首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies have shown that Fischer 344 (F344) and Lewis (LEW) rats may differ with respect to their behavioural and neurochemical responses to several drugs of abuse, including amphetamines. Herein, we have examined whether such strain differences extend to a ring-substituted amphetamine, namely 3,4-methylenedioxymethamphetamine (MDMA, ecstasy), a recreationally-used drug endowed with euphoric, but also long-term neurotoxic effects. Beside strain differences in baseline locomotor activity (F344>LEW), it was found that the subcutaneous administration of 10 mg/kg, but not 5 mg/kg, MDMA increased locomotor activity in F344 rats only. On the other hand, such a treatment increased to similar extents extracellular dopamine (DA) levels in the nucleus accumbens of F344 and LEW rats, thus suggesting that genetic differences in MDMA locomotor effects are not accounted for by accumbal DA release.  相似文献   

2.
The mesolimbic dopamine (DA) pathway is critical in reward-mediated behavior. Water, sucrose, and drugs of abuse all increase DA in the nucleus accumbens septi (NAcc) in adult animals. Recently our laboratory has shown that cocaine and alcohol increase DA efflux in preadolescent animals. The present study used a natural reinforcer (i.e., water) at postnatal day 25 (PND 25) to determine the sensitivity and responsiveness of this pathway. Repeated pairing of a peppermint odor with water resulted in a behavioral odor preference and an odor-elicited increase in accumbal DA. Results show that this developing pathway is functional and responsive to conditioning using a natural reinforcer and that these behavioral and neurochemical responses can be conditioned to a previously novel environmental stimulus.  相似文献   

3.
The effects of delta 9-tetrahydrocannabinol (delta 9-THC) on the rise in intracellular Ca2+ concentrations ([Ca2+]i) after stimulation with 15 mM or 29 mM K+ in rat whole brain synaptosomes were examined. A fluorescent chelating agent, Rhod-2, was employed to monitor any alterations of K(+)-evoked [Ca2+]i. Pretreatment with 10(-10) M delta 9-THC for 3 min enhanced K(+)-evoked [Ca2+]i significantly, while 10(-9), 10(-8) or 5 x 10(-8) M delta 9-THC significantly inhibited the K(+)-evoked [Ca2+]i. These results suggest that delta 9-THC had a biphasic effect on the K(+)-evoked Ca2+ response in rat brain synaptosomes.  相似文献   

4.
The magnitude and duration of spontaneous and of potassium-stimulated dopamine release were electrochemically measured in striatum and nucleus accumbens of chloral hydrate-anesthetized rats following [D-Pen2-D-Pen5]enkephalin, a delta opioid receptor agonist, or [Tyr-D-Ala-MePhe-Gly-ol], a mu opioid receptor agonist, microinjected directly into the voltammetric recording sites. The data show that delta receptor activation potentiated potassium-stimulated dopamine efflux in striatum and in nucleus accumbens but had no effect on spontaneous dopamine release in either region, whereas mu receptor activation produced unreliable effects in both regions, either having no effect or inhibiting stimulated dopamine efflux without affecting basal levels of extracellular dopamine in either region. The data suggest that some delta opioid receptors in the caudate-putamen and in the nucleus accumbens presynaptically enhance impulse-dependent dopamine release from nigrostriatal and mesolimbic dopamine terminals.  相似文献   

5.
Individual variability in behavioural responses to stressors such as novelty and drugs of abuse is a well-known phenomenon in both animals and man. These individual differences are largely associated with differences in dopamine transmission in mesolimbic areas such as the nucleus accumbens. Apomorphine-susceptible (APO-SUS) rats and apomorphine-unsusceptible (APO-UNSUS) rats serve as a valid animal model for individual differences and these two types of rat differ in a number of behavioural, physiological, endocrinological and pharmacological parameters. In order to study the differences in the catecholaminergic network in the nucleus accumbens, possibly underlying at least some of the differences between the two types of rat, we quantified the extent of the tyrosine-hydroxylase immunoreactive (TH-IR) network and the number of TH-IR varicosities in subareas of the nucleus accumbens core and shell in naïve rats. This study shows that the nucleus accumbens of APO-SUS rats has a more extensive fibre network and more varicosities than the nucleus accumbens of APO-UNSUS rats, and that the subarea of the shell contains more varicosities than the subarea of the core. These data provide a basis for further studying the structural and neurochemical properties of the nucleus accumbens contributing to individual differences in response to stressors such as novelty and drugs of abuse.  相似文献   

6.
The effects of thyroidectomy (4 weeks) on dopamine (DA) and noradrenaline (NA) turnover rates were determined by means of regression analysis. The disappearance of catecholamine (CA) fluorescence (using quantitative histofluorimetry) after tyrosine hydroxylase inhibition (alpha-methyl-DL-p-tyrosine methyl ester) has been investigated in discrete hypothalamic and forebrain DA and NA nerve terminal systems of the male rat. A time-dependent monophasic CA fluorescence disappearance was observed in all CA nerve terminal systems of the sham-operated and thyroidectomized rats. In the thyroidectomized rat, DA turnover in the anterior nucleus accumbens and in the medial and lateral palisade zones of the median eminence (ME) was reduced while DA turnover in the posterior nucleus accumbens was increased as compared to control rats. Furthermore, NA turnover was increased in the paraventricular hypothalamic nucleus (PA) and reduced in the dorsomedial hypothalamic nucleus (DM) and in the 'border zone' (lateral hypothalamus). Radioimmunoassay of hormones in serum demonstrated marked increases in TSH levels and reduced concentrations of GH, prolactin, corticosterone, triiodothyronine and thyroxine. The reduced DA turnover in the external layer of the ME and the increased NA turnover in the PA may indicate an inhibitory dopaminergic mechanism in the ME and a facilitatory noradrenergic mechanism in the PA in the regulation of TSH secretion. These mechanisms seem to interact with thyroid hormones. The reduced NA turnover demonstrated in the DM and in the border zone may be related to the lowering of growth hormone levels and pulsatility caused by thyroidectomy. Finally, the DA nerve terminal systems in the anterior and posterior parts of the nucleus accumbens are differently regulated by changes in the brain-pituitary-thyroid axis.  相似文献   

7.
Rats shifted from 4% to 32% sucrose displayed successive negative contrast by initiating significantly fewer bouts of licking than control rats maintained on 4% sucrose. No significant increase in dopamine (DA) efflux in the nucleus accumbens (NAc) was observed during consumption of 4% sucrose by rats shifted from 32%. In contrast, consumption of 4% sucrose by control rats was accompanied by a significant increase in DA efflux in the NAc, which remained elevated 10 min postconsumption. These data are consistent with the hypothesis that DA efflux in the NAc reflects the current incentive valence of sucrose reward and its influence on initiation of individual bouts of sucrose consumption.  相似文献   

8.
Dopamine (DA) transmission in the medial prefrontal cortex (mPFC) and nucleus accumbens (NAc) is crucial for various cognitive processes. However, our understanding of the regulation of DA efflux by glutamatergic afferents to these areas is incomplete. Using microdialysis in freely moving rats, we provide evidence in the present study that brief stimulation (20 Hz, 10 s) of the ventral hippocampus potently increases DA efflux in the mPFC, NAc, and ventral tegmental area for 30-40 min. Subsequent experiments show that the stimulation-evoked increase in DA efflux in the mPFC depends on local activation of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)/kainate, but not N-methyl-D: -aspartate, receptors in the mPFC. Additionally, neural activity and ionotropic glutamate receptor activation in the ventral tegmental area are necessary for ventral hippocampal stimulation to increase mPFC DA efflux. Blocking neural activity or ionotropic glutamate receptors in the ventral tegmental area also attenuated the stimulation-evoked increase in DA efflux in the NAc. Evidence in support of a role for the mPFC in the stimulation-evoked increase in NAc DA was not obtained. Taken together, these observations highlight the important role of the ventral hippocampus in modulating forebrain DA efflux via separate neural circuits.  相似文献   

9.
The effects of the neuropeptide neurotensin and the typical neuroleptic haloperidol on dopamine efflux were compared in the posteromedial nucleus accumbens of the chloral hydrate-anesthetized rat using in vivo chronoamperometry. Both neurotensin and haloperidol administration elicited an immediate increase in dopamine efflux in the nucleus accumbens. Gamma-hydroxybutyric acid lactone, an agent known to block impulse flow in dopamine neurons, either prevented when given before neurotensin or reversed neurotensin-induced increases in accumbens dopamine efflux. Haloperidol-induced increases in accumbens dopamine efflux were similarly affected by gamma-hydroxybutyric acid lactone. The dopamine receptor agonist apomorphine reversed neurotensin- and haloperidol-induced increases in dopamine efflux. Amphetamine, administered during the peak dopamine stimulatory effects induced by neurotensin or haloperidol, resulted in increases above baseline which were significantly greater than the effects of amphetamine alone. These combined drug treatment effects on baseline dopamine efflux were additive, indicating that the effects of amphetamine were not potentiated by neurotensin or haloperidol pretreatments. These in vivo results suggest that neurotensin and haloperidol may augment dopamine efflux in the nucleus accumbens via common mechanisms of action which may involve activation of mesotelencephalic dopamine neuronal firing. The inability of neurotensin to block amphetamine-induced efflux in the nucleus accumbens further suggests that neurotensin blockade of amphetamine-elicited locomotor activity is mediated by an action of neurotensin postsynaptic to dopamine nerve terminals in the nucleus accumbens.  相似文献   

10.
The complex mesolimbic-mesocortical system involved with behavioral selection has been implicated in the control of ethanol self-administration. However, the nature of the interactions within this multiple-structured system in ethanol intake regulation remains unclear. Although the role of dopamine (DA) in the prefrontal cortex and the nucleus accumbens has been examined individually, the interaction of DA activity in both structures at the same time remains to be examined. Male, Long-Evans rats were initiated to self-administer ethanol in an operant situation using the sucrose-substitution procedure. Following initiation, bilateral cannula guides were located to allow microinjection in the medial prefrontal cortex (mPFC) and the core of the nucleus accumbens. The DA D2/D3 agonist quinpirole (10.0-microg dose in the prefrontal cortex; 4.0-microg dose in n. accumbens) and the D2 antagonist raclopride (0.05-microg dose in prefrontal cortex; 1.0-microg dose in the nucleus accumbens) were then tested in each site alone and in combination in both sites in each rat. Changes in total responding, ethanol intake, and the pattern of responding were analyzed. Single-site injections replicated most of our previous findings for these doses. Changes in single-site effects were found when dual-site injections were performed, with altered input from the prefrontal areas impacting the effects of accumbens injections. Based on these interactions, our hypothesis that the prefrontal area is involved with the onset and offset of drinking, while the nucleus accumbens is involved with maintaining the ongoing behavior, remains viable.  相似文献   

11.
Dihydroxyphenylacetic acid (DOPAC) and dopamine (DA) levels were estimated in the frontal cortex, the nucleus accumbens and the striatum of the rat after electrolytical lesion of the dorsal raphe nucleus. The efficiency of this lesion was tested by measuring the decline in serotonin (5-HT) levels in the striatum. 5-HT levels were reduced by 90% when compared to those of sham-operated rats 11 days after the lesion. As revealed both by the increase in DOPAC levels and in the DOPAC/DA ratio, the rate of DA utilization was markedly increased in the nucleus accumbens, slightly enhanced in the striatum and in contrast remained unaffected in the frontal cerebral cortex 4 days after the lesion. Changes in DOPAC levels in the nucleus accumbens were also seen 11 and 30 days after the lesion but they were less pronounced than those observed at 4 days. These results suggest that neurons originating from the dorsal raphe and projecting to the ventro-tegmental area are regulating the activity of the meso-nucleus accumbens dopaminergic neurons but not that of the meso-cortical dopaminergic neurons.  相似文献   

12.
The effects of the mu-receptor agonist fentanyl on extracellular levels of dopamine in rat nucleus accumbens were studied in awake animals by in vivo brain microdialysis. Fentanyl dose-dependently increased the levels of dopamine when given intravenously (microg/kg) or via a microdialysis probe placed into the ventral tegmental area or the nucleus accumbens (nmol). The effect of fentanyl given into the nucleus accumbens was blocked by systemic administration of the non-selective opioid receptor antagonist naloxone and by accumbens administration of D-Phe-Cys-Tyr-D-Trp-Om-Thr-Phe-Thr-NH2 (nmol), a mu-opioid receptor antagonist, and naltrindole (nmol), a non-selective delta-opioid receptor antagonist, in a dose-dependent manner. The delta2-opioid receptor antagonist, naltriben (nmol), also blocked the effects of fentanyl, whereas the delta1-opioid receptor antagonist, (E)-7-benzylidenenaltrexone (nmol), was ineffective. When marginally effective doses of D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Phe-Thr-NH2 and naltriben were given simultaneously, the effect of fentanyl was nearly fully blocked; the pretreatment itself had no effect. Administration of the mu-opioid receptor agonist [D-Ala2, N-Me-Phe4,Gly5-ol]-enkephalin (nmol), the delta1-opioid receptor agonist [D-Pen2,5]-enkephalin (nmol) or the delta2-opioid receptor agonist [D-Ala2,Glu4]-deltorphin (nmol) into the nucleus accumbens enhanced the amount of accumbal dopamine. This study provides evidence that not only activation of delta1- and delta2-opioid receptors, but also activation of mu-opioid receptors in the nucleus accumbens increases the release of accumbal dopamine in freely moving rats. We suggest that the effect of intra-accumbens administration of fentanyl upon accumbal release of dopamine is either due to the simultaneous activation of mu-opioid receptors and delta2-opioid receptors or due to activation of mu-opioid receptors that interact with delta2-opioid receptors in a complex manner.  相似文献   

13.
Extracellular concentrations of dopamine (DA) and its metabolites dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) were examined concurrently, using in vivo microdialysis, in the nucleus accumbens and dorsal striatum of sexually active male rats during tests of locomotor activity, exposure to a novel chamber, exposure to sex odors, the presentation of a sexually receptive female, and copulation. DA increased significantly in the nucleus accumbens when the males were presented with a sexually receptive female behind a screen and increased further during copulation. Although DA also increased significantly in the dorsal striatum during copulation, the magnitude of the effect was significantly lower than that observed in the nucleus accumbens. In contrast, forced locomotion on a rotating drum, exposure to a novel chamber, and exposure to sex odors did not increase DA significantly in either region, although both DOPAC and HVA increased significantly in both regions during the locomotion test. These results indicate that novelty or locomotor activity alone cannot account for the increased extracellular DA concentrations observed in the nucleus accumbens of male rats during the presentation of a sexually receptive female behind a screen, nor can they account for the increased DA concentrations observed in both the nucleus accumbens and dorsal striatum of male rats during copulation. The preferential increase in DA transmission in the nucleus accumbens, compared with that in the striatum, suggests that anticipatory and consummatory aspects of sexual activity may belong to a class of naturally occurring events with reward values that are mediated by DA release in the nucleus accumbens.  相似文献   

14.
Combinations of delta 9-tetrahydrocannabinol (delta 9-THC) and bacterial endotoxin were shown to be hyperadditively toxic for mice. A variety of purified lipopolysaccharide (LPS) preparations elicted enhanced mortality in combination with delta 9-THC. Escherichia coli O26:B6 LPS (Boivin preparation) at an essentially nonlethal dose of 2.5 mg/kg reduced the dose of delta 9-THC required to kill 50% of the treated mice from ca. 350 to 150 mg/kg. Inbred BALB, DBA, and C3H/HeCr mice, noninbred ICR mice, and hybrid CDF1 and BDF1 mice were hyperreactive to combinations of delta 9-THC and LPS. Moreover, a variety of heat-killed intestinal and gram-negative bacteria, live E. coli, and complexes of lipid A with a variety of proteins substituted for LPS in the synergistic toxicity of LPS and delta 9-THC. Extracts of marijuana also elicited hyperreactivity to LPS. The hyperadditive lethality of combinations of delta 9-THC and LPS was markedly less in mice rendered refractory to LPS or delta 9-THC by repeated administration of LPS or delta 9-THC, respectively.  相似文献   

15.
The effects of delta9-tetrahydrocannabinol (delta9-THC) on the immune response of murine cells sensitized in vitro was determined using a plaque-forming cell (PFC) assay. Splenic lymphocytes from mice injected with delta9-THC showed a depressed immunologic response when compared with cells from control animals which were identically sensitized in vitro with sheep erythrocytes (SRBC). The direct addition of delta9-THC to the culture media altered the immunological response as demonstrated by a reduction in the number of PFC.  相似文献   

16.
A single session of uncontrollable (inescapable tailshock, IS), but not controllable (escapable tailshock, ES), stress is known to selectively potentiate subsequent morphine-conditioned place preference in a dorsal raphe nucleus (DRN) serotonin (5-HT) dependent manner. Here, in vivo microdialysis is used to test the hypothesis that prior IS, but not ES, will potentiate morphine-induced dopamine (DA) efflux in the nucleus accumbens (NAc) shell and that this will occur by a pathway involving DRN 5-HT neurons. Male Sprague-Dawley rats were exposed to yoked IS, ES, or no stress. Twenty-four hours later, morphine (3 mg/kg s.c.) or saline was administered during microdialysis. As predicted, prior IS selectively potentiated morphine-induced DA, but not 5-HT, efflux in the NAc. This potentiation was due to morphine's action in the DRN because it was blocked by intra-DRN microinjection of the opioid antagonist naltrexone (10 microg). IS potentiation of morphine-induced DA efflux in the NAc was also dependent upon activation of 5-HT neurons in the DRN because it was blocked by intra-DRN microinjection of the 5-HT1A autoreceptor agonist 8-hydroxy-2-di-n-(propylamino)-tetralin (1 microg). No effect of IS was found on morphine-induced 5-HT or DA efflux in the ventral tegmental area. These results suggest a neural substrate for stress potentiation of morphine reward involving 5-HT neurotransmission in the DRN.  相似文献   

17.
Dopamine (DA) is a neurotransmitter that has been implicated in a wide variety of psychiatric disorders that include attention deficit-hyperactivity disorder (ADHD), schizophrenia, and drug abuse. Recently, we have been working with a mouse in which the gene for the DA transporter (DAT) has been disrupted. This mouse is hyperactive in the open field, displays an inability to inhibit ongoing behaviors, and is deficient on learning and memory tasks. Psychostimulants such as amphetamine and methylphenidate attenuate the hyperlocomotion of the mutants, but stimulate activity of the wild type (WT) controls. The objective of the present study is to examine the neural basis for the differential responses to psychostimulants in these mice. WT and DAT knockout (KO) animals were given vehicle or methylphenidate, amphetamine, or cocaine and brain sections were immunostained for Fos. In WT mice, methylphenidate induced Fos-like immunoreactivity (Fos-LI) in the mesostriatal and mesolimbocortical DA pathways that included the anterior olfactory nucleus, frontal association cortex, orbitofrontal cortex, cingulate cortex, caudate-putamen, globus pallidus, claustrum, lateral septum, nucleus accumbens, basolateral and central nuclei of the amygdala, bed nucleus of stria terminalis, subthalamic nucleus, substantia nigra, ventral tegmental area, and dorsal raphe. Additional areas of activation included the granular dentate gyrus, Edinger-Westphal nucleus, and periaqueductal gray. While the mutants showed little response in most of these same areas, the anterior olfactory nucleus, caudal caudate-putamen, lateral septum, basolateral and central nuclei of the amygdala, and bed nucleus of stria terminalis were activated. Amphetamine and cocaine produced similar changes to that for methylphenidate, except these psychostimulants also induced Fos-LI in the nucleus accumbens of the KO animals. Since the DAT gene is disrupted in the KO mouse, these findings suggest that dopaminergic mechanisms may mediate the WT responses, whereas non-dopaminergic systems predominate in the mutant. In the mutants, it appears that limbic areas and non-dopaminergic transmitter systems within these brain regions may mediate responses to psychostimulants. Inasmuch as the KO mouse may represent a useful animal model for ADHD and because psychostimulants such as cocaine are reinforcing to these animals, our results may provide some useful insights into the neural mechanisms-other than DA-that may contribute to the symptoms of ADHD and/or drug abuse in human patients.  相似文献   

18.
R. Wistar  Jr 《Immunology》1969,17(1):23-32
An immunoglobulin allotypic antigen has been described in the rat. This antigenic specificity, called RI-1, is present on the IgG and IgM of the DA strain and is recognized by antisera raised in the Lewis strain. The anti-DA rat allotypic antisera were capable of precipitating 125I-labelled DA rat IgG and of agglutinating sheep erythrocytes coated with sub-agglutinating amounts of DA rat anti-sheep erythrocyte antibody.

Inhibition studies with sub-units of DA rat IgG in the microprecipitin assay showed the RI-1 specificity to be on light chains but not on heavy chains of IgG.

  相似文献   

19.
Ahn S  Phillips AG 《Neuroscience》2003,116(1):295-305
Interactions of the central and basolateral nuclei of the amygdala with the mesocorticolimbic dopamine system are implicated in the acquisition and performance of conditioned responses for food reward. This study investigated whether dopamine transmission in the nucleus accumbens and the medial prefrontal cortex of the rat is influenced by the amygdala and if so, to assess the significance of the interaction in free feeding of a palatable food. To this end, we examined the effects of reverse-dialysis of the sodium channel blocker lidocaine into either the central or basolateral on dopamine efflux in the nucleus accumbens and the medial prefrontal cortex as determined by microdialysis and high-pressure liquid chromatography with electrochemical detection. The present results revealed for the first time that inactivation of the central decreased basal levels of dopamine efflux in the nucleus accumbens, but not in the medial prefrontal cortex. Furthermore, administration of lidocaine into the central significantly attenuated feeding-evoked increases in dopamine efflux in both terminal regions. These neurochemical effects were accompanied by feeding-related behaviours akin to the Klüver-Bucy syndrome. In contrast, inactivation of the basolateral affected neither food intake nor dopamine efflux in the nucleus accumbens, but triggered dramatic long-lasting oscillations in dopamine efflux in the medial prefrontal cortex, irrespective of whether food was presented or not. Overall, these findings indicate that the central and basolateral independently modulate dopamine transmission in both terminal regions of the mesocorticolimbic dopamine system. The central, in particular, and its influence on the dopamine system, may be involved in the regulation of food intake.  相似文献   

20.
The concentrations of dopamine (DA) and dihydroxyphenylacetic acid (DOPAC) were assayed in the striatum, nucleus accumbens and frontal cortex of rats following 2 hours of cold restraint. The concentration of DA was significantly decreased in both the striatum (-16%) and nucleus accumbens (-41%) relative to unstressed controls. The content of DOPAC was significantly increased in both striatum (+56%) and frontal cortex (+76%), but not in nucleus accumbens. The DOPAC/DA ratio was increased in all three regions, that in frontal cortex approaching three-fold. These results extend earlier findings of an activation by acute stressors of frontal cortex DA metabolism, but suggest an involvement of other DA systems as well. The finding of the greatest response in frontal cortex, and the previous observations that this was the only region to show significant changes, may be ascribed to the suggested lack of presynaptic autoreceptors in this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号