首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previously, we demonstrated that chick embryos treated with antisense oligonucleotides against a striated muscle-specific Xin exhibit abnormal cardiac morphogenesis (Wang et al. [1999] Development 126:1281-1294); therefore, we surmised a role for Xin in cardiac development. Herein, we examine the developmental expression of Xin through immunofluorescent staining of whole-mount mouse embryos and frozen heart sections. Xin expression is first observed within the heart tube of embryonic day 8.0 (E8.0) mice, exhibiting a peripheral localization within the cardiomyocytes. Colocalization of Xin with both beta-catenin and N-cadherin is observed throughout embryogenesis and into adulthood. Additionally, Xin is found associated with beta-catenin within the N-cadherin complex in embryonic chick hearts by coimmunoprecipitation. Xin is detected earlier than vinculin in the developing heart and colocalizes with vinculin at the intercalated disc but not at the sarcolemma within embryonic and postnatal hearts. At E10.0, Xin is also detected in the developing somites and later in the myotendon junction of skeletal muscle but not within the costameric regions of muscle. In cultured C2C12 myotubes, the Xin protein is found in many speckled and filamentous structures, coincident with tropomyosin in the stress fibers. Additionally, Xin is enriched in the regions of cell-cell contacts. These data demonstrate that Xin is one of the components at the adherens junction of cardiac muscle, and its counterpart in skeletal muscle, the myotendon junction. Furthermore, temporal and spatial expressions of Xin in relation to intercalated disc proteins and thin filament proteins suggest roles for Xin in the formation of cell-cell contacts and possibly in myofibrillogenesis.  相似文献   

2.
Summary Established myogenic cell lines of different species and tissue origin have been used to study expression and organisation of muscle-specific proteins during differentiation. Furthermore, primary cultures of rat myocard cells were used to examine these same processes during dedifferentiation. In particular, we were interested in the general mechanism that underlies the changes in the supramolecular organisation of titin during in vitro myogenesis. It became obvious that in the differentiating muscle cell cultures the redistribution of desmin, actin and myosin in a typical, differentiation state dependent fashion, always showed a certain delay when compared to titin. The sequence of changes in the assembly of cytoskeletal and sarcomeric structures observed during differentiation of the cell lines was reversed during the process of dedifferentiation in cultured rat myocard cells. These results all indicate that titin is an early marker of myogenic differentiation, both in vivo and in vitro, and that the typical reorganisation of this giant molecule is independent of species or muscle cell type.  相似文献   

3.
Calomys callosus (Rodentia: Cricetidae) chronically infected with CL strain of Trypanosoma cruzi undergo recrudescence of the acute phase when treated with the immunosuppressor cyclophosphamide. The distribution of cytoskeletal proteins in cardiac tissue of immunosuppressed animals was mapped by immunofluorescence and electron microscopy to evaluate myofibrillar distribution during the intracellular life cycle of T. cruzi. Cardiac muscle sections showed enhancement of myocarditis and parasite proliferation after immunosuppression. Immunofluorescence using monoclonal antibodies against myosin, actin, desmin, titin, tropomyosin, and troponin T demonstrated disruption and loss of contractile proteins, such as myosin and actin. Desmin and titin were irregularly distributed in close proximity to parasite nests. Ultrastructural observations confirmed alterations of cardiac cells with Z-line fragmentation, indistinguishable I-bands and A-bands, and loss of myofibrillar elements. The disruption of the muscle cell architecture was greater as infection progressed, probably as a result of increased myocarditis and physical displacement due to the activity of flagellated parasites.  相似文献   

4.
Desminopathies in muscle disease   总被引:5,自引:0,他引:5  
A recently identified class of myopathies is produced by abnormal desmin, and is characterized by a disorganization of the desmin filament network, the accumulation of insoluble desmin-containing aggregates, and destructive changes in the sarcomeric organization of striated muscles. The desmin filaments interact with various other cytoskeletal proteins. The distinct clinical phenotypes are heterogeneous, with progressive skeletal myopathy, cardiomyopathy, and respiratory insufficiency as the most prominent features. Most of the desmin mutations are autosomal dominant. Identification of the causal genetic mutations shows that the desmin gene is not the only gene implicated in desminopathies; other genes encoding desmin-associated proteins, such as alpha-B-crystallin, and synemin may also be involved. Patients with mutations in their alpha-B-crystallin gene, which produce similar skeletal and cardiac myopathies, also have opaque lenses. Knockout mice have helped to reveal the fundamental role of desmin filaments in cell architecture, sarcomere alignment, myofibril organization, and the distribution of mitochondria. Transgenic mice, which accumulate aggregates of desmin and associated proteins in their muscles, show that the loss of desmin intermediate function as a result of mutations in desmin itself, or in the desmin-associated constituents, is important for disease progression.  相似文献   

5.
Summary The striated muscle tropomyosin-enriched microfilaments were isolated from developing musclesin ovo by the previously described method with a monoclonal antibody against striated muscle isoforms of tropomyosin (Lin & Lin, 1986). Two-dimensional gel analysis of the isolated microfilaments from developing heart, thigh and breast muscles revealed the coexistence of non-muscle isoforms of tropomyosin and actin throughout all stages of embryogenesis. A small but significant amount of skeletal muscle isoforms (, ) of tropomyosins and their phosphorylated forms was detected in the microfilaments isolated from hearts of 6–15-day-old embryos. These skeletal isoforms of tropomyosins disappeared after this stage of embryogenesis. In addition, we also detected both embryonic and adult isoforms of troponin T in early developing hearts. In developing thigh and breast muscles, the presence of non-muscle tropomyosin isoforms 2, 3a and 3b in the isolated microfilaments was apparent. The contents of tropomyosin isoform 2 were decreased with development and this non-muscle isoform completely disappeared at the 15th day of embryogenesis. On the other hand, the non-muscle tropomyosin isoforms 3a and 3b were present throughout all stages of development. Double-label immunofluorescence microscopy with monoclonal CH1 (anti-striated muscle isoforms of tropomyosin) and CG6 (anti-non-muscle isoforms of tropomyosin) on the isolated, glycerinated skeletal and cardiac muscle cells of 10-day-old or 13-day-old embryos confirmed the colocalization of muscle and non-muscle isoforms of tropomyosins within the same cells. These results suggest that different isoforms of actin and tropomyosin can assemble into a class of microfilaments (i.e. striated muscle tropomyosin-enriched microfilaments)in ovo, which may transform into the thin filaments of mature muscle cells.  相似文献   

6.
The tropomyosin (TM) gene family produces a set of related TM proteins with important functions in striated and smooth muscle, and nonmuscle cells. In vertebrate striated muscle, the thin filament consists largely of actin, TM, the troponin (Tn) complex (Tn‐I, Tn‐C and Tn‐T), and tropomodulin (Tmod) and is responsible for mediating Ca2+ control of muscle contraction and relaxation. There are four known genes (designated as TPM1, TPM2, TPM3, and TPM4) for TM in vertebrates. The four TM genes generate a multitude of tissue‐ and developmental‐specific isoforms through the use of different promoters, alternative mRNA splicing, different 3′‐end mRNA processing and tissue‐specific translational control. In this review, we have focused mainly on the regulation of TM expression in striated muscles, primarily in vertebrate hearts with special emphasis on translational control using mouse and Mexican axolotl animal models. Anat Rec, 297:1585–1595, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

7.
The aim of this study was to evaluate the effect of repeated bouts of exercise on the cytoskeletal proteins titin, desmin, and dystrophin. Rats were made to run downhill for 90 min 1 or 5 times separated by 14 days. Samples were taken from quadriceps femoris muscle 3, 48, 96 h and 50 days after the last exercise session and detected by quantitative PCR, histochemical stainings, and western blot analyses. Histopathological changes in titin, desmin, and dystophin stainings, an increase in β-glucuronidase activity (a quantitative indicator of muscle damage), a significant decrease in the relative content of dystrophin, and intramyocellular Evans blue staining (signs of changes in sarcolemmal permeability) observed after one exercise session were attenuated after 5 exercise sessions. Titin mRNA level was not increased after the initial exercise session but was increased after the fifth session. Desmin and dystrophin mRNA levels were increased after the first and fifth sessions with desmin showing a smaller increase after the fifth session compared to the first session. Prior exercise induces adaptation that protects the sarcolemma as well as subsarcolemmal, intermediate filament, and sarcomeric proteins against disruption. Changes in mRNA levels of titin, desmin, and dystophin after an acute exercise session obviously reflect the need of these proteins in the repair process following damage. After five sessions increase in mRNA of studied proteins suggest a strong involvement in continuing adaptation to the increased exercise.  相似文献   

8.
Kettin is a unique member of the connectin/titin family of muscle elastic proteins, which has repetitive immunoglobulin-like domains that are separated by weakly conserved linker sequences. In striated muscles of insects and crayfish, kettin binds to actin filaments and localizes to the Z-disc and its adjacent region in the I-band. Recent sequence analysis of invertebrate connectin/titin (also known as SLS proteins) has revealed that kettin is a splice variant of connectin/titin. In contrast, in the nematode Caenorhabditis elegans, the kettin gene is independent of the genes for other connectin/titin-related proteins. Immunofluorescent localization of kettin shows that it localizes to the I-bands in the obliquely striated body wall muscle. Therefore, C. elegans is an attractive model system to study specific functions of kettin in muscle cells.  相似文献   

9.
Summary Chronic low-frequency electrical stimulation of rabbit fast-twitch skeletal muscle induces increased levels of two intermediate filament proteins, desmin and vimentin, during the first 3 weeks of stimulation. These increases occur over the same timecourse as reported shifts in -actinin expression and increased Z-disc width, but precede the fast-to-slow shifts in contractile proteins, which have been described by others. Desmin and vimentin levels increase during the first 2 weeks of stimulation, at which time the increase in desmin appears to plateau while vimentin continues to increase significantly through 3 weeks of stimulation. Absolute amounts of vimentin are lower than desmin at all time points, however increases in desmin and vimentin levels are strongly correlated during the stimulation period, suggesting that the two proteins are coordinately increased during the initial phases of muscle transformation. We suggest that rapid increases in the expression of intermediate filament proteins, which coincide with alterations in Z-disc structure, may indicate a fortification of the force-bearing ultrastructure of the muscle fibre in response to the increased activity that is induced by stimulation. The presence of vimentin and elevated levels of desmin expression suggest that mature skeletal muscle reverts toward a developmental program of intermediate filament protein expression during fast-to-slow transformation.  相似文献   

10.
The striated muscle sarcomere contains the third filament comprising the giant elastic protein titin, in addition to thick and thin filaments. Titin is the primary source of nonactomyosin-based passive force in both skeletal and cardiac muscles, within the physiological sarcomere length range. Titin's force repositions the thick filaments in the center of the sarcomere after contraction or stretch and thus maintains sarcomere length and structural integrity. In the heart, titin determines myocardial wall stiffness, thereby regulating ventricular filling. Recent studies have revealed the mechanisms involved in the fine tuning of titin-based passive force via alternative splicing or posttranslational modification. It has also been discovered that titin performs roles that go beyond passive force generation, such as a regulation of the Frank-Starling mechanism of the heart. In this review, we discuss how titin regulates passive and active properties of striated muscle during normal muscle function and during disease.  相似文献   

11.
The efficient functioning of striated muscle is dependent upon the proper alignment and coordinated activities of several cytoskeletal networks including myofibrils, microtubules, and intermediate filaments. However, the exact molecular mechanisms dictating their cooperation and contributions during muscle differentiation and maintenance remain unknown. Recently, the muscle specific RING finger (MURF) family members have established themselves as excellent candidates for linking myofibril components (including the giant, multi-functional protein, titin/connectin), with microtubules, intermediate filaments, and nuclear factors. MURF-1, the only family member expressed throughout development, has been implicated in several studies as an ubiquitin ligase that is upregulated in response to multiple stimuli during muscle atrophy. Cell culture studies suggest that MURF-1 specifically has a role in maintaining titin M-line integrity and yeast two-hybrid studies point toward its participation in muscle stress response pathways and gene expression. MURF-2 is developmentally down-regulated and is assembled at the M-line region of the sarcomere and with microtubules. Functionally, its expression is critical for maintenance of the sarcomeric M-line region, specific populations of stable microtubules, desmin and vimentin intermediate filaments, as well as for myoblast fusion and differentiation. A recent study also links MURF-2 to a titin kinase-based protein complex that is reportedly activated upon mechanical signaling. Finally, MURF-3 is developmentally upregulated, associates with microtubules, the sarcomeric M-line (this report) and Z-line, and is required for microtubule stability and myogenesis. Here, we focus on the biochemical and functional properties of this intriguing family of muscle proteins, and discuss how they may tie together titin-mediated myofibril signaling pathways (perhaps involving the titin kinase domain), biomechanical signaling, the muscle stress response, and gene expression.  相似文献   

12.
Muscle atrophy in Titin M-line deficient mice   总被引:2,自引:0,他引:2  
We investigated the response to deletion of the titin M-line region in striated muscle, using a titin knockout model and a range of techniques that include histology, in situ hybridization, electron microscopy, and 2D gel analysis. We found that the loss of titin’s kinase domain and binding sites for myomesin and MURF-1 causes structural changes in the sarcomere that proceed from the M-line to the Z-disc and ultimately result in disassembly of the sarcomere. Disassembly goes along with central localization of nuclei (a hallmark for muscular dystrophy), up-regulation of heat-shock proteins, and induction of proteasome activity. While fiber type composition does not change in soleus and extensor digitorum longus muscle, fiber size is reduced. Animals die from complications of muscle atrophy at five weeks of age. In addition to the structural importance of the titin M-line region in any striated muscle, our data show how differences in M-line composition between heart and skeletal muscle affect sarcomere stability and function.These authors contributed equally to the study.  相似文献   

13.
Desmin, the main intermediate filament (IF) protein in skeletal and heart muscle cells, is of great importance as a part of the cytoskeleton. The IFs surround and interlink myofibrils, and connect the peripheral myofibrils with the sarcolemma. In myotendinous junctions and neuromuscular junctions of skeletal muscle fibres, desmin is enriched. In the heart, desmin is increased at intercalated discs, the attachment between cardiomyocytes, and it is the main component in Purkinje fibres of the conduction system. Desmin is the first muscle‐specific protein to appear during myogenesis. Nevertheless, lack of desmin, as shown from experiments with desmin knockout (K/O) mice, does not influence myogenesis or myofibrillogenesis. However, the desmin knock‐out mice postnatally develop a cardiomyopathy and a muscle dystrophy in highly used skeletal muscles. In other skeletal muscles the organization of myofibrils is remarkably unaffected. Thus, the main consequence of the lack of desmin is that the muscle fibres become more susceptible to damage. The loss of membrane integrity leads to a dystrophic process, with degeneration and fibrosis. In the heart cardiac failure develops, whereas in affected skeletal muscles regenerative attempts are seen. In humans, accumulations of desmin have been a hallmark for presumptive desmin myopathies. Recent investigations have shown that some families with such a myopathy have a defect in the gene coding for αB‐crystallin, whereas others have mutations in the desmin gene. Typical features of these patients are cardiac affections and muscle weakness. Thus, mutations in the desmin gene is pathogenic for a distinct type of muscle disorder.  相似文献   

14.

Tropomyosin is a dimer coiled-coil actin-binding protein. Adjacent tropomyosin molecules connect each other ‘head-to-tail’ via an overlap junction and form a continuous strand that winds around an actin filament and controls the actin–myosin interaction. High cooperativity of muscle contraction largely depends on tropomyosin characteristics. Here we summarise experimental evidence that local peculiarities of tropomyosin structure have long-range effects and determine functional properties of the strand, including changes in its bending stiffness and interaction with actin and myosin. Point mutations and posttranslational modifications help to probe the roles of the conserved ‘non-canonical’ residues, clusters of stabilising and destabilising core residues, and core gap in tropomyosin function. The data suggest that tropomyosin structural lability including a diversity of homo- and heterodimers of different isoforms provide a balance of stiffness, flexibility, and strength of interaction with partner sarcomere proteins necessary for fine-tuning of Ca2+ regulation in various types of striated muscles.

  相似文献   

15.
Vimentin, desmin, glial fibrillary acidic protein (GFAP) and peripherin belong to type III intermediate filament family and are expressed in mesenchymal cells, skeletal muscle cells, astrocytes and peripheral neurons, respectively. Vimentin and desmin possess N‐acetyl‐d ‐glucosamine (GlcNAc)‐binding properties on cell surfaces. The rod II domain of these proteins is a GlcNAc‐binding site, which also exists in GFAP and peripherin. However, the GlcNAc‐binding activities and behaviors of these proteins remain unclear. Here, we characterized the interaction and binding behaviors of these proteins, using various well‐defined GlcNAc‐bearing polymers synthesized by radical polymerization with a reversible addition‐fragmentation chain transfer reagent. The small GlcNAc‐bearing polymers strongly interacted with HeLa cells through vimentin expressed on the cell surface and interacted with vimentin‐, desmin‐, GFAP‐ and peripherin‐transfected vimentin‐deficient HeLa cells. These proteins present high affinity to GlcNAc‐bearing polymers, as shown by surface plasmon resonance. These results show that type III intermediate filament proteins possess GlcNAc‐binding activities on cell surfaces. These findings provide important insights into novel cellular functions and physiological significance of type III intermediate filaments.  相似文献   

16.
Recent studies in desmin (-/-) mice have shown that the targeted ablation of desmin leads to pathological changes of the extrasarcomeric intermediate filament cytoskeleton, as well as structural and functional abnormalities of mitochondria in striated muscle. Here, we report on a novel heterozygous single adenine insertion mutation (c.5141_5143insA) in a 40-year-old patient with a distal myopathy. The insertion mutation leads to a frameshift and a truncated desmin (K239fs242). Using transfection studies in SW13 and BHK21 cells, we show that the K239fsX242 desmin mutant is incapable of forming a desmin intermediate filament network. Furthermore, it induces the collapse of a pre-existing desmin cytoskeleton, alters the subcellular distribution of mitochondria and leads to abnormal cytoplasmic protein aggregates reminiscent of desmin-immunoreactive granulofilamentous material seen in the ultrastructural analysis of the patient's muscle. Analysis of mitochondrial function in isolated saponin-permeablized skeletal muscle fibres from our patient showed decreased maximal rates of respiration with the NAD-dependent substrate combination glutamate and malate, as well as a higher amytal sensitivity of respiration, indicating an in vivo inhibition of complex I activity. Our findings suggest that the heterozygous K239fsX242 desmin insertion mutation has a dominant negative effect on the polymerization process of desmin intermediate filaments and affects not only the subcellular distribution, but also biochemical properties of mitochondria in diseased human skeletal muscle. As a consequence, the intermediate filament pathology-induced mitochondrial dysfunction may contribute to the degeneration/regeneration process leading to progressive muscle dysfunction in human desminopathies.  相似文献   

17.
Desmin-related myopathies in mice and man.   总被引:23,自引:0,他引:23  
Desmin, the main intermediate filament (IF) protein in skeletal and heart muscle cells, is of great importance as a part of the cytoskeleton. The IFs surround and interlink myofibrils, and connect the peripheral myofibrils with the sarcolemma. In myotendinous junctions and neuromuscular junctions of skeletal muscle fibres, desmin is enriched. In the heart, desmin is increased at intercalated discs, the attachment between cardiomyocytes, and it is the main component in Purkinje fibres of the conduction system. Desmin is the first muscle-specific protein to appear during myogenesis. Nevertheless, lack of desmin, as shown from experiments with desmin knockout (K/O) mice, does not influence myogenesis or myofibrillogenesis. However, the desmin knock-out mice postnatally develop a cardiomyopathy and a muscle dystrophy in highly used skeletal muscles. In other skeletal muscles the organization of myofibrils is remarkably unaffected. Thus, the main consequence of the lack of desmin is that the muscle fibres become more susceptible to damage. The loss of membrane integrity leads to a dystrophic process, with degeneration and fibrosis. In the heart cardiac failure develops, whereas in affected skeletal muscles regenerative attempts are seen. In humans, accumulations of desmin have been a hallmark for presumptive desmin myopathies. Recent investigations have shown that some families with such a myopathy have a defect in the gene coding for alphaB-crystallin, whereas others have mutations in the desmin gene. Typical features of these patients are cardiac affections and muscle weakness. Thus, mutations in the desmin gene is pathogenic for a distinct type of muscle disorder.  相似文献   

18.
Titin is a major constituent protein of sarcomeric muscles and is thought to give rise to an elastic filament component underlying the myofibrillar organization. Monoclonal antibodies to titin have been characterized on normal and pathological human material and on human cell lines in culture. A positive immunocytochemical reaction was restricted to sarcomeric muscles and did not occur on visceral or vascular smooth muscles or on various nonmuscle tissues. When different tumor types were examined titin antibodies reacted solely with rhabdomyosarcomas and did not react with leiomyosarcoma or leiomyoma, or with the nonmuscle tumor types tested. In rhabdomyosarcomas a noticeably smaller population of cells were positive with antibodies to titin than with antibodies to desmin showing that individual cells within a rhabdomyosarcoma achieve different degrees of myogenic differentiation. The results reinforce the use of desmin as a marker for muscle sarcomas and show that a positive identification of rhabdomyosarcoma can be achieved by immunocytochemistry with the parallel use of desmin and titin antibodies.  相似文献   

19.
In Drosophila melanogaster two high molecular weight tropomyosin isoforms, historically named heavy troponins (TnH-33 and TnH-34), are encoded by the Tm1 tropomyosin gene. They are specifically expressed in the indirect flight muscles (IFM). Their N-termini are conventional and complete tropomyosin sequences, but their C-termini consist of different IFM-specific domains that are rich in proline, alanine, glycine and glutamate. The evidence indicates that in Diptera these IFM-specific isoforms are conserved and are not troponins, but heavy tropomyosins (TmH). We report here that they are post-translationally modified by several phosphorylations in their C-termini in mature flies, but not in recently emerged flies that are incapable of flight. From stoichiometric measurements of thin filament proteins and interactions of the TmH isoforms with the standard Drosophila IFM tropomyosin isoform (protein 129), we propose that the TmH N-termini are integrated into the thin filament structural unit as tropomyosin dimers. The phosphorylated C-termini remain unlocated and may be important in IFM stretch-activation. Comparison of the Tm1 and Tm2 gene sequences shows a complete conservation of gene organisation in other Drosophilidae, such as Drosophila pseudoobscura, while in Anopheles gambiae only one exon encodes a single C-terminal domain, though overall gene organization is maintained. Interestingly, in Apis mellifera (hymenopteran), while most of the Tm1 and Tm2 gene features are conserved, the gene lacks any C-terminal exons. Instead these sequences are found at the 3’ end of the troponin I gene. In this insect order, as in Lethocerus (hemipteran), the original designation of troponin H (TnH) should be retained. We discuss whether the insertion of the IFM-specific pro-ala-gly-glu-rich domain into the tropomyosin or troponin I genes in different insect orders may be related to proposals that the IFM stretch activation mechanism has evolved independently several times in higher insects.  相似文献   

20.
Summary Association between vaccinia virus (VV) structures and intermediate filaments in specific areas of the cytoplasm of infected cells (virus factories) suggests that VV infection interferes with the cellular architecture by modifying the intermediate filament network. To analyse this question, we examined the array of intermediate filaments of BHK-21 cells infected with VV by laser scanning confocal microscopy using an anti-vimentin mouse monoclonal antibody. We observed a marked reorganization of intermediate filaments around the nucleus of infected cells. Bidimensional analysis of32PO4-labeled intermediate filament proteins revealed that the acidic isoform of vimentin and two isoforms of desmin have increased phosphorylation levels in infected cells. Our results suggest that the reorganization of intermediate filaments observed during VV infection could be promoted by an increase in the phosphorylation level of the intermediate filament proteins, vimentin and desmin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号