首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
目的研究眼睛蛇毒心脏毒素(Cardiotoxin,CTX)对心肌细胞的形态、收缩幅度和细胞内钙离子([Ca2+]i)的作用。方法应用荧光计量法(以Fura-2/AM为荧光染料)及光学成像系统来测定单个心肌细胞[Ca2+]i和收缩幅度。结果0.001~1μmol/L的CTX使心肌细胞由杆状变成圆形,药物的作用从第1分钟时开始,到第20分钟时趋于稳定。在电刺激存在的情况下,1μmol/L的CTX最初导致电诱导的[Ca2+]i和收缩幅度瞬间增加,接下来[Ca2+]i时程延长,最终细胞对电刺激不敏感、突然收缩、[Ca2+]i持续增高。在缺乏电刺激的情况下,1μmol/L的CTX可诱导Ca2+震荡波、持续性[Ca2+]i增高,这种作用与40mmol/L的KC l和10mmol/L咖啡因所引起的[Ca2+]i瞬间增加不同。结论CTX作用初期使[Ca2+]i增高,使细胞[Ca2+]i超载,同时伴随细胞形状的改变。  相似文献   

2.
运用Ca2+指示剂Fura-2作为细胞内钙离子的荧光探针,利用AR—CM—MIC阳离子测定系统,检测了分离的神经细胞内游离钙及其变化,并观测了DGAVP和Org2766对蛋白质合成抑制剂茴香霉素(ANI)引起细胞内钙离子浓度([Ca2+]i)变化的影响。结果表明茴香霉素可使[Ca2+]i显著升高,且有量效关系;DGAVP本身并不引起[Ca2+]i发生显著变化,但适当剂量的DGAVP可显著对抗一定剂量范围内ANI升高[Ca2+]i的作用,提示DGAVP对抗ANI的蛋白质合成抑制效应可能是通过拮抗ANI升高[Ca2+]i这一途径实现的,另一神经肽Org2766则可能不是通过这一机制发生作用。从细胞内Ca2+的角度看,这两种肽的作用机理显然是不同的。  相似文献   

3.
目的 研究马尾松花粉多糖PPM60-A及其硫酸酯化物SPPM60-A对大鼠动脉平滑肌细胞 [Ca2+]i调控及增殖的影响。方法 常规水提醇沉法制备马尾松花粉多糖,Sephacryl S-400HR色谱分离得PPM60-A,氯磺酸-吡啶法得硫酸酯化物SPPM60-A,酯化度为1.28。酶解法分离制备大鼠动脉平滑肌细胞,测定酯化前后多糖对其胞内 [Ca2+]i和细胞增殖的影响。结果 PPM60-A和SPPM60-A均可以降低 [Ca2+]i,抑制高K+和去甲肾上腺素(NE)诱导的钙离子升高,降低高K+引起的钙离子水平上升,对NE诱导的血管主动脉平滑肌细胞增殖具有显著的抑制作用。PPM60-A作用效果好于SPPM60-A。结论 PPM60-A及SPPM60-A均能抑制细胞外Ca2+内流,抑制血管平滑肌细胞增殖。  相似文献   

4.
探讨Ca2+/CaM/CaN信号通路在5-羟色胺 (5-HT) 诱导的大鼠肺动脉平滑肌细胞 (PASMCs) 增殖中的作用以及间尼索地平 (m-Nis) 对此的影响。采用细胞培养、噻唑蓝 (MTT) 比色检测、激光共聚焦显微镜及反转录聚合酶链反应 (RT-PCR) 等方法, 研究5-HT (1 μmol·L−1) 对大鼠PASMCs细胞增殖的影响以及m-Nis对此的抑制作用, 并通过检测m-Nis对5-HT诱导的大鼠PASMCs增殖中Ca2+/CaM/CaN通路的影响深入探讨其作用机制。结果显示, 5-HT (1 μmol·L−1) 可明显诱导大鼠PASMCs增殖 (P < 0.01), m-Nis对此有明显的抑制作用, 并呈现一定的浓度依赖性 (P < 0.05或P < 0.01); 另外, m-Nis还明显抑制了5-HT引起的[Ca2+]i的升高 (P < 0.01)、CaM和CaN mRNA的表达以及CaN活性的升高 (P < 0.05或P < 0.01)。结果表明, Ca2+/CaM/CaN信号通路在5-HT诱导的大鼠PASMCs增殖中起重要作用, m-Nis抗5-HT诱导的增殖作用可能与抑制[Ca2+]i增高从而阻断了Ca2+/CaM/CaN信号通路有关。  相似文献   

5.
观察毒毛旋花子苷元(strophanthidin, Str)对分离豚鼠心室肌细胞内游离钙浓度([Ca2+i)的影响。酶解分离豚鼠心室肌细胞, 用Fluo 3-AM负载, 激光共聚焦显微镜法测定单个豚鼠心室肌细胞[Ca2+i的荧光密度。Str可浓度依赖性地升高[Ca2+i, Str (10 μmol·L-1)在[Ca2+i升高达峰值时, 可使细胞挛缩, 而Str (1和10 nmol·L-1)对细胞形态无影响。TTX、 尼索地平或升高细胞外钙可影响Str (1和100 nmol·L-1)对[Ca2+i的升高作用,而对Str (10 μmol·L-1)无明显影响。在外液中加入ryanodine或去除细胞外钙, 则3个检测浓度的Str升高[Ca2+i作用均被明显抑制。在无K+、 无Na+液中, 10 μmol·L-1 Str升高[Ca2+i的作用减弱, 而Str (1和100 nmol·L-1)升高[Ca2+i的作用无明显影响。加入TTX、 尼索地平或增加细胞外的钙离子浓度, 则3个检测浓度Str的作用均受到影响。提示低浓度Str对[Ca2+i的升高作用与抑制Na+、K+-ATP酶活性无关, 而与促进L-型钙通道和TTX敏感性钠通道的“slip-mode”钙电导有关; 高浓度Str升高[Ca2+i的作用则是抑制Na+、K+-ATP酶的结果。此外, Str对[Ca2+i的升高作用还与直接作用于ryanodine受体促进内钙释放有关。  相似文献   

6.
孙敏  樊宏伟  马宏宇  朱荃 《药学学报》2007,42(4):381-385
胡黄连总苷(total glucosides of Picrorhiza scrophulariiflora,TGP)是具有抗氧化作用的活性组分。由于氧化应激在糖尿病肾病发病中起关键作用,因此本研究考察了TGP对高糖培养下系膜细胞病变和氧化应激损伤的影响。通过高糖(25 mmol·L-1)刺激3周造成糖尿病系膜细胞损伤模型,分别以荧光素探针DCFH-DA,Rh123和Fluo-3/AM负载细胞,流式细胞仪法检测细胞内活性氧(ROS)、线粒体膜电位(MMP)和[Ca2+i,观察TGP对高糖引起系膜细胞肥大、细胞外基质分泌增加的保护作用。结果表明,高糖培养组系膜细胞肥大,胶原IV的分泌增加,细胞内ROS升高,MMP降低,[Ca2+i升高,TGP能明显改善高糖诱导的系膜细胞肥大和降低胶原IV的分泌,降低细胞内ROS含量,提高MMP的水平和降低[Ca2+i。因此TGP可以保护高糖诱导的肾小球系膜细胞氧化应激损伤。  相似文献   

7.
以Fura-2/AM为细胞内钙离子的荧光指示剂,用AR-CM-MIC阳离子测定系统,直接测定了体外培养的新生大鼠神经细胞内游离钙([Ca2+]i)值,并观察了小檗碱(Ber)的影响。结果表明,Ber对神经细胞静息[Ca2+]i无明显影响,Ber1~100μmol·L-1能剂量依赖地抑制去甲肾上腺素和H2O2引起的[Ca2+]i升高,其IC50分别为39.9和17.9μmol·L-1。高剂量Ber(10~100μmol·L-1)能抑制高K+引起的[Ca2+]i升高。姐果提示,Ber对去甲肾上腺素,高K+及H2O2引起的[Ca2+]i升高的抑制作用可能是其抗脑缺血作用机制之一。  相似文献   

8.
The effect of 1-[β-[3-(4-methoxyphenyl)pro- poxy]-4-methoxyphenethyl]-1H-imidazole hydrochloride (SKF 96365) on Ca2+ signaling in Madin Darby canine kidney (MDCK) cells was examined. SKF 96365 at 25–100 μM evoked a robust [Ca2+]i transient in a dose-dependent manner, measured by fura-2 fluorimetry. A concentration of 10 μM SKF 96365 did not have an effect. The transient consisted of a slow rise, a gradual decay, and a sustained plateau in physiological Ca2+ medium. Removal of extracellular Ca2+ reduced the Ca2+ signals evoked by 50–100 μM SKF 96365 by nearly half in the area under the curve, suggesting that SKF 96365 induced intracellular Ca2+ release and also extracellular Ca2+ influx. A concentration of 100 μM SKF 96365 caused significant Mn2+ quench of fura-2 fluorescence, which was partly inhibited by La3+ (1 mM) or Gd3+ (0.1 mM), indicating that the SKF 96365-induced Ca2+ influx had two components: one is sensitive to La3+ (1 mM) or Gd3+ (0.1 mM), the other is not. The internal Ca2+ source for the SKF 96365-induced [Ca2+]i transient was the endoplasmic reticulum Ca2+ store because, pretreatment with thapsigargin and cyclopiazonic acid, two inhibitors of the endoplasmic reticulum Ca2+ pump nearly abolished the SKF 96365-induced [Ca2+]i increase in Ca2+-free medium. In contrast, pretreatment with 100 μM SKF 96365 only partly depleted the thapsigargin-sensitive Ca2+ store. Addition of 10 mM Ca2+ induced a significant [Ca2+]i increase after prior incubation with 100 μM SKF 96365 in Ca2+-free medium, demonstrating that SKF 96365 induced capacitative Ca2+ entry. This capacitative Ca2+ entry was about 40% of that induced by 1 μM thapsigargin. Additional to inducing its own capacitative Ca2+ entry, 100 μM SKF 96365 partly inhibited thapsigargin- or uridine trisphos-phate (UTP)-induced capacitative Ca2+ entry. We also investigated the mechanisms underlying the decay of the SKF 96365-induced [Ca2+]i transient. Inhibition of the plasma membrane Ca2+ pump with La3+ or Gd3+, or lowering extracellular Na+ level to 0.35 mM, significantly increased the SKF 96365-induced [Ca2+]i transient. In contrast, the mitochondrial uncoupler carbonylcyanide m-chlorophenylhydrazone had little effect. In Ca2+-free medium, the thapsigargin-induced [Ca2+]i increase was greatly reduced by pretreatment with SKF 96365. Collectively, we have found that besides its well-known inhibitory action on capacitative Ca2+ entry in many cell types, in MDCK cells SKF 96365 exerted multiple and complex effects on Ca2+ signaling. It induced a considerable increase in [Ca2+]i by releasing Ca2+ from the endoplasmic reticulum store followed by capacitative Ca2+ entry. It also caused a direct Ca2+ entry. The decay of the SKF 96365 response was significantly governed by efflux via the plasma membrane Ca2+ pump or Na+/Ca2+ exchange. Sequestration by mitochondria or the endoplasmic reticulum played a minor role. We caution use of SKF 96365 as an inhibitor of capacitative Ca2+ entry. Received: 21 September 1998 / Accepted: 2 December 1998  相似文献   

9.
阿米洛利对大鼠压力超负荷性心肌肥厚的抑制作用   总被引:1,自引:0,他引:1  
目的 观察钠氢交换体(NHE)抑制剂阿米洛利(Ami)对压力超负荷左室肥厚(LVH)大鼠心功能、心肌细胞内游离钙浓度([Ca2+]i)及心肌细胞膜Na+ 、K+-ATP酶活性的影响。方法 ①同步记录离体工作心脏LVSP、LVEDP、±dp/dtmax及T值;②测定Fura-2/A负载后的单个心室肌细胞的[Ca2+]i;③光电比  相似文献   

10.
前胡丙素对培养大鼠心肌细胞内游离Ca2+的影响   总被引:2,自引:1,他引:1  
吴欣  石成璋  吴晓冬 《药学学报》1993,28(10):728-731
用Fura-2/AM技术直接观察前胡丙素(Pra-C)对培养大鼠心室肌细胞内游离钙的影响。结果显示Pra-C浓度为0.1~1.0μmol·L-1可明显抑制CaCl2,高K+和Bay K 8644引起[Ca2+]i增加,并且有剂量—效应关系,对ouabain引起的[Ca2+]i增加无明显作用。结果提示Pra-C降低心肌细胞[Ca2+]i的作用与抑制电压依赖性钙通道有关。  相似文献   

11.
Context: Previous in vitro studies have demonstrated that emodin (1,3,8-trihydroxy-6-methyl-anthraquinone), an anthraquinone derivative from the rhizome of Rheum palmatum L., can inhibit the activation of P2X7 receptors (P2X7R) as a potential antagonist. However, the effects of emodin on P2X7R-related inflammatory processes remain unclear.

Objective: This study aimed to investigate the effects of emodin on different inflammation responses of macrophages induced by ATP, the natural ligand of P2X7R.

Materials and methods: Rat peritoneal macrophages were treated with millimolar ATP and emodin (0.1, 0.3,?1,?3,?10?µM) or brilliant blue G (BBG, 0.1,?1,?10?µM). Cytosolic Ca2+ concentration ([Ca2+]c) was detected by fluorescent Ca2+ imaging. Interleukin-1β (IL-1β) release was measured by rat IL-1β ELISA kits. Reactive oxygen species (ROS) generation was examined by dihydroethidium (DHE) fluorescent staining. Phagocytic activity was tested by neutral red uptake assay.

Results: We found that the [Ca2+]c increase evoked by ATP (5?mM) was inhibited by emodin, in a dose-dependent manner with IC50 of 0.5?μM. Furthermore, emodin reduced the IL-1β release induced by ATP (2?mM) in lipopolysaccharide (LPS)-activated macrophages, with an IC50 of 1.6?μM. Emodin also strongly suppressed the ROS production and phagocytosis attenuation triggered by ATP (1?mM), with IC50 values of 1?μM and 0.7?μM, respectively. Besides, BBG, a specific antagonist of P2X7R, exhibited similar suppressive effects on these inflammation responses.

Conclusion: These results showed the inhibitory effects of emodin on ATP-induced [Ca2+]c increase, IL-1β release, ROS production and phagocytosis attenuation in rat peritoneal macrophages, by inhibiting the activation of P2X7R.  相似文献   

12.
High concentrations of ATP induce membrane blebbing. However, the underlying mechanism involved in epithelial cells remains unclear. In this study, we investigated the role of the P2X7 receptor (P2X7R) in membrane blebbing using Par C5 cells. We stimulated the cells with 5 mM of ATP for 1~2 hrs and found the characteristics of membrane blebbing, a hallmark of apoptotic cell death. In addition, 500 µM Bz-ATP, a specific P2X7R agonist, induced membrane blebbing. However, 300 µM of Ox-ATP, a P2X7R antagonist, inhibited ATP-induced membrane blebbing, suggesting that ATP-induced membrane blebbing is mediated by P2X7R. We found that ATP-induced membrane blebbing was mediated by ROCK I activation and MLC phosphorylation, but not by caspase-3. Five mM of ATP evoked a biphasic [Ca2+]i response; a transient [Ca2+]i peak and sustained [Ca2+]i increase secondary to ATP-stimulated Ca2+ influx. These results suggest that P2X7R plays a role in membrane blebbing of the salivary gland epithelial cells.  相似文献   

13.
Extracellular ATP is a potent signaling factor that modulates a variety of cellular functions through the activation of P2 purinergic receptors. Extracellular ATP at higher concentrations exerts cytostatic as well as cytotoxic effects in a variety of cell systems, the mechanism of which is not fully understood. In this study, we used cultured human embryonic kidney (HEK) cells stably transfected with human P2X(7) receptors (HEK-P2X(7)) to investigate the mechanism of ATP-induced cell death. The cytotoxic effects of ATP in HEK-P2X(7) cells were dose- and time-dependent, whereas ADP, AMP, and UTP had no effect. ATP treatment induced a significant increase in apoptotic HEK-P2X(7) cells as ascertained by the terminal deoxynucleotidyl transferase dUTP nick-end labeling technique and flow cytometry. An ATP-induced decrease in the pro-apoptotic bax gene expression was detected by apoptosis-related cDNA microarray analysis, which correlated with a decrease of Bax protein expression. Western blot analysis revealed that ATP treatment resulted in the processing of pro-caspase 3 to its active form and cleavage of the nuclear enzyme, poly(ADP-ribose) polymerase (PARP). Both ATP-induced molecular alterations in HEK-P2X(7) cells (i.e., decrease of Bax expression and increase of PARP cleavage) were blocked by the purinergic P2X(7) receptor antagonist oxidized ATP. In conclusion, we demonstrated the importance of the P2X(7) receptor in ATP induced cell death of HEK-P2X(7) cells, which seems to be independent of bax expression; however, the activation of caspases is required.  相似文献   

14.
BackgroundStrong P2X7 receptor (P2X7R) activation causes Ca2+ overload and consequent cell death. We previously showed that depletion of Ca2+ stores and endoplasmic reticulum (ER) stress in differentiated NG108-15 neuronal cells contributed to P2X7R-mediated cytotoxicity. In this work, we assessed whether taurine (2-aminoethanesulfonic acid) could prevent this P2X7R-mediated cytotoxicity in this neuronal cell line.MethodsCytotoxicity markers were assessed by MTT assay and Western blotting. Cytosolic Ca2+ and mitochondrial Ca2+ concentrations were measured microfluorimetrically using fura-2 and rhod-2, respectively. Intracellular reactive oxygen species (ROS) production was assayed by the indicator 2′,7′-dichlorodihydrofluorescein diacetate.ResultsSelective P2X7R agonist BzATP treatment causes neuronal cell death by causing cytosolic Ca2+ overload, depletion of Ca2+ stores, endoplasmic reticulum (ER) stress, and caspase-3 activation (cleaved caspase 3). Remarkably, taurine (10 mM) pretreatment could prevent P2X7R-mediated neuronal cell death by blocking BzATP-mediated ER stress as determined by phosphorylated eukaryotic translation initiation factor 2α (peIF2α) and C/EBP-homologous protein (CHOP). However, taurine did not block BzATP-induced Ca2+ overload and depletion of ER Ca2+ stores. Interestingly, P2X7R activation did not result in mitochondrial Ca2+ overload, nor did it affect mitochondrial membrane potential. BzATP-induced generation of intracellular reactive oxygen species (ROS) was prevented by taurine.ConclusionsThe neuroprotective effect by taurine is attributed to the suppression of P2X7R-mediated ER stress and ROS formation.  相似文献   

15.
Flavonoids have an ability to suppress various ion channels. We determined whether one of flavonoids, cyanidin-3-glucoside, affects adenosine 5''-triphosphate (ATP)-induced calcium signaling using digital imaging methods for intracellular free Ca2+ concentration ([Ca2+]i), reactive oxygen species (ROS) and mitochondrial membrane potential in PC12 cells. Treatment with ATP (100µM) for 90 sec induced [Ca2+]i increases in PC12 cells. Pretreatment with cyanidin-3-glucoside (1µ g/ml to 100µg/ml) for 30 min inhibited the ATP-induced [Ca2+]i increases in a concentration-dependent manner (IC50=15.3µg/ml). Pretreatment with cyanidin-3-glucoside (15µg/ml) for 30 min significantly inhibited the ATP-induced [Ca2+]i responses following removal of extracellular Ca2+ or depletion of intracellular [Ca2+]i stores. Cyanidin-3-glucoside also significantly inhibited the relatively specific P2X2 receptor agonist 2-MeSATP-induced [Ca2+]i responses. Cyanidin-3-glucoside significantly inhibited the thapsigargin or ATP-induced store-operated calcium entry. Cyanidin-3-glucoside significantly inhibited the ATP-induced [Ca2+]i responses in the presence of nimodipine and ω-conotoxin. Cyanidin-3-glucoside also significantly inhibited KCl (50 mM)-induced [Ca2+]i increases. Cyanidin-3-glucoside significantly inhibited ATP-induced mitochondrial depolarization. The intracellular Ca2+ chelator BAPTA-AM or the mitochondrial Ca2+ uniporter inhibitor RU360 blocked the ATP-induced mitochondrial depolarization in the presence of cyanidin-3-glucoside. Cyanidin-3-glucoside blocked ATP-induced formation of ROS. BAPTA-AM further decreased the formation of ROS in the presence of cyanidin-3-glucoside. All these results suggest that cyanidin-3-glucoside inhibits ATP-induced calcium signaling in PC12 cells by inhibiting multiple pathways which are the influx of extracellular Ca2+ through the nimodipine and ω-conotoxin-sensitive and -insensitive pathways and the release of Ca2+ from intracellular stores. In addition, cyanidin-3-glucoside inhibits ATP-induced formation of ROS by inhibiting Ca2+-induced mitochondrial depolarization.  相似文献   

16.

Background and Purpose

The P2X7 receptor is an ATP-gated ion channel predominantly expressed in immune cells and plays a key role in inflammatory processes. Ginseng is a well-known Chinese herb with both pro- and anti-inflammatory properties and many of its actions have been ascribed to constituent ginsenosides. We screened a number of ginsenoside compounds for pharmacological activity at P2X7 receptors, that might contribute to the reported immunomodulatory actions of ginseng.

Experimental Approach

We used several assays to measure responses of P2X7 receptors, ATP-mediated dye uptake, intracellular calcium measurement and whole-cell patch-clamp recordings. HEK-293 cells stably expressing human P2X7 receptors were used in addition to mouse macrophages endogenously expressing P2X7 receptors.

Key Results

Four ginsenosides of the protopanaxdiol series, Rb1, Rh2, Rd and the metabolite compound K (CK) potentiated the dye uptake responses of P2X7 receptors, whereas other ginsenosides tested were ineffective (1–10 μM). The potentiation was rapid in onset, required a threshold concentration of ATP (<50 μM) and had an EC50 of 1.08 μM. CK markedly enhanced ATP-activated P2X7 currents, probably via an extracellular site of action. One of the consequences of this potentiation effect is a sustained rise in intracellular Ca2+ that could account for the decrease in cell viability in mouse macrophages after a combination of 500 μM ATP and 10 μM CK that are non-toxic when applied alone.

Conclusions and Implications

This study identifies selected ginsenosides as novel potent allosteric modulators of P2X7 channels that may account for some of the reported immune modulatory actions of protopanaxdiol ginsenosides in vivo.  相似文献   

17.

BACKGROUND AND PURPOSE

The two longest C-termini of the purinergic P2X receptors occur in the P2X2 and P2X7 receptors and are thought to interact with multiple cytoplasmic proteins, among which are members of the cytoskeleton, including microtubules. In this work we asked whether disrupting the microtubule cytoskeleton might affect the functions of these receptors.

EXPERIMENTAL APPROACH

Functions of heterologously expressed P2X2 and P2X7 receptors were evaluated with electrophysiology and dye uptake following ATP application. Permeabilization and secretion of pro-inflammatory agents were quantified from fresh or cultured peritoneal mouse macrophages, treated in vitro or in vivo with colchicine.

KEY RESULTS

Disrupting the microtubule network with colchicine did not affect currents generated by ATP in P2X2 and P2X7 receptor-expressing cells but inhibited uptake of the dye Yo-Pro-1 in Xenopus oocytes and HEK293 cells expressing these channels. Peritoneal mouse macrophages showed less ATP-induced permeabilization to ethidium bromide in the presence of colchicine, and less reactive oxygen species (ROS) formation, nitric oxide (NO) and interleukin (IL)-1β release. Colchicine treatment did not affect ATP-evoked currents in macrophages. Finally, in vivo assays with mice inoculated with lipopolysaccharide and ATP showed diminished ROS, IL-1β, interferon-γ and NO production after colchicine treatment.

CONCLUSIONS AND IMPLICATIONS

Colchicine has known anti-inflammatory actions and is used to treat several conditions involving innate immunity, including gout and familial Mediterranean fever. Here we propose a new mechanism of action – inhibition of pore formation induced by activation of P2X receptors – which could explain some of the anti-inflammatory effects of colchicine.

LINKED ARTICLE

This article is commented on by Pelegrín, pp. 908–911 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2011.01325.x  相似文献   

18.
Butyl benzyl phthalate (BBP), an endocrine disruptor present in the environment, exerts its genomic effects via intracellular steroid receptors and elicits non-genomic effects by interfering with membrane ion-channel receptors. We previously found that BBP blocks the calcium signaling coupled with P2X receptors in PC12 cells (Liu & Chen, 2006). Osteoblast P2X receptors were recently reported to play a role in cell proliferation and bone remodeling. In this present study, the effects of BBP on ATP-induced responses were investigated in human osteosarcoma HOS cells. These receptors mRNA had been detected, named P2X4, P2X7, P2Y2, P2Y4, P2Y5, P2Y9, and P2Y11, in human osteosarcoma HOS cells by RT-PCR. The enhancement of cell proliferation and the decrease of cytoviability had both been shown to be coupled to stimulation via different concentrations of ATP. BBP suppressed the ATP-induced calcium influx (mainly coupled with P2X) and cell proliferation but not the ATP-induced intracellular calcium release (mainly coupled with P2Y) and cytotoxicity in human osteosarcoma HOS cells. Suramin, a common P2 receptor's antagonist, blocked the ATP-induced calcium signaling, cell proliferation, and cytotoxicity. We suggest that P2X is mainly responsible for cell proliferation, and P2Y might be partially responsible for the observed cytotoxicity. BBP suppressed the calcium signaling coupled with P2X, suppressing cell proliferation. Since the importance of P2X receptors during bone metastasis has recently become apparent, the possible toxic risk of environmental BBP during bone remodeling is a public problem of concern.  相似文献   

19.
Macrophages express several P2X and P2Y nucleotide receptors and display the phenomenon of ATP-induced P2X7-dependent membrane permeabilization, which occurs through a poorly understood mechanism. Several P2 receptors are known to be coupled to the activation of mitogen-activated protein kinases (MAPKs) and Ca2+ signaling. Here, we use macrophages to investigate the phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) by nucleotides and the involvement of MAPKs and intracellular Ca2+ concentration in ATP-induced membrane permeabilization. Short-term (5 min) pre-exposure to oxidized ATP (oATP), a P2X7 antagonist that does not inhibit P2X7-associated inward currents or membrane permeabilization, inhibits the activation of ERK1/2 by ATP, ADP, the P2X7 agonist 2'-3'-O-(4-benzoylbenzoyl)-ATP (BzATP), but not by UTP and UDP. We conclude that macrophages display several P2Y receptors coupled to the ERK1/2 pathway and that oATP antagonizes the action of purine nucleotides, possibly binding to P2X7 and/or other purine-binding P2Y receptors. We also show that BzATP and ATP activate ERK1/2 by two different pathways since ERK1/2 activation by BzATP, but not by ATP, is blocked by the tryrosine kinase inhibitor, genistein, and the Src protein kinase inhibitor, tyrphostin. However, the activation of ERK1/2 by ATP is blocked by the protein kinase C (PKC) inhibitor, chelerythrine chloride. Under the same conditions, membrane permeabilization is not blocked by genistein, tyrphostin, or chelerythrine chloride, indicating that tyrosine kinase, Src protein kinase, and PKC are not required for pore opening. Membrane permeabilization is independent of ERK1/2 activation since chelerythrine, or short-term exposure to oATP or PD98059, efficiently block ERK1/2 activation without inhibiting membrane permeabilization. In addition, membrane permeabilization is not inhibited by SB203580 and SB202190, two inhibitors of p38 MAPK, nor by intracellular BAPTA, which blocks ATP-induced Ca2+ signals. These results suggest that multiple P2 receptors lead to ERK1/2 activation, that ligation of the same receptors by agonists with different affinities can lead to differential stimulation of separate pathways, and that MAPKs and intracellular Ca2+ fluxes are independent of P2X7-associated pore formation.  相似文献   

20.
  1. The effect of adenosine 5′-triphosphate (ATP) on glutamatergic synaptic transmission in hippocampus was examined by an indicator of intracellular Ca2+ oscillations. These oscillations were postsynaptic responses by glutamate released from presynaptic sites. ATP completely inhibited the oscillations in a concentration-dependent manner.
  2. The ATP-induced inhibition was mediated via P2-purinoceptors since ATP exhibited the inhibitory action even in the presence of P1-purinoceptor antagonists. Also non-hydrolysable ATP analogues and uridine 5′-triphosphate (UTP) inhibited the oscillation.
  3. The rank order of agonist potency of ATP analogues for inhibition of the Ca2+ oscillation was as follows: 2-methyl-thio-adenosine 5′-triphosphate⩾ATP>adenosine 5′-O-(3-thiotriphosphate)>UTP>α,β-methylene-adenosine 5′-triphosphate. These inhibitory effects were insensitive to suramin. Judging from this rank order of potency, the inhibitory P2-purinoceptor could be assigned to a subclass of GTP-binding protein coupled-type receptors.
  4. The site of action of ATP was thought to be presynaptic since ATP did not affect the postsynaptic Ca2+ responses by glutamate. These results suggest the existence of a presynaptic inhibitory P2-receptor that inhibits glutamate release in the hippocampus.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号