首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The insulinotropic effects of alpha-ketoisocaproic acid and glucose reveal many common characteristics in vivo and in vitro. They qualify as initiators of insulin release, their action is amplified by potentiators of insulin release, and they have a similar potency at equimolar concentrations. The dynamics of insulin release evoked by alpha-ketoisocaproic acid and glucose are similar. Epinephrine completely inhibits the insulinotropic effect of glucose and alpha-ketoisocaproic acid. Mannoheptulose exhibits a complete, immediate and reversible blockade of glucose-induced insulin release. In contrast, inhibition of alpha-ketoisocaproic acid-induced insulin release occurs after a lag period and is not reversed by removal of the inhibitor. alpha-ketoisocaproic acid, at equimolar concentrations, is several-fold more effective than glucose in elevating cAMP content in islet. alpha ketoisocaproic acid and glucose are about equally effective in stimulating somatostatin release from isolated rat pancreatic islets. This stimulation is inhibited by epinephrine. Mannoheptulose inhibits only somatostatin release induced by glucose but not by alpha-ketoisocaproic acid. It suggested that the insulinotropic characteristics of glucose and alpha-ketoisocaproic acid reveal many common features, while their mode of action appears to be different.  相似文献   

2.
Biotin (vitamin H) plays an important role as a cofactor in glucose or lipid metabolism. We showed that biotin potentiated glucose-induced insulin release in isolated rat islets, while biotin alone did not affect insulin release. Coculture with biotin in islets for 48 hours significantly enhanced glucose-induced insulin release or islet insulin content. Similarly, preproinsulin or pancreatic/duodenal homeobox-1 (PDX-1) mRNA was also enhanced in islets cultured with biotin for 48 hours. Furthermore, we measured effects of biotin on beta-cell function under glucotoxic or lipotoxic states. In islets cultured with high glucose or palmitate for 48 hours, glucose-induced insulin release or islet insulin content deteriorated. Coculture with biotin significantly restored glucose-induced insulin release or islet insulin content together with the restoration of preproinsulin or PDX-1 mRNA. We conclude that biotin exerts its beneficial effects on beta-cell dysfunction induced by glucose or free fatty acids probably through the enhancement of insulin biosynthesis.  相似文献   

3.
S Lenzen  G Kl?ppel 《Endocrinology》1978,103(5):1546-1555
Thyroxine treatment induced experimental hyperthyroidism in ob/ob mice, inhibited glucose-induced insulin secretion from the isolated perfused ob/ob mouse pancreas, and reduced total pancreas insulin content. In contrast, glucose-induced insulin release from incubated pancreatic islets and insulin content of pancreatic islets from ob/ob mice isolated by freehand microdissection were not reduced after thyroxine treatment when expressed per microgram dry islet. Histological examination of the ob/ob mouse pancreas revealed islets without degenerative lesions of islet cells. Granularity of beta cells was well preserved. The average number of pancreatic islets was unchanged. However, the beta cell area was significantly decreased in relation to the total pancreatic parenchyma after thyroxine treatment. This implies that insulin release and content per pancreatic islet was half of that of the controls. ATP content of islets was slightly reduced. Glucose oxidation and glucose utilization by islets from treated mice were slightly increased. Thyroxine treatment of the animals did not abolish the stimulation of 45Ca2+ uptake by glucose, but it did suppress the potentiating effect of fasting on the stimulatory effect of glucose on 45Ca2+ uptake. The metabolic characteristics of islets from experimentally hyperthyroid mice are those of all hyperthyroid tissues. The results provide no evidence for the view that the effects of thyroxine treatment may be due to disturbed metabolic function or energy deprivation of pancreatic islets. Inhibition of insulin secretion from the pancreas after thyroxine administration is apparently due to a reduction in pancreas insulin content and a diminished pancreatic islet volume. Reduced pancreatic islet volume represents most probably a reduction of individual islet cell volume.  相似文献   

4.
To examine the possibility of a cause-effect relationship between enhanced monoamine content in the ventromedial hypothalamus ([VMH] a characteristic of hyperinsulinemic and insulin-resistant animals) and islet dysfunction, we infused norepinephrine ([NE] 25 nmol/h) and/or serotonin ([5-HT] 2.5 nmol/h) into the VMH of normal hamsters for 5 weeks and then examined insulin release from the isolated pancreatic islets. VMH infusion of NE + 5-HT, but not of either neurotransmitter alone, produced a marked leftward shift in the dose-response curve of glucose-induced insulin release (twofold to sixfold increase at 5 to 7.5 mmol/L glucose v vehicle-treated animals). In addition, the islet responsiveness to 1 micromol/L NE and 10 micromol/L acetylcholine was abolished in these NE + 5-HT VMH-infused hamsters. These findings indicate that an increase of NE and 5-HT content in the VMH can induce dysregulation of islet insulin release in response to glucose and neurotransmitters. Inasmuch as VMH NE and 5-HT levels are elevated in hyperinsulinemic and insulin-resistant animals, the present findings suggest that an endogenous increase in these hypothalamic monoamines may contribute to islet dysfunction, which is one of the characteristics of type 2 diabetes.  相似文献   

5.
Chronic administration of a high tolbutamide dose to rats induces islet hypertrophy associated with a decreased insulin content per islet and with a diminished insulin release in response to a glucose or leucine stimulus. These changes are reversible after discontinuation of tolbutamide. Chronic administration of a low tolbutamide dose (effective dose 30%) has no effect on islet size, on insulin content per islet, or on leucine-induced insulin release. In contrast, the glucose-induced insulin release is impaired. However, glucose-induced insulin release is normal in the presence of glucagon (5 μg/ml) or theophylline (5 mM). Since islet hypertrophy occurs following admin-istration of high tolbutamide doses only and is associated with hypofunction rather than with hyperfunction, it seems hardly conceivable that the therapeutic principle of tolbutamide is based on a beta-cytotrophic effect. B-cell hypofunction seems to be due to at least three factors: the decrease in the insulin content per islet, an impairment in secretory signal recognition, and an interference with the process of signal transmission.  相似文献   

6.
The effects of gastric inhibitory polypeptide (GIP) on insulin secretion as well as on the intra-islet accumulation of [3H]cyclic AMP were investigated in isolated pancreatic islets of the rat. In the presence of 6.7 mmol/l of glucose, 3.0 and 30 nmol/l of GIP induced both insulin and [3H]cyclic AMP responses, while lower and higher concentrations of the peptide were ineffective. A coupling of the two parameters was also found with regard to interaction between glucose and GIP. Thus while 30 nmol/l of GIP was stimulatory together with 6.7, 16.7 or 33.3 mmol/l of glucose, the peptide stimulated neither insulin release, nor the accumulation of [3H]cyclic AMP in the presence of a low concentration of glucose (3.3 mmol/l). The concomittant release of insulin and somatostatin was studied in the perfused pancreas in order to assess a possible influence by somatostatin on the dose-response pattern for GIP-induced insulin release. In this preparation 1.0 to 10 nmol/l of GIP stimulated insulin and somatostatin secretion; however while these concentrations were equipotent on insulin release, 10 nmol/l of GIP stimulated somatostatin release more than 1 nmol/l, indicating differences in dose-response curves for the GIP-induced stimulation of the two hormones. It is concluded that 1) modulation of GIP-induced insulin release is coupled to changes in cyclc AMP response in the islet, 2) GIP-induced somatostatin secretion may influence the concomittant insulin response.  相似文献   

7.
8.
M Bozem  M Nenquin  J C Henquin 《Endocrinology》1987,121(3):1025-1033
The phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) was used to study the effects of protein kinase C activation on stimulus-secretion coupling in mouse pancreatic B-cells. At a nonstimulatory concentration of glucose (3 mM), 100 nM TPA, but not 10 nM TPA, slightly and slowly increased insulin release and 45Ca2+ efflux and decreased 86Rb+ efflux, but did not affect the membrane potential of B-cells. At a threshold concentration of glucose (7 mM), 100 nM TPA markedly increased insulin release without triggering electrical activity in B-cells. At a stimulatory concentration of glucose (10 mM), TPA caused a dose-dependent irreversible increase in insulin release, 45Ca2+ efflux, and 86Rb+ efflux and slightly augmented islet cAMP levels. Omission of extracellular Ca2+ abolished the effects of 10 nM TPA and partially inhibited those of 100 nM TPA on insulin release and 45Ca2+ efflux. In contrast, their effect on 86Rb+ efflux was paradoxically augmented. Glucose-induced electrical activity in B-cells was only marginally affected by TPA; the duration of the slow waves with spikes was not modified, but a small shortening of the polarized intervals raised their frequency and slightly increased the overall activity. This increase was significant only with 10 nM TPA, whereas only 100 nM TPA brought about a minute increase in 45Ca2+ influx. These results thus show that TPA induces insulin release or potentiates glucose-induced insulin release without mimicking or amplifying the initial ionic and electrical signals triggered by glucose. They suggest that protein kinase C activation affects stimulus-secretion coupling by modulating intracellular and/or nonelectrogenic membrane events.  相似文献   

9.
观察了ICI128436(Stati),一种新型醛糖还原酶抑制剂(ARI),使体外培养时小鼠胰岛山梨醇形成减少后,葡萄糖诱发快速与慢速相胰岛素释放的变化情况。培养48或96小时后,葡萄糖诱发快速或慢速相胰岛素释放,ARI组(10mg/L)与对照组胰岛比较均无显著性差异。说明ARI虽可使胰岛山梨醇形成减低,但其对葡萄糖诱发胰岛素释放无明显影响。提示胰岛山梨醇可能无确切促进胰岛素分泌的作用。  相似文献   

10.
Summary When isolated rat islets were exposed to glucose, the concentrations of NADH and NADPH, and the NADH/NAD+ and NADPH/NADP+ ratios were increased. The dose-response curve resembled that characterising the glucose-induced secondary rise in45Ca efflux, displaying a sigmoidal pattern with a half-maximal value at glucose 7.5 mmol/l. The glucose-induced increase in NAD(P)H was detectable within 1 min of exposure to the sugar. Except for the fall in ATP concentration and ATP/ADP ratio found at very low glucose concentrations (zero to 1.7 mmol/l) no effect of glucose (2.8–27.8 mmol/l) upon the steady-state concentration of adenine nucleotides was observed. However, a stepwise increase in glucose concentration provoked a dramatic and transient fall in the ATP concentration, followed by a sustained increase in both O2 consumption and oxidation of exogenous + endogenous nutrients. This may be essential to meet the energy requirements in the stimulated B-cell. Although no significant effect of glucose upon intracellular pH was detected by the 5,5-dimethyloxazolidine-2,4-dione method, the net release of H+ was markedly increased by glucose, with a hyperbolic dose-response curve (half-maximal response at glucose 2.9 mmol/l) similar to that characterising the glucose-induced initial fall in45Ca efflux. It is proposed that the generation of both NAD(P)H and H+ participates in the coupling of glucose metabolism to distal events in the secretory sequence, especially the ionophoretic process of Ca2+ inward and outward transport, and that changes in these parameters occur in concert with an increased turn-over rate of high-energy phosphate intermediates.Recipient of a Pfizer Traval Award through the European Association for the Study of DiabetesOn leave from the Fundacion Jimenez Diaz, Madrid, Spain  相似文献   

11.
In the present study, a colchicine binding assay was used to measure changes in islet polymerized and depolymerized tubulin at intervals characterizing the biphasic pattern of glucose-induced insulin release i.e., 2.5, 5.5, 10.5, and 30.5 min. At 2.5 min during the rapid onset of insulin release, a significant increase from 24% to 33% in polymerized tubulin content was observed. This increase in polymerized tubulin was followed by a reduction that temporally correlated with the disappearance of first phase release. Second phase release was also associated with a shift in equilibrium favoring tubulin polymerization at longer incubation periods. The effect of cytochalasin B on the equilibrium between polymerized and depolymerized tubulin was evaluated at a submaximal glucose concentration of 16.5 mM. Under these conditions, cytochalasin B increased polymerized tubulin content in a manner that parallels its enhancing effect on insulin release. These results indicate that the rapid events associated with the biphasic pattern of insulin release are temporally correlated with changes in polymerized tubulin.  相似文献   

12.
In rat pancreatic islets, a rise in D-glucose concentrations increases the oxidation of hexose-derived acetyl residues relative to glycolytic flux, an effect possibly attributable, in part at least, to the activation of key mitochondrial dehydrogenases by Ca2+ accumulated in the mitochondria of glucose-stimulated islet cells. The effects of non-nutrient insulinotropic agents upon D-[6-14C]glucose oxidation and D-[5-3H]glucose utilization were investigated. At an intermediate concentration of D-glucose (6 mM), the oxidation of D-[6-14C]glucose was unaffected by hypoglycemic sulfonylureas, an organic Ca2+ agonist, a cholinergic agent, forskolin, theophylline and cytochalasin B. At a higher concentration of the hexose (17 mM), however, the 14CO2/3H2O production rate was decreased by organic and inorganic Ca(2+)-antagonists and by ouabain, whilst being increased by NH+4 (10 mM) and aminooxyacetate. These findings suggest that the preferential stimulation of oxidative events in the Krebs cycle is largely independent of the rate of insulin release, and not merely consequential to the stimulation of Ca2+ inflow into the B-cell. It might be regulated, in a feedback process, by the rate of ATP utilization and, both directly and indirectly, by the mitochondrial redox state. The glucose-induced mitochondrial accumulation of Ca2+ and subsequent activation of the Krebs cycle appear to require an increase in both cytosolic Ca2+ activity and ATP availability.  相似文献   

13.
The effect of the insulinotropic gut hormone glucagon-like-peptide-1 (GLP-1) was studied on the residual insulin capacity of prediabetic nonobese diabetic (NOD) mice, a model of insulin-dependent diabetes mellitus (type 1). This was done using isolated pancreas perfusion and dynamic islet perifusion. Prediabetes was defined by insulitis and fasting normoglycemia. Insultis occurred in 100% of NOD mice beyond the age of 12 weeks. K values in the intravenous glucose tolerance test were reduced in 20-week-old NOD mice compared with agematched non-diabetes-prone NOR (nonobese resistant) mice (2.4±1.1 vs 3.8±1.5% min–1,P<0.05). Prediabetic NOD pancreases were characterized by a complete loss of the glucose-induced first-phase insulin release. In perifused NOD islets GLP-1, at concentrations already effective in normal islets, left the insulin release unaltered. However, a significant rise of glucose-dependent insulin secretion occurred for GLP-1 concentrations>0.1 nM. This was obtained with both techniques, dynamic islet perifusion and isolated pancreas perfusion, indicating a direct effect of GLP-1 on the beta-cell. Analysis of glucose-insulin dose-response curves revealed a marked improvement of glucose sensitivity of the NOD endocrine pancreas in the presence of GLP-1 (half-maximal insulin output without GLP-1 15.2 mM and with GLP-1 9.4 mM,P<0.002). We conclude that GLP-1 can successfully reverse the glucose sensing defect of islets affected by insulitis.  相似文献   

14.
Paolo Meda  Frans Schuit 《Diabetologia》2013,56(12):2552-2555
Glucose-stimulated insulin secretion is ensured by multiple molecular, cellular and tissue events. In this issue of Diabetologia, Low et al (DOI: 10.1007/s00125-013-3019-5) have taken an important new step towards understanding the hierarchical organisation of these events, by monitoring in vitro the individual exocytosis of multiple beta cells within intact mouse islets. The authors show that glucose stimulation markedly increases the number of exocytotic events per cell and, to a lesser extent, the number of beta cells contributing to this event. In this commentary we discuss these novel observations and propose that metabolic and electrical coupling of islet beta cells is responsible for a more homogeneous glucose-induced secretory response of cells in an intact islet as compared with isolated beta cells.  相似文献   

15.
When isolated rat pancreatic islets that had been labeled with 32P were exposed to 10mM L-leucine in a microperifusion system, there was a transitory, immediate heightened efflux of [32P]phosphate ions. Commencement of the phosphate flush coincided with the first release of insulin, and it occurred in the absence or presence of nonstimulatory levels of glucose (0.5 mg/ml). The effects of leucine upon phosphate efflux were not inhibited by D-mannoheptulose, whereas glucose-induced stimulations were suppressed. The phosphate flush could be induced also by the nonmetabolizable analogue of leucine, 2-aminobicyclo[2.2.1]heptane-2-carboxylic acid. Like insulin release, the effect was stereospecific, with only one of the four stereoisomers, (-)-b-aminobicycloheptane carboxylic acid, being active. Analogue-induced phosphate and insulin release were totally suppressed in a medium containing D2O, but on reversion to H2O the efflux of both hormone and anion occured. It is concluded that insulin secretion from islet beta cells and the release of phosphate ions showed the same specificity for nutrient secretagogues and that both can be triggered even in the absence of exogenous oxidizable fuels. However, the partial dissociation of the dose-response curves for the two phenomena lends support to the contention that the phosphate flush reflects an earlier event in the sequence of stimulus-secretion coupling.  相似文献   

16.
The effect of methylamine on electrical activity and simultaneously measured insulin release was investigated in single perifused islets of normal mice. Methylamine, (2 mmol/L or 6 mmol/L) failed to affect beta-cell input resistance and only caused a modest and transient inhibition of electrical activity of islets exposed to 11.1 mmol/L glucose. Methylamine (2 mmol/L) inhibited insulin release evoked by a five-minute rise in glucose concentration from 5.6 to 22.2 mmol/L, even when the glucose-induced electrical activity remained unaltered. Methylamine, at 2 or 5 mmol/L, partially inhibited insulin release but failed to affect the continuous electrical activity in islets exposed throughout to 22.2 mmol/L glucose. At 10 mmol/L, methylamine reduced both insulin release and electrical activity. These data reinforce the idea that the glucose-induced changes in beta-cell membrane potential represent an early event in the process of stimulus-secretion coupling and can be dissociated from the subsequent process of insulin release.  相似文献   

17.
Close cellular proximity and correct anatomical arrangement within islets are essential for normal patterns of insulin secretion. Thus, segregation of islets into single cells is associated with a dramatic decline in stimulus secretion-coupling and glucose-induced insulin release. Generation of pseudoislets from clonal islet cell lines provides a useful model to examine islet cell interactions and insulin secretion. Such studies have highlighted the functional importance of cell adhesion molecules and connexins. Pseudoislets comprising insulin-secreting cell lines have been shown to closely mimic primary islets in both size and morphology, displaying a significantly enhanced response to glucose, nutrients and drugs over equivalent monolayer cultures. Here, we consider the influence of islet structure and cellular interactions in the control of insulin secretion. The functional characteristics of pseudoislets derived from clonal beta-cell lines or a combination of alpha-, beta- and delta-cell lines are discussed in light of normal islet function and possible therapeutic application.  相似文献   

18.
《Islets》2013,5(2):41-47
Close cellular proximity and correct anatomical arrangement within islets are essential for normal patterns of insulin secretion. Thus, segregation of islets into single cells is associated with a dramatic decline in stimulus secretion-coupling and glucose-induced insulin release. Generation of pseudoislets from clonal islet cell lines provides a useful model to examine islet cell interactions and insulin secretion. Such studies have highlighted the functional importance of cell adhesion molecules and connexins. Pseudoislets comprising insulin-secreting cell lines have been shown to closely mimic primary islets in both size and morphology, displaying a significantly enhanced response to glucose, nutrients and drugs over equivalent monolayer cultures. Here, we consider the influence of islet structure and cellular interactions in the control of insulin secretion. The functional characteristics of pseudoislets derived from clonal beta-cell lines or a combination of alpha-, beta- and delta-cell lines are discussed in light of normal islet function and possible therapeutic application.  相似文献   

19.
Nesfatin-1 is a recently discovered multifunctional metabolic hormone abundantly expressed in the pancreatic islets. The main objective of this study is to characterize the direct effects of nesfatin-1 on insulin secretion in vitro using MIN6 cells and islets isolated from C57BL/6 mice. We also examined the expression of the nesfatin-1 precursor protein, nucleobindin 2 (NUCB2) mRNA, and nesfatin-1 immunoreactivity (ir) in the islets of normal mice and in the islets from mice with streptozotocin-induced type 1 diabetes and diet-induced obese (DIO) mice with type 2 diabetes. Nesfatin-1 stimulated glucose-induced insulin release in vitro from mouse islets and MIN6 cells in a dose-dependent manner. No such stimulation in insulin secretion was found when MIN6 cells/islets were incubated with nesfatin-1 in low glucose. In addition, a fourfold increase in nesfatin-1 release from MIN6 cells was observed following incubation in high glucose (16.7 mM) compared to low glucose (2 mM). Furthermore, we observed a significant reduction in both NUCB2 mRNA expression and nesfatin-1-ir in the pancreatic islets of mice with type 1 diabetes, while a significant increase was observed in the islets of DIO mice. Together, our findings indicate that nesfatin-1 is a novel insulinotropic peptide and that the endogenous pancreatic islet NUCB2/nesfatin is altered in diabetes and diet-induced obesity.  相似文献   

20.
The effect of 1alpha,25-dihydroxylumisterol3 (1alpha,25(OH)2lumisterol3) on insulin release from rat pancreatic beta-cells was measured to investigate the nongenomic action of vitamin D via the putative membrane vitamin D receptor (mVDR). 1Alpha,25(OH)2lumisterol3, a specific agonist of mVDR, dose-dependently augmented 16.7 mM glucose-induced insulin release from rat pancreatic islets and increased the intracellular Ca2+ concentration ([Ca2+]i), though not increasing Ca2+ efficacy in the exocytotic system. These effects were completely abolished by an antagonist of mVDR, 1beta,25-dihydroxyvitamin D3 (1beta,25(OH)2D3), or by a blocker of voltage-dependent Ca2+ channels, nitrendipine. Moreover, both [Ca2+]i elevation, caused by membrane depolarization, and sufficient intracellular glucose metabolism are required for the expression of these effects. 1Alpha,25(OH)2lumisterol3, therefore, has a rapid insulinotropic effect, through nongenomic signal transduction via mVDR, that would be dependent on the augmentation of Ca2+ influx through voltage-dependent Ca2+ channels on the plasma membrane, being also linked to metabolic signals derived from glucose in pancreatic beta-cells. However, further investigations will be needed to discuss physiologically the meaning of insulinotropic effects of vitamin D through mVDR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号