首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
To investigate the activity of DW286, a new fluoronaphthyridone, the quinolone resistance determining regions (QRDRs) of gyrA, gyrB, grlA and grlB genes in 64 Staphylococcus aureus clinical isolates were analyzed and the MICs of DW286 and comparator quinolones determined. Double and triple mutants in gyrA and grlA were resistant to ciprofloxacin, sparfloxacin, trovafloxacin and gemifloxacin but susceptible to DW286 (MIC 0.25-0.5 mg/l). The fourth alteration, Ser85Pro of GyrA was required to make a strain resistant to DW286 (MIC 4-32 mg/l). For a strain with the mutations at GyrA Ser84Leu and GrlA Ser80Phe, the MBC of DW286 was two-fold higher than its corresponding MIC, in contrast to ciprofloxacin which was not bactericidal.  相似文献   

2.
The qnr genes are transferable genes that confer low-level quinolone resistance by protection of topoisomerase. The occurrence of mutations in DNA gyrase (gyrA, gyrB) and topoisomerase IV (parC, parE) genes in strains harbouring qnr was investigated in 28 qnrA-positive clinical isolates, among which 7 strains also harboured qnrS. Topoisomerase mutations were found in 25 (89%) of the 28 strains, with at least two mutations (gyrA and parC) in 13 strains and one mutation in 12 strains. Isolates of the Enterobacter cloacae complex were compared with reference strains of the new Enterobacter species. gyrA mutations were found at position 83 (Ser or Thr for Ile, Tyr, Leu or Phe depending on the species), and new gyrB mutations were described (S463A, S464F). qnrA had an additive effect of a 10-fold increase in the minimum inhibitory concentration (MIC) whatever the number of topoisomerase mutations, and qnrS was additive to qnrA with a further 2- to 10-fold increase in the MIC. Comparison of MICs with susceptibility breakpoints showed that strains combining qnrA and topoisomerase mutations were resistant to fluoroquinolones, but the three strains lacking a topoisomerase mutation were susceptible using ciprofloxacin and levofloxacin but not using nalidixic acid or moxifloxacin testing.  相似文献   

3.
目的:研究大肠埃希菌gyrA、parC和marOR基因突变与喹诺酮类耐药的相关性。方法:采用微量稀释法进行常规药敏试验,筛选3株萘啶酸敏感大肠埃希菌和37株萘啶酸耐药大肠埃希菌株;PCR扩增大肠埃希菌喹诺酮耐药决定区(QRDR)相关gyrA、parC基因,进行聚合酶链反应-单链构象多态性(PCR-SSCP)分析,同时PCR扩增marOR基因;在耐药株选取部分菌株对gyrA、parC及marOR基因进行测序,检测其突变情况,其结果与体外药敏试验结果进行比较,研究其相关性。结果:37株耐药株均出现gyrA基因突变,但对环丙沙星低耐株最低抑菌浓度(MIC)=2mg/L只出现gyrA单位点突变,而parC基因未发生突变;环丙沙星高耐株(MIC=64mg/L)gyrA基因出现3个位点突变,parC基因出现单位点突变;在环丙沙星高耐株(MIC=256mg/L),并伴有其他类抗菌药物的多重耐药时,除了出现gyrA和parC基因双位点突变,同时检测到marOR基因的多位点突变。结论:gyrA和parC基因突变在大肠埃希菌对喹诺酮耐药中起着重要作用,gyrA和parC基因突变的程度与大肠埃希菌耐药水平有关,marOR基因多位点突变在多重耐药机制中具有一定的作用。  相似文献   

4.
The activity of six fluoroquinolones (FQs) was determined against 100 methicillin-resistant Staphylococcus aureus (MRSA) isolated in 2002 along with mutations in the grlA and gyrA genes and in the norA promoter of these isolates. Of the isolates tested, 97% had mutations in grlA and gyrA. A single mutation in grlA and gyrA resulted in a decrease of susceptibility to old generation FQs (norfloxacin, enoxacin, ciprofloxacin, fleroxacin, sparfloxacin and levofloxacin) but not to new generation FQs (gatifloxacin and moxifloxacin). Double mutations of both grlA and gyrA resulted in high-level resistance to all FQs tested. All norA mutants (15%) contained double mutations in grlA and gyrA and showed no decrease of MIC in the presence of reserpine, which is known to inhibit the drug-efflux pump. Our results showed that double mutations in grlA and gyrA were necessary for the expression of high-level resistance to new generation FQs. As different FQ-resistant mutants occur in the same PFGE type, FQ-resistant MRSA may well develop individually.  相似文献   

5.
During 1999-2000, 5015 isolates were collected from 13 countries and tested against levofloxacin. Overall, levofloxacin resistance minimum inhibitory concentration (MIC>or =8 mg/l) was found in 40 isolates (0.8%). The highest resistance rates were in Hong Kong (8.0%), China (3.3%) and Spain (1.6%). Levofloxacin retained an MIC(90) of 1 mg/l in all countries. Pulsed-field gel electrophoresis analysis of resistant isolates demonstrated the presence of clones in countries where levofloxacin resistance exceeded 1%, suggesting that the elevated resistance rates could result from resistant clones within participating hospitals. DNA-sequence analysis of the quinolone-resistance-determining regions of gyrA, gyrB, parC and parE genes showed that the most common mutations were in GyrA (Ser81Phe), ParC (Ser79Phe, Lys137Asn) and ParE (Ile460Val), accounting for 40% of the isolates tested. Levofloxacin-resistant isolates were generally non-susceptible to other fluoroquinolones tested. Future studies to characterise resistant isolates by other molecular methods may ensure that the appropriate counter-measures can be taken to control the spread of resistant isolates.  相似文献   

6.
The effect of high-level efflux activity on the MICs of fluoroquinolones against Streptococcus pneumoniae in the absence of topoisomerase mutations leading to fluoroquinolones resistance was investigated. A S. pneumoniae ATCC 46619-derived strain with high-level efflux activity was obtained (SP-25A). Both the parent and obtained strains were tested against efflux substrates acriflavine (Acr) and ethidium bromide (EtBr), and against norfloxacin (NFX), ciprofloxacin (CFX), levofloxacin (LFX), moxifloxacin (MFX), trovafloxacin (TVX) and sitafloxacin (SFX), in presence and absence of the efflux pump inhibitor reserpine. gyrA, gyrB, parC and parE QRDR genes were amplified by PCR and sequenced. MICs of NFX and CFX against SP-25A were 64-fold higher than parent strain MICs (256 mg/L versus 4 mg/L and 64 mg/L versus 1mg/L, respectively). MIC of LFX increased from 1 to 4 mg/L and MICs of MFX, TVX and SFX remained virtually unchanged (0.1-0.2 mg/L). MICs of Acr and EtBr against SP-25A were 8- and 16-fold higher than against parent strains. In both cases, reserpine reverted MICs to the parent strain values (1 and 0.2 mg/L). Only parE showed two mutations leading to a Pro(454) --> Ser and Glu(443) changes, which have previously been shown not to lead to significant fluoroquinolones MIC increases. SP-25A showed a significant increase of MICs of the hydrophilic fluoroquinolones, apparently derived only from efflux activity. Efflux activity, at these high levels, can lead to high-level resistance to older hydrophilic fluoroquinolones, but does affect newer fluoroquinolones such as moxifloxacin, trovafloxacin and sitafloxacin.  相似文献   

7.
Minimum inhibitory concentrations of sitafloxacin, gatifloxacin, moxifloxacin, sparfloxacin, levofloxacin and ciprofloxacin against 59 ciprofloxacin-resistant clinical isolates of Mycobacterium tuberculosis from Japan were determined. The isolates were most susceptible to sitafloxacin and gatifloxacin. To understand better the basis for drug resistance, nucleotide sequences encoding the gyrA and gyrB quinolone resistance-determining region were determined. Predicted amino acid sequences revealed distinct mutational patterns likely to be responsible for fluoroquinolone resistance. Double gyrA mutations as well as mutations in both gyrA and gyrB correlated with increased resistance to all fluoroquinolones.  相似文献   

8.
The prevalence of fluoroquinolone-resistant Streptococcus pneumoniae is increasing worldwide. In the present study, a comparison of drug sensitivity and genotypes of clinically isolated strains of levofloxacin (LVFX)-resistant S. pneumoniae obtained from Hong Kong, Okinawa Island and the Japanese main island (Honshu) was performed. MICs of quinolones (LVFX, tosufloxacin, ciprofloxacin, gatifloxacin and sitafloxacin (STFX)) and other antibiotics (penicillin G, cefcapene, cefditoren, clarithromycin and azithromycin) were determined by a microdilution broth method according to the Clinical and Laboratory Standards Institute Standards. The quinolone-resistance determining regions (QRDRs) of gyrA, gyrB, parC and parE of these strains were analyzed by PCR-based sequencing. All 40 strains tested had more than one amino-acid substitution in the QRDRs of gyrA, gyrB, parC or parE. Although there seemed to be some clonality in strains obtained from Hong Kong, there was no clonality in strains obtained from Okinawa and Japan. Strains obtained from Hong Kong, Okinawa Island and the Japanese main island were genetically different by pulsed-field gel electrophoresis analysis. The range of MIC values of STFX against isolates resistant to LVFX (MIC 4-32?mg?l(-1)) was 0.12-0.5?mg?l(-1), and MIC(80) values of STFX against LVFX-resistant isolates were 0.25?mg?l(-1). This study suggests that LVFX-resistant S. pneumoniae is similar in all three locations and STFX is potent against LVFX-resistant S. pneumoniae with multiple mutations in QRDRs of gyrase A and topoisomerase IV.  相似文献   

9.
In this study, topoisomerase mutations in ciprofloxacin-resistant and -susceptible Campylobacter jejuni were analysed by DNA sequencing. In certain ciprofloxacin-resistant C. jejuni, the mechanism of resistance was complex. The Thr86-Ala substitution in the GyrA protein appears to play a role in increasing the minimum inhibitory concentration of nalidixic acid only. In addition, isolates with this amino acid change and those resistant to quinolones but lacking a mutation in the GyrA quinolone resistance-determining region could be derived from two different clones. Based on gyrA and gyrB polymorphisms, C. jejuni isolates from the Dakar region of Senegal appeared to be less diverse than those from other countries. Moreover, C. jejuni isolates in Senegal appeared to differ from European isolates by lack of a silent mutation at codon 120 of the gyrA gene.  相似文献   

10.
The mechanism of action and the mechanism of resistance of the 4-quinolones are complex and poorly understood. The first barrier these molecules must cross is the bacterial outer membrane. In gram-negative species, 4-quinolones pass through either the porins or lipopolysaccharides (or both) depending on their chemical nature. The cellular target is the DNA of the bacterial chromosome. 4-Quinolones mainly modify the activity of topoisomerase II or DNA gyrase, but also that of topoisomerase I and IV. Any damage to the bacterial genome will induce a stress response which consists in the SOS response, chaperonin synthesis or the generation of oxygen free radicals. Peptidoglycan synthesis is also modified, as shown by the inhibition of PBP(3) activity. Mechanism of resistance involves mutations on gyrA and gyrB genes. gyrA Mutations on the chromosome are responsible for a high level of resistance due to a modification of the A subunit of DNA gyrase, mutations on gyrB gene are responsible for a low level of resistance; the combination of both mutations leads to a high level of resistance. Other mutations are responsible for increasing the MIC, such as a norA mutation in S. aureus. The antibacterial activity of the various molecules is different and, as a result, there is not a single mechanism of action or resistance, but rather a common trunk on which additional mechanisms are grafted.  相似文献   

11.
目的 研究临床分离的耐氟喹诺酮类铜绿假单胞菌gyrA及parC基因突变情况。方法 测定临床分离的 5 5株铜绿假单胞菌MIC值 ,从中筛选出 1株敏感菌和 8株耐药菌 ,以标准敏感菌株ATCC2 785 3作为质控菌株。用聚合酶链反应 (PCR)扩增gyrA及parC基因的喹诺酮耐药决定区 (QR DR) ,扩增产物片段长度分别为 35 1bp、397bp。用限制性内切酶SacⅡ消化gyrAPCR产物 ,同时对上述 10株菌的gyrA及parC基因的喹诺酮决定区 (QRDR)进行PCR DNA直接测序分析。结果 有 8株耐菌株的gyrA基因在 83位 (ACC→ATC)有突变 ,导致氨基酸Thr→Ile的改变 ;有 3株高度耐药菌gyrA基因同时在 87位 (GAC→GGC)有突变 ,导致氨基酸Asp→Gly的改变 ;有 4株耐药菌株的parC基因在 87位有TCG→TTG突变 ,导致氨基酸由Ser→Leu的改变。同时具gy rA和parC突变MIC值是仅具gyrA突变菌株MIC值的 2~ 16倍。未发现parC突变单独存在。另外 ,有 6株耐药菌gyrA的 132位有CAC→CAT的突变 ;所有耐药菌株parC基因 115位有GCT→GCG的突变 ,该突变未引起氨基酸的改变。结论 gyrA83、87位突变及parC基因 87位突变都可引起铜绿假单胞菌对氟喹诺酮类药物产生耐药 ,但以gyrA基因 83位突变为主 ,合并gyrA基因 87位及parC基因 87位突变可增加耐药程度。  相似文献   

12.
Two sequential clinical isolates of Klebsiella pneumoniae (Kpn) were isolated from bronchoalveolar lavage fluid (Kpn#1) and sputum (Kpn#2) of a patient with pneumonia, complicated by anatomical and immunosuppressive problems due to Wegener's granulomatosis. Despite 4 weeks of systemic treatment with ciprofloxacin (CIP) Kpn#2 was isolated thereafter. A fluoroquinolone-resistant mutant (Kpn#1-SEL) was derived from Kpn#1 in vitro by selecting on agar plates supplemented with ofloxacin. Kpn#1, Kpn#1-SEL and Kpn#2 had an identical pattern in PFGE. CIP MICs were 0.25, 2 and 4 mg/l for Kpn#1, Kpn#2 and Kpn#1-SEL, respectively. Kpn ATCC 10031 (CIP MIC 0.002 mg/l) served as control. We analyzed mechanisms of fluoroquinolone resistance by determining antibiotic susceptibility, organic solvent tolerance, accumulation of fluoroquinolones, dominance testing with wild-type topoisomerase genes (gyrA/B, parC/E), sequencing of the quinolone resistance determining regions of gyrA/B, parC/E and marR and Northern blotting of marR and acrAB genes. Compared with Kpn ATCC 10031, elevated MICs to fluoroquinolones and unrelated antibiotics in Kpn#1 was presumably due to a primary efflux pump other than AcrAB and increased the CIP MIC 125-fold. Although Kpn#1 tested sensitive according to NCCLS breakpoints, the elevated CIP MIC of 0.25 mg/l presumably rendered this isolate clinically resistant and lead to therapeutic failure in this case. Further increase of MIC to fluoroquinolones in vivo and in vitro was distinct. Kpn#1-SEL, selected in vitro, acquired a GyrA target mutation, whereas in Kpn#2 no known resistance mechanism could be detected.  相似文献   

13.
This study analysed the mechanisms involved in the acquisition of resistance to quinolones in mutants obtained in vitro of Salmonella enterica serotype Enteritidis. Two nalidixic acid-resistant (minimal inhibitory concentrations, MIC>256 mg/l), ciprofloxacin-susceptible (MIC 0.5 mg/l) clinical isolates of Salmonella Enteritidis with a mutation at amino acid codon Ser-83 of the gyrA gene were grown on plates containing increasing concentrations of ciprofloxacin. The increase in MIC to ciprofloxacin, sparfloxacin and trovafloxacin was totally or partially associated with over-expression of an AcrAB-like efflux pump. In addition, unidentified mechanism(s) may have been involved in the increased MIC to these antimicrobials. This study demonstrated that AcrAB-like efflux pumps appear to play a relevant role in the increase in MIC to some quinolones although, other, as yet undefined, mechanisms may be involved.  相似文献   

14.
DNA gyrase (GyrA and GyrB) and topoisomerase IV (ParC and ParE) are the two essential type II topoisomerases in Escherichia coli. These enzymes act via inhibition of DNA replication. Mutations in the quinolone resistance-determining region (QRDR) of the gyrA, gyrB, parC and parE genes from clinical isolates of E. coli were determined by DNA sequencing of 54 ciprofloxacin-resistant clinical isolates from a hospital in Delhi, India. The majority of the E. coli isolates were shown to carry mutations in gyrA, parC and parE. Ciprofloxacin resistance due to accumulation of such a high number of mutations in the QRDR regions of gyrA at positions Ser83 and Asp87 and parC at position Ser80 as well as outside of the QRDR region of parE at Ser458 and Glu460 confers high-level resistance of ciprofloxacin in clinical isolates. The high frequency of occurrence of mutations in the parE gene (44.4% strains) is alarming, as topoisomerase IV is a secondary target of quinolones.  相似文献   

15.
The MIC of gemifloxacin and five other quinolones was tested against 31 clinical isolates of Neisseria gonorrhoeae; strains were analyzed for the presence of mutations in both the gyrA and parC genes. Only seven strains were resistant to nalidixic acid due to a mutation in the gyrA gene but not in the parC gene, with six and two considered intermediate to ciprofloxacin and levofloxacin, respectively. The activity of gemifloxacin was similar to that of trovafloxacin and moxifloxacin, but was more active than nalidixic acid, ciprofloxacin or levofloxacin against the gyrA mutant strains. Gemifloxacin is a valid therapeutic alternative to treat infections with N. gonorrhoeae, retaining its activity against strains already presenting a mutation in gyrA.  相似文献   

16.
Fluoroquinolones are important second-line drugs for the treatment of tuberculosis. A comprehensive profile of resistance mutation patterns of DNA gyrase, the major target of fluoroquinolones, is crucial for molecular diagnosis of drug resistance and improvement of treatment efficacy. To investigate the mutation types of the genes encoding the A and B subunits of DNA gyrase (gyrA and gyrB, respectively) in ofloxacin- and levofloxacin-resistant Mycobacterium tuberculosis strains prevalent in mainland China, 177 clinical drug-resistant isolates collected by the National Tuberculosis Reference Laboratory of China were analysed. The GyrB single mutations (Glu498 and Gly551) and double mutation (Thr539Asn-Gly551Arg) as well as a GyrA double mutation (Asp94Asn-Gly112His) were reported to be involved in fluoroquinolone resistance for the first time. To simplify quantification of the contribution of each mutation type and mutation site to overall fluoroquinolone resistance, a mathematical method was established by assigning each resistance allele a numerical score between 5 and 50 (the larger the number, the higher the resistance level). The score of double mutants is the sum of the scores for the two single alleles. The double mutation types, including Asn538Ile(GyrB)-Asp94Ala(GyrA), Ala543Val(GyrB)-Asp94Asn(GyrA) and Ala543Val(GyrB)-Asp94Gly(GyrA) scored relatively high by this methodology.  相似文献   

17.
Thirty Streptococcus pneumoniae clinical isolates resistant to levofloxacin were analyzed for the quinolone resistance-determining DNA sequences to identify point mutations and were tested for in vitro susceptibility to multiple drug classes. Of these isolates, 29 had mutations in both gyrA and parC genes of DNA gyrase and topoisomerase IV, respectively. In GyrA, an amino acid change from Ser-81-->Phe was detected in 27 isolates and a Glu-85-->Lys change was found in the remaining three. Of the 29 isolates for which ParC data were available, Ser-79-->Tyr or Phe were the predominant mutations observed. MICs for levofloxacin were 4-16 mg/l, whereas those for moxifloxacin were 1-2 mg/l. Twenty-four (80%) isolates were susceptible to erythromycin, 25 (83%) to azithromycin, 26 (87%) to clarithromycin, 27 (90%) to clindamycin, 20 (67%) to penicillin, 21 (70%) to ceftriaxone and 30 (100%) to amoxycillin/clavulanate. These results confirm the presence of double mutations among clinical isolates of S. pneumoniae from diverse geographical regions of North America and also suggest that quinolone resistance may develop independently of resistance to other drug classes.  相似文献   

18.
The objective of this study was to analyse an array of ciprofloxacin and norfloxacin derivatives in order to determine those with good activity against bacteria that already present fluoroquinolone resistance associated with mutations in the gyrA and/or parC genes. Four norfloxacin and 20 ciprofloxacin derivatives were synthesised and tested against quinolone-susceptible and -resistant Escherichia coli, Acinetobacter baumannii, Stenotrophomonas maltophilia and Staphylococcus aureus strains using a microdilution test. Among the derivatives, the 4-methyl-7-piperazine ciprofloxacin derivative showed a minimum inhibitory concentration for 50% of the organisms that was 16- and 8-fold lower than ciprofloxacin for A. baumannii and S. maltophilia, respectively. When the methyl group at position 4 in the piperazine ring was substituted by ethyl, butyl or heptyl groups, activity against A. baumannii steadily decreased. The 7-(4-methyl)-piperazine ciprofloxacin derivative (UB-8902) showed very good activity against these multiresistant microorganisms including A. baumannii and S. maltophilia.  相似文献   

19.
Helicobacter pylori eradication by standard therapy is decreasing due to clarithromycin and metronidazole resistance. Fluoroquinolones are valuable drugs for alternative therapy, but their activity needs to be updated. We determined minimum inhibitory concentrations (MICs) of the newly marketed fluoroquinolones (levofloxacin, moxifloxacin and gatifloxacin) and assessed the prevalence of resistance in 128 H. pylori strains isolated in 2004-2005. The quinolone resistance-determining region (QRDR) of gyrA was sequenced for all strains. Gatifloxacin MICs (MIC(50) = 0.25 mg/L) were two- to four-fold lower than those of the other fluoroquinolones. The prevalence of resistance (ciprofloxacin MIC > 1 mg/L) was 17.2% (22 strains). All resistant strains harboured one gyrA mutation at codons 86, 87 or 91, including three new mutations (Asp86Asn, Thr87Ile and Asn87Tyr). Ciprofloxacin-susceptible strains were devoid of such gyrA mutations, but harboured a polymorphism at codon 87 that distinguished 18 isolates (17%) with a Thr87 like the reference strain J99 from 88 strains with Asn87 like the reference strain 26695. Strains with Thr87 were four-fold more susceptible to nalidixic acid, pefloxacin, ciprofloxacin and levofloxacin and were equally susceptible to moxifloxacin and gatifloxacin. The high rate of quinolone resistance in H. pylori requires the use/implication of a 'test and treat' strategy that can confidently rely on QRDR gyrA sequencing.  相似文献   

20.
目的建立金黄色葡萄球菌耐药转运蛋白NorA免疫检测方法。方法利用琼脂稀释法测定诺氟沙星(NFLX)对临床分离的6株金葡菌和标准菌株ATCC25923的MIC。对norA基因进行克隆、表达,提取表达产物包涵体,并进行了纯化。将纯化的表达蛋白作为免疫原免疫家兔,获取NorA蛋白的抗体血清。利用制得的抗体通过Western blotting检测临床分离的6株金葡菌的NorA蛋白表达水平。结果氟喹诺酮类药物耐药水平较高的临床分离金葡菌菌株的NorA蛋白表达水平一般较高,敏感菌株的耐药水平较低且接近。结论免疫检测方法可用于检测金葡萄菌耐药转运蛋白NorA的表达水平。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号