrix repair, and biomechanical testing for repair strength. Immunohistochemistry demonstrated significantly fewer macrophages in cut MCLs from MME-deficient mice versus wild-type (WT) mice at 3, 7, 28, and 42 days (all p相似文献   

20.
PurposeKnee morphometric risk factors for noncontact anterior cruciate ligament (ACL) injury have been a popular topic with skeletally mature patients. Little research has focused on the skeletally immature, with conflicting conclusions. This study performs a comprehensive analysis of identified parameters thought to predispose to ACL injury in a skeletally immature cohort.MethodsA retrospective review of pediatric patients undergoing knee magnetic resonance imaging (MRI) was performed over a 4-year period. Inclusionary criteria included mid-substance ACL disruption, skeletal immaturity, noncontact injury, without associated ligamentous disruption, and no medical condition associated with ligamentous laxity. MRI studies were analyzed by a pediatric musculoskeletal radiologist, measuring identified bony parameters, and compared with an age-matched control group without ligamentous injury. Data were analyzed using unpaired t-tests and logistic regression.ResultsOne hundred and twenty-eight patients sustained an ACL disruption, 39 met all inclusionary criteria (66 excluded for associated ligamentous disruption, 23 skeletally mature, three traumatic mechanisms, one with Marfan syndrome). When compared to an age-matched control cohort, the notch width index (NWI) was found to be significantly smaller in the ACL-injured group (p = 0.046). Subgroups analysis demonstrated significant differences in morphometric parameters between subjects with isolated ACL injuries and concomitant medial collateral ligament (MCL) strain.ConclusionsThe NWI was significantly smaller in the ACL injury group. Significant differences were noted between isolated ACL injuries and ACL injuries with an MCL strain. This study further highlights the need for incorporating associated injury patterns when investigating the influence of morphometric factors for ACL injury in the skeletally immature.

Level of evidence

Level III.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号