首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Blunt-threaded interference screws used for fixation of hamstring tendons in anterior cruciate ligament reconstructions provide aperture fixation and may provide a biomechanically more stable graft than a graft fixed further from the articular surface. It is unknown if soft tissue fixation strength using interference screws is affected by screw length. We compared the cyclic and time-zero pull-out forces of 7 x 25 mm and 7 x 40 mm blunt-threaded metal interference screws for hamstring graft tibial fixation in eight paired human cadaveric specimens. A four-stranded autologous hamstring tendon graft was secured by a blunt-threaded interference screw into a proximal tibial tunnel with a diameter corresponding to the graft width. Eight grafts were secured with a 25-mm length screw while the other eight paired grafts were secured with a 40-mm length screw. During cyclic testing, slippage of the graft occurred as the force of pull became greater with each cycle until the graft-screw complex ultimately failed. All grafts failed at the fixation site, with the tendon being pulled past the screw. There were no measurable differences in the mean cyclic failure strength, pull-out strength, or stiffness between the two sizes of screws. Although use of the longer screw would make removal technically easier should revision surgery be necessary, it did not provide stronger fixation strength than the shorter, standard screw as had been postulated.  相似文献   

2.
BACKGROUND: Biomechanical testing of the Intrafix device has not been performed using human tibiae. HYPOTHESIS: The Intrafix device would provide comparable or superior tibial fixation of a quadrupled hamstring tendon graft to a 35-mm-long bioabsorbable interference screw. STUDY DESIGN: In vitro, biomechanical study. METHODS: Eight paired human tibiae and 16 quadrupled hamstring tendon grafts were divided into 2 groups. Each quadrupled hamstring tendon graft was fixed in a tunnel sized to 0.5 mm graft diameter with either an Intrafix device or a screw. RESULTS: Displacement at failure was greater in the Intrafix group (17.3 +/- 4.6 mm versus 10.9 +/- 4.4 mm, P =.002). Load at failure (796 +/- 193 N versus 647 +/- 269 N), stiffness (49.2 +/- 21.9 N/mm versus 64.5 +/- 22 N/mm), and bone mineral density (0.74 +/- 0.15 gm/cm(3) versus 0.74 +/- 0.14 gm/cm(3)) did not display significant differences for the Intrafix device and the screw, respectively (P >.05). CONCLUSIONS: Displacement at failure was greater for the Intrafix device. CLINICAL RELEVANCE: Increased displacement at failure for the Intrafix group suggests slippage from sheath channel deployment. Concentric fixation may not occur when less than optimal tibial bone mineral density increases the difficulty of attaining precise sheath deployment and quadrupled hamstring tendon graft strand alignment.  相似文献   

3.
We used a standardized model of calf tibial bone to investigate the influence of screw diameter and length on interference fit fixation of a three-stranded semitendinosus tendon graft for anterior cruciate ligament reconstruction. Biodegradable poly-(L-lactide) interference screws with a diameter of 7, 8, and 9 mm and a length of 23 and 28 mm were used. We examined results in three groups of 10 specimens each: group 1, screw diameter equaled graft diameter and screw length was 23 mm; group 2, screw diameter equaled graft diameter plus 1 mm and screw length was 23 mm; group 3, screw diameter equaled graft diameter and screw length was 28 mm. The mean pull-out forces in groups 1, 2, and 3 were 367.2+/-78 N, 479.1+/-111.1 N, and 537.4+/-139.1 N, respectively. The force data from groups 2 and 3 were significantly higher than those from group 1. These results indicate that screw geometry has a significant influence on hamstring tendon interference fit fixation. Increasing screw length improves fixation strength more than oversizing the screw diameter. This is important, especially for increasing tibial fixation strength because the tibial graft fixation site has been considered to be the weak link of such a reconstruction.  相似文献   

4.
BACKGROUND: During the early postoperative period, the fixation of a hamstring graft to the bone tunnel is the primary factor in limiting rehabilitation. HYPOTHESIS: The initial fixation strength of a double cross pin fixation technique is comparable with the biodegradable interference screw fixation technique. STUDY DESIGN: Experimental laboratory study. METHODS: The authors examined the initial fixation strength of two 3.3-mm bioabsorbable pins compared to interference screws for hamstring grafts in bovine knees. RESULTS: Analysis of yield load, maximum load, and stiffness in the single-cycle loading test showed no statistically significant differences for cross pin and interference fixation (P <.05). For cross pins and interference screws, the mean displacement under 1000 cycles to 250 N was 5.07 ( +/- 1.9) mm and 4.81 ( +/- 2.5) mm, stiffness 252 ( +/- 78) N/mm and 289 ( +/- 148) N/mm. Only grafts fixed with cross pins survived 1000 cycles to 450 N. CONCLUSION: The initial fixation strength of the double cross pin technique is comparable to that of interference screw fixation with a stiffness comparable to that of the native ACL. Clinical Relevance: Hamstring graft fixation using two cross pins provides an alternative to bioabsorbable interference screw fixation.  相似文献   

5.
Graft-tunnel mismatch during arthroscopically assisted anterior cruciate ligament reconstruction using the central-third patellar tendon results in less than 20 mm of bone plug remaining in the tibial tunnel. We decided to evaluate the strength of bone plug fixation using interference fit screws that were less than 20 mm in length. Biomechanical testing was performed on 48 porcine hindquarters using 9-mm diameter interference fit screws that measured 12.5, 15, and 20 mm in length. No significant difference was noted between the different-length screws for insertion torque, divergence, stiffness, displacement, or load to failure. We believe, therefore, that comparable graft fixation can be achieved in the tibial tunnel using 9-mm diameter interference fit screws that are less than 20 mm long, and that these shorter screws may be useful in cases of graft-tunnel mismatch.  相似文献   

6.
The endoscopic single incision technique for anterior cruciate ligament (ACL) reconstruction with a femoral half-tunnel may lead to a graft/tunnel mismatch and subsequent protrusion of the block from the tibial tunnel. The typical tibial fixation with an interference screw is not possible in these cases. Fixation with staples in a bony groove inferior to the tunnel outlet can be used as an alternative technique. Current literature does not provide biomechanical data of either fixation technique in a human model. This study was performed to evaluate the primary biomechanical parameters of this technique compared with a standard interference screw fixation of the block. Fifty-five fresh-frozen relatively young (mean age 44 years) human cadaver knee joints were used. Grafts were harvested from the patellar tendon midportion with bone blocks of 25 mm length and 9 mm width. A 10-mm tibial tunnel was drilled from the anteromedial cortex to the center of the tibial insertion of the ACL. Three different sizes of interference screws (7 × 30, 9 × 20, 9 × 30 mm) were chosen as a standard control procedure (n = 40). For tibial bone-block fixation the graft was placed through the tunnel, and the screw was then inserted on the cancellous or the cortical surface, respectively. Fifteen knees were treated by staple fixation. A groove was created inferior to the tunnel outlet with a chisel. The bone block was fixed in this groove with two barbed stainless steel staples. Tensile testing in both groups was carried out under an axial load parallel to the tibial tunnel in a Zwick testing machine with a velocity of 1 mm/s. Dislocation of the graft and stiffness were calculated at 175 N load. Maximum load to failure using interference screws varied between 506 and 758 N. Load to failure using staples was 588 N. Dislocation of the graft ranged between 3.8 and 4.7 mm for interference screw fixation and was 4.7 mm for staples. Stiffness calculated at 175 N load was significantly higher in staple fixation. With either fixation technique, the recorded failure loads were sufficient to withstand the graft loads which are to be expected during the rehabilitation period. Staple fixation of the bone block outside of the tunnel resulted in a fixation strength comparable to interference screw fixation. Received: 2 September 1996 Accepted: 30 January 1997  相似文献   

7.
BACKGROUND: Tibial fixation of hamstring tendon grafts has been the weak link in anterior cruciate ligament reconstruction. HYPOTHESIS: Use of a central four-quadrant sleeve and screw provides superior fixation when compared with standard interference screw fixation. STUDY DESIGN: Controlled laboratory study. METHODS: In eight pairs of cadaveric knees each anterior cruciate ligament was reconstructed using either an interference screw or a central sleeve and screw on the tibial side. The specimens were then subjected to cyclic loading followed by a load-to-failure test. RESULTS: The load required to cause 1 and 2 mm of graft laxity, defined as the separation of the femur and the tibia at the points of graft fixation, was significantly greater with the sleeve and screw than with the interference screw (at 2 mm: sleeve and screw, 216.1 +/- 30.1 N; interference screw, 167.0 +/- 33.2 N). The force at initial slippage for each of the graft strands was significantly higher with use of the central sleeve and screw. CONCLUSIONS: The four-quadrant sleeve and screw device may provide greater surface area for healing of hamstring tendon grafts and allow equal tensioning of graft strands before fixation. These factors are associated with increased strength of fixation and reduced laxity of the graft after cyclic loading. Clinical Relevance: Use of the central four-quadrant sleeve and screw system offers increased strength of fixation in anterior cruciate ligament reconstruction with hamstring tendon graft.  相似文献   

8.
Initial strength of quadrupled hamstring tendon grafts fixed with titanium interference screws was assessed in 30 pairs of porcine tibiae. Bone tunnels were drilled with either compaction drilling (stepped routers) or conventional extraction drilling (cannulated drill bits). Fifteen pairs of specimens were subjected to a single-cycle load-to-failure test, while the rest underwent a cyclic-loading test to further assess the quality of the fixation. No significant difference between the two drilling techniques was found with regard to yield load, displacement at yield load, stiffness, or mode of failure. Porcine trabecular bone mineral density was determined using peripheral quantitative computed tomography and compared with that of young women and men at a site corresponding to that of the tibial bone drill hole of an anterior cruciate ligament reconstruction. There was a significant difference between the two species (210 +/- 45 mg/cm(3) in porcine tibial bone versus 129 +/- 30 mg/cm(3) in women and 134 +/- 34 mg/cm(3) in men), suggesting that porcine knee specimens may have limitations in studies of graft fixation in anterior cruciate ligament reconstruction. We found no difference between extraction and compaction drilling in initial fixation strength of a hamstring tendon graft for anterior cruciate ligament reconstruction using a porcine model.  相似文献   

9.
BACKGROUND: Compaction of the bone tunnel walls has been proposed to increase the fixation strength of soft tissue grafts fixed with an interference screw in anterior cruciate ligament reconstructions. HYPOTHESIS: Compaction drilling does not increase the initial fixation strength of the hamstring tendon graft in comparison with conventional extraction drilling. STUDY DESIGN: Randomized experimental study. METHODS: Initial fixation strength of quadrupled hamstring tendon grafts fixed with bioabsorbable interference screws was assessed in 22 pairs of human cadaveric tibiae. Bone tunnels were drilled with either a compaction drill or a conventional extraction drill. Specimens underwent a cyclic-loading test and the surviving specimens were then loaded to failure in a single-cycle load-to-failure test. Trabecular bone mineral density at the site corresponding to the actual site of the tibial bone tunnel was determined by using peripheral quantitative computed tomography. RESULTS: During the cyclic-loading test, no significant stiffness or displacement differences were observed between the two drilling techniques. Three specimens failed in the compaction-drilling group, whereas there were no failures in the extraction-drilling group. In the subsequent single-cycle load-to-failure test, no significant differences between the two drilling techniques were found with regard to displacement at yield load, stiffness, or mode of failure. There was no significant difference in trabecular bone mineral density between the two groups. CONCLUSIONS: Compaction drilling does not increase the initial fixation strength of the hamstring tendon graft compared with conventional extraction drilling.  相似文献   

10.
BACKGROUND: The literature provides little biomechanical data about femoral fixation of hamstring grafts in posterior cruciate ligament reconstruction. HYPOTHESIS: A hybrid fixation technique with use of an undersized screw has sufficient strength to provide secure fixation of posterior cruciate ligament grafts. Additional aperture fixation with a biodegradable interference screw can prevent graft damage that might be caused by an acute angle on the edge of the femoral tunnel. STUDY DESIGN: Controlled laboratory study. METHODS: In part 1, extracortical fixation of posterior cruciate ligament reconstructions with quadrupled porcine flexor digitorum grafts to simulate human hamstring grafts was compared with hybrid fixation methods using 6-, 7-, and 8-mm screws. Groups were tested in cycling loading with the load applied in line with the bone tunnel. In part 2, extracortical fixation was compared with hybrid fixation using a 1-mm undersized screw anterior and posterior to the graft. Structural properties and graft abrasion were evaluated after cyclic loading with the load applied at 90 degrees to the tunnel. In each group, 8 porcine knees were tested. RESULTS: In part 1, stiffness, maximum load, and yield load were significantly higher for hybrid fixation than for extracortical fixation. Hybrid fixation with an 8-mm screw resulted in higher yield load than with a 7-mm screw. In part 2, graft laceration was more pronounced in specimens with extracortical fixation than with hybrid fixation. Posterior screw placement was superior to the anterior position. CONCLUSION: For all parameters, hybrid fixation with an interference screw provided superior structural results. No relevant disadvantages of undersized screws could be found. Graft damage due to abrasion at the edge of the femoral bone tunnel was reduced by use of an interference screw. The posterior screw placement seems favorable. CLINICAL RELEVANCE: Hybrid fixation of hamstring grafts in posterior cruciate ligament reconstruction is superior to extracortical fixation alone with no relevant disadvantages of undersized screws. The results raise the suspicion of an acute angle effect of the femoral bone tunnel.  相似文献   

11.
The effect of dilation of the tibial tunnel on the strength of hamstring graft fixation using interference screws was evaluated. In all, 28 RCI screws were tested in male human tibia-hamstring constructs with tibial tunnels reamed or dilated to the respective size of the graft diameter. Dilation of the tibial tunnel failed to significantly enhance hamstring fixation. Grafts secured in dilated tunnels displayed an 11% greater resistance to the initiation of graft slippage (174+/-112 N) compared to their undilated controls (156+/-77 N, P=0.63). Dilation of the tibial tunnel increased the failure load by an average of 4%, independent of screw diameter (dilated specimens: 360+/-120 N, controls: 345+/-88 N, P=0.74). Biomechanical research on the effect of tibial tunnel dilation in hamstring fixation has not provided satisfactory evidence as to the benefits of this additional surgical step during anterior cruciate ligament (ACL) reconstruction.  相似文献   

12.

Purpose

In anterior cruciate ligament reconstruction with looped soft-tissue grafts, an interference screw is frequently used for tibial fixation. This study compared three alternatives thought to improve the initial mechanical properties of direct bioabsorbable interference screw fixation: suturing the graft to close the loop, adding a supplementary staple, or increasing the oversize of the screw diameter relative to the bone tunnel from 1 to 2 mm.

Methods

Twenty-eight porcine tibiae and porcine flexor digitorum profundus tendons were randomized into four testing groups: a base fixation using 10-mm-diameter screw with open-looped graft, base fixation supplemented by an extracortical staple, base fixation but closing the looped graft by suturing its ends, and base fixation but using an 11-mm screw. Graft and bone tunnel diameters were 9 mm in all specimens. Constructs were subjected to cyclic tensile load and finally pulled to failure to determine their structural properties.

Results

The main mode of failure in all groups was pull-out of tendon strands after slippage past the screw. The sutured graft group displayed significantly lower residual displacement (mean value reduction: 47–67 %) and higher yield load (mean value increase: 38–54 %) than any alternative tested. No other statistical differences were found.

Conclusions

Suturing a soft-tissue graft to form a closed loop enhanced the initial mechanical properties of tibial fixation with a bioabsorbable interference screw in anterior cruciate ligament reconstructions using a porcine model, and thus, this may be an efficient means to help in reducing post-operative laxity and early clinical failure. No mechanical improvement was observed for an open-looped tendon graft by adding an extracortical staple to supplement the screw fixation or by increasing the oversize of the screw to tunnel diameter from 1 to 2 mm.  相似文献   

13.
BACKGROUND: Interference screw fixation of the graft in anterior cruciate ligament reconstruction is considered the gold standard, but limited clinical experience suggests that transcondylar fixation is equally effective. PURPOSE: To compare transcondylar and interference screw fixation. STUDY DESIGN: Ex vivo biomechanical study. METHODS: Twenty pairs of unembalmed knees underwent anterior cruciate ligament reconstruction with patellar tendon autografts. In 1 knee of each pair, the bone plug was stabilized in the femoral tunnel with standard interference screws; in the other knee, transcondylar screws were used. Testing to failure occurred immediately or after 1000 cycles of sinusoidal loading (30 to 150 N) (20 paired reconstructions each). Fixation stiffness, strength, graft creep, displacement amplitude, and change in amplitude were measured and compared (repeated measures anaylsis of variance with Tukey test; P <.05). RESULTS: There was no significant difference in acute strength, maximum load within 3 mm, or stiffness between transcondylar fixation (410 +/- 164 N, 183 +/- 93 N, and 49.6 +/- 28 N/mm, respectively) and interference fixation (497 +/- 216 N, 206 +/- 115 N, and 61 +/- 37.8 N/mm, respectively). Similarly, there was no significant difference in cyclic strength, maximum load within 3 mm, or stiffness between transcondylar fixation (496 +/- 214 N, 357 +/- 82.9 N, and 110 +/- 27.4 N/mm, respectively) and interference fixation (552 +/- 233 N, 357 +/- 76.2 N, and 112 +/- 26.8 N/mm, respectively). Predominant modes of failure were bone plug pullout (transcondylar fixation) and tendon failure or bone plug fracture (interference fixation). CONCLUSIONS: Transcondylar screw fixation of the patellar tendon autograft into the femoral tunnel performed mechanically as well as interference screw fixation. CLINICAL RELEVANCE: The results suggest that transcondylar and interference screws provide similar fixation for anterior cruciate ligament reconstruction.  相似文献   

14.
Two femoral fixation techniques for quadruple hamstring tendon grafts were compared under cyclic loading with the patellar tendon: the rectangular inserted pin (TransFix) and biodegradable interference screw fixation of the quadruple tendon and titanium interference screw fixation of the middle third of the patellar tendon. Porcine specimens were mounted onto a tension load machine, and the tendon-fixation-femur-complex was tested for stiffness, displacement during 800 cycles of loading between 50 and 250 N and ultimate tension load. TransFix fixation showed the greatest stiffness at 183.6 N/mm ( P<0.05). The least displacement under cyclic loading was observed for the titanium interference screw followed by the TransFix and biodegradable interference screw ( P<0.01). The ultimate tension load was greatest for the TransFix fixation at 1303+/-282 N, followed by patellar tendon fixation with 763+/-103 N and the biodegradable interference screw fixation with 480+/-133 N ( P<0.001). To reduce initial elongation of the graft and displacement at the fixation site, preconditioning of both the tendon and tendon-fixation complex is especially important when using quadruple tendons. TransFix fixation provides better stability and greater stiffness and pull-out strength than the other techniques. This finding is of clinical relevance to surgeons of the anterior cruciate ligament.  相似文献   

15.
The purpose of this study was to determine whether bone mineral density of the host bone, measured using conventional dual photon absorptiometry techniques, and insertion torque can predict part of the ultimate failure strength of interference screw fixation of quadrupled hamstring tendon grafts. The semitendinosus and gracilis tendons were harvested from 10 human cadaveric knees, mean age 66.5 years (range, 53 to 81). The bone tunnel was sized within 0.5 mm of the graft. The graft was fixed with a biodegradable screw (7 x 25 mm for the femur, and 9 x 25 mm for the tibia) directly against the tendon and at the joint surfaces. Tibial fixation and femoral fixation were tested to failure using a materials testing system. Bone mineral density was measured in the metaphyseal region of the tibia and femur. The results of multiple regression analyses showed that both insertion torque and bone mineral density were related to the maximum load the graft withstood. These two variables explained 77.1% of the maximum load observed. We concluded that bone mineral density measurements of the host bone site are an important determinant of postoperative graft strength and thus have an important, but previously unrecognized, clinical role in establishing individual postsurgery rehabilitation protocols. Insertion torque in this study was a useful predictor of graft fixation strength.  相似文献   

16.
BACKGROUND: Female patients undergoing arthroscopic anterior cruciate ligament reconstruction with a hamstring tendon graft developed increased postoperative laxity compared to male and female patients who had reconstruction using a patellar tendon graft. This difference may be due to graft slippage in less dense female tibial bone. HYPOTHESIS: Reinforcement of tibial fixation of the hamstring tendon graft in women by supplementary methods may reduce laxity. STUDY DESIGN: Randomized controlled clinical trial; Level of evidence, 2. METHODS: Fifty-six female patients divided into 2 groups (standard tibial fixation with 7 x 25-mm metal interference screw versus metal interference screw with supplementary staple fixation) were followed for 2 years. RESULTS: After 2 years, the mean side-to-side difference using KT-1000 arthrometer manual maximum measurements was 1.8 mm (standard group) and 1.1 mm (staple group) (P=.05). The percentage of patients with a side-to-side difference of <3 mm did not differ significantly between the 2 groups (P=.66): 88.8% of the standard group versus 90.5% of the staple group. A grade 0 Lachman test result was present in 63% of the standard group and 86% of the staple group (P=.04). Kneeling pain was experienced by 7% of the standard group and 29% of the staple group (P=.05). CONCLUSIONS: Supplementary tibial fixation in female patients undergoing anterior cruciate ligament reconstruction with hamstring tendon graft in addition to a single-size screw significantly improves laxity measurements and clinical stability assessment 2 years after surgery. However, this improvement is at the cost of increased kneeling pain.  相似文献   

17.
For ACL reconstruction, interference screw can fix the graft in the bone tunnel closer to the articular surface. However, direct interference screw fixation has a possibility to damage the tendon graft at the time of screw insertion, and the bone–tendon contact area is limited within the tunnel. To avoid the damage to the tendon graft at the time of screw insertion and to increase the bone–tendon contact area, a free bone plug was interposed between screw and tendon graft (indirect interference screw fixation). The purpose of this study was to compare ultimate load strength and histological findings between two techniques in a rabbit model. Ultimate pull-out load tests and histological examinations were evaluated at time 0, 3 and 6 weeks. The ultimate failure load of indirect interference screw fixation was significantly higher than that of direct interference screw fixation immediately after surgery (P < 0.05). Histologically, the interface tissues between tendon graft and host bone were more organized and matured in indirect technique. These findings showed that indirect interference screw fixation for tendon graft increased fixation strength at the graft–bone interface, providing quicker graft–bone healing.  相似文献   

18.
We evaluated the initial bone-patellar tendon-bone graft fixation strength of bioabsorbable as compared with titanium interference screws in anterior cruciate ligament reconstruction using matched pairs of porcine knees. Ten pairs underwent single-cycle failure loading at a rate of 50 mm/min, and 10 pairs underwent cyclic loading at half-hertz frequency. The cyclic loading started with 100 load cycles between 50 and 150 N. We then progressively increased loads in 50-N increments after each set of 100 cycles. After 100 cycles at 850 N, the specimens were loaded to failure at a rate of 50 mm/min. In the single-cycle failure loading test, the mean ultimate failure loads (+/-SD) for the bioabsorbable (837 +/- 260 N) and titanium interference screws (863 +/- 192 N) were not significantly different, nor were the mean yield loads or the stiffness of the fixation. In the cyclic loading test, the yield loads were 605 +/- 142 N and 585 +/- 103 N for the bioabsorbable and titanium interference screws, respectively (no significant difference). Although there was no significant difference in the ultimate failure load, more bone block fractures were found in the grafts fixed with a titanium interference screw. Bioabsorbable interference screw fixation thus seems to provide a reasonable alternative to titanium screws.  相似文献   

19.

Purpose

Interference screw fixation of hamstring tendon grafts in bone has to overcome the challenges that tendons have a slippery surface and viscoelastically adapt under pressure. As the typical failure mode of the graft is to slip past the interference screw, it was hypothesized that the position and configuration of the graft end may be of influence on the fixation strength.

Methods

Different configurations of the graft ending and its effect to primary fixation with interference screws after viscoelastic adaptation were tested in six groups: I: graft and the screw inserted at the same depth, II/III: the graft overlaps the tip of the screw (interference screw of 28 and 19 mm in length, respectively), IV: strengthening of the graft ending with additional suture knots, V: Endopearl, respectively, and VI: effect of partial retraction of the screw after excessive insertion. In vitro tests were performed with fresh calf tendon grafts and interference screws in bone tunnels (fresh porcine distal femur) all of 8 mm in diameter.

Results

The relative position of the graft ending to the tip of the interference screw thereby was recognized as a significant factor on pullout forces. Further strengthening at the graft endings with additional suture knots or an Endopearl device could improve primary hold as well.

Conclusions

Better fixation strength is achieved if the tip of interference screw does not extend past the end of a tendon graft. Enforcement of the tendon end with sutures or an implant can further improve fixation.  相似文献   

20.
The purpose of this study is to evaluate the mechanical properties of a graft fixation using a small diameter soft tissue interference screw and analyze the factors affecting the fixation strength. Forty porcine knees were used. A bone tunnel, either 4.5 mm (n=40) or 5.0 mm (n=40) in diameter, was created in the bone block obtained from the proximal tibia or the distal femur. A patella–patellar tendon specimen with varied width was harvested, and the distal end of the patellar tendon was fixed within the bone tunnel using a small diameter soft tissue interference screw (4×15 mm). Then, the patella–patellar tendon-bone block complex was loaded until failure occurred and the maximum load was measured. As potential influential factors on the fixation strength, the insertion torque, bone mineral density of the bone block, and graft/tunnel cross-sectional area ratio (GTR) of each specimen were calculated. A significant correlation between the maximum failure load and the insertion torque was demonstrated. The quadratic regression analysis showed a statistically significant correlation between the failure load and the GTR. Optimal GTR for achieving high fixation strength was approximately 80%. When used in appropriate conditions, the mean failure load was 177 N for the 4.5 mm screw and 180 N for the 5 mm screw. The use of a small diameter interference screw for the fixation of a tendon graft to a bone is clinically feasible. Our research showed that the selection of appropriate fitting conditions is an important factor for optimizing the properties of the fixation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号