首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Among other characteristics, the steady-state current-voltage relationship of patch-clamped single atrial myocytes from guinea-pig hearts is defined by an outward current hump in the potential region -15 to +40 mV. This hump was reversibly suppressed by Co2+ (3 mM) or nitrendipine (5 microM) and enhanced by Bay K 8644 (5 microM). The maintained outward current component suppressed by Co2+ extended between -15.2 +/- 1.9 mV and +39.5 +/- 1.7 mV (mean +/- SEM of 14 cells) and has an amplitude of 95.7 +/- 9.4 pA at +10 mV. In isochronal I-V curves, the hump was already visible at 400 ms with essentially the same amplitude as at 1500 ms. The Co2+-sensitive outward current underlying the hump was poorly time-dependent during 1.5 s voltage pulses but slowly relaxed upon repolarization. Tail currents reversed near the K+ equilibrium potential under our experimental conditions. The current hump of the steady-state I-V curve was also abolished by caffeine (10 mM) or ryanodine (3 microM), both drugs that interfere with sarcoplasmic reticulum function. Apamin (1 microM) or quinine (100 microM) but not TEA (5-50 mM) markedly reduced its amplitude. However, at similar concentrations as required to inhibit the hump, both apamin and quinine appeared to be poorly specific for Ca2+-activated K+ currents in heart cells since they also inhibited the L-Type Ca2+ current. It is concluded that a long lasting Ca2+-activated outward current, probably mainly carried by K+ ions but not sensitive to TEA, exists in atrial myocytes which is responsible for the current hump of the background I-V curve.  相似文献   

2.
Bains JS  Ferguson AV 《Neuroscience》1999,90(3):885-891
Activation of dendritic voltage-dependent calcium (Ca2+) conductances in neuroendocrine cells of the hypothalamus may underlie previously documented Ca2+ spikes in these cells. The present study, in which whole-cell recordings were obtained from paraventricular nucleus neurons in a hypothalamic slice preparation, addresses this issue by directly activating dendritic N-methyl-D-aspartate receptors in the presence of tetrodotoxin. Application of tetrodotoxin abolished spontaneous action potentials in all paraventricular nucleus neurons tested (n = 27). Following tetrodotoxin, spikes were evoked by depolarizing current pulses, in an all-or-none fashion in the majority of cells (n = 20). Removal of extracellular Ca2+ (n = 6) or addition of 500 microM CdCl2 (n = 4) abolished the spikes in response to pulses. Repetitive spiking activity (in tetrodotoxin) was also observed following N-methyl-D-aspartate agonist application in 75% of the cells tested (n = 15). The spikes, underscored by a slow membrane depolarization, were abolished by the administration of CdCl2 (n = 4). N-Methyl-D-aspartate agonist elicited a slow inward current in cells voltage-clamped at -60 mV (n = 5). Additionally, larger amplitude, transient inward currents were observed near the onset of the response. The activation threshold to elicit spikes following N-methyl-D-aspartate agonist application was significantly more negative (-54.6+/-3.6 mV) than the potential at which spikes were initiated as a result of depolarizing current injection (-32.3+/-1.8 mV; Student's t-test: P < 0.0001). In contrast to this, Na+ spikes in control solution had an invariable threshold (-49.6+/-0.7 mV vs -51.5+/-1.2 mV; P > 0.05), regardless of the stimulus used to initiate the spikes. These observations suggest that direct activation of N-methyl-D-aspartate receptors located on the dendrites of paraventricular nucleus neurons triggers Ca2+ spikes. Although the precise function of these spikes is unclear, previous data reporting dendritic neuropeptide release in the paraventricular nucleus raise the possibility that dendritically initiated spikes may serve as a local signal to trigger such release.  相似文献   

3.
The effect of protein kinase C (PKC) on the Ca2+-activated K+ current (IK,Ca) in guinea-pig gastric myocytes was studied using the whole-cell voltage-clamp technique. At a holding potential of 0 mV, IK,Ca, recorded as spontaneous, transient, outwards currents (STOCs), was markedly inhibited, both in mean amplitude (54 +/- 5%) and frequency (60 +/- 8%) by 1 microM phorbol 12, 13 dibutyrate (PDBu, n = 6). These effects were antagonized by pretreatment with 10 nM bisindolylmaleimide I (n = 5), a selective inhibitor of PKC. The possibility that the inhibition of STOCs was due to direct channel inhibition by PKC was addressed using inside-out or open-cell-attached patch-clamp techniques, the latter established using beta-escin. PDBu did not alter the conductance or open probability of the KCa channel in any mode, suggesting that PKC does not inhibit the KCa channel directly. To study the involvement of the Na/Ca exchanger in the inhibition of STOCs by PDBu, its operation was prevented by replacing Na+ in the internal solution by tris(hydroxymethyl)aminomethane (TRIS) and external Na+ by equimolar K+ and Ca2+-activated inwards K+ currents recorded at a holding potential of 0 mV. Neither the mean amplitude (96 +/- 8%) nor the frequency of these currents was inhibited significantly by 1 microM PDBu (n = 5). Like PDBu, 5 microM 2-(2-[4-(4-nitrobenzyloxy)phenyl]ethyl) isothiourea methanesulphonate (KB-R7943), a selective inhibitor of the reverse mode Na/Ca exchanger, also inhibited the mean amplitude (45 +/- 6%) and frequency (26 +/- 2%) of STOCs at the holding potential of 0 mV (n=6). The results suggest that the suppression of STOCs by PKC is mediated by inhibition of the Na/Ca exchanger.  相似文献   

4.
1. Ca(2+)-dependent K+ currents were studied in large pyramidal neurons (Betz cells) from layer V of cat sensorimotor cortex by use of an in vitro brain slice and single microelectrode voltage clamp. The Ca(2+)-dependent outward current was taken as the difference current obtained before and after blockade of Ca2+ influx. During step depolarizations in the presence of tetrodotoxin (TTX), this current exhibited a fast onset of variable amplitude and a prominent slowly developing component. 2. The Ca(2+)-dependent outward current first appeared when membrane potential was stepped positive to -40 mV. Downsteps from a holding potential of -40 mV revealed little or no time-, voltage-, or Ca(2+)-dependent current. When membrane potential was stepped positive to -40 mV, a prolonged Ca(2+)-dependent outward tail current followed repolarization. The decay of this tail current at -40 mV was best described by a single exponential function having a time constant of 275 +/- 75 (SD) ms. The tail current reversed at 96 +/- 5 mV in 3 mM extracellular K+ concentration ([K+]o) and at more positive potentials when [K+]o was raised, suggesting that it was carried predominantly by K+. 3. The Ca(2+)-dependent K+ current consisted of two pharmacologically separable components. The slowly developing current was insensitive to 1 mM tetraethylammonium (TEA), but a substantial portion was reduced by 100 nM apamin. Most of the remaining current was blocked by the addition of isoproterenol (20-50 microM) or muscarine (10-20 microM). 4. The time courses of the apamin- and transmitter-sensitive components were similar when activated by step depolarizations in voltage clamp, but they were quite different when activated by a train of action potentials. Applying the voltage clamp at the end of a train of 90 spikes (evoked at 100-200 Hz) resulted in an Ca(2+)-dependent K+ current with a prominent rapidly decaying portion (time constant approximately 50 ms at -64 mV) and a smaller slowly decaying portion (time constant approximately 500 ms at -64 mV). The rapidly decaying portion was blocked by apamin (50-200 nM), and the slowly decaying portion was blocked by isoproterenol (20-50 microM). 5. When recorded with microelectrodes containing 2 mM dimethyl-bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid (dimethyl-BAPTA), which causes prolonged afterhyperpolarizations, the Ca(2+)-dependent K+ current evoked by step depolarizations had an extremely slow onset and decay. The current recorded after a train of evoked spikes had a similar slow decay.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
The endopiriform nucleus (EPN) is a well-defined structure that is located deeply in the piriform region at the border with the striatum and is characterized by dense intrinsic connections and prominent projections to piriform and limbic cortices. The EPN has been proposed to promote synchronization of large populations of neurons in the olfactory cortices via the activation of transient depolarizations possibly mediated by Ca(2+) spikes. It is known that principal cells in the EPN express both a low- and high-voltage-activated (HVA) Ca(2+) currents. We further characterized HVA conductances possibly related to Ca(2+)-spike generation in the EPN with a whole cell, patch-clamp study on neurons acutely dissociated from the EPN of the guinea pig. To study HVA currents in isolation, experiments were performed from a holding potential of -60 mV, using Ba(2+) as the permeant ion. Total Ba(2+) currents (I(Ba)) evoked by depolarizing square pulses peaked at 0/+10 mV and were completely abolished by 200 microM Cd(2+). The pharmacology of HVA I(Ba)s was analyzed by applying saturating concentrations of specific Ca(2+)-channel blockers. The L-type blocker nifedipine (10 microM; n = 11), the N-type-channel blocker omega-conotoxin GVIA (0.5 microM; n = 24), and the P/Q-type blocker omega-conotoxin MVIIC (1 microM; n = 16) abolished fractions of total I(Ba)s equal on average to 24.7 +/- 5.4%, 27.1 +/- 3.4%, and 22.2 +/- 2.4%, respectively (mean +/- SE). The simultaneous application of the three blockers reduced I(Ba) by 68.5 +/- 6.6% (n = 10). Nifedipine-sensitive currents and most N- and P/Q-type currents were slowly decaying, the average fractional persistence after 300 ms of steady depolarization being 0.77 +/- 0.02, 0.60 +/- 0.06, and 0.68 +/- 0.04, respectively. The residual, blocker-resistant (R-type) currents were consistently faster inactivating, with an average fractional persistence after 300 ms of 0.30 +/- 0.08. Fast-decaying R-type currents also displayed a more negative threshold of activation (by about 10 mV) than non-R-type HVA currents. These results demonstrate that EPN neurons express multiple pharmacological components of the HVA Ca(2+) currents and point to the existence of an R-type current with specific functional properties including fast inactivation kinetics and intermediate threshold of activation.  相似文献   

6.
Primary skeletal muscle cells were cultured in a normal- (1.8 mM) or high- (4.8 mM) Ca2+ culture medium to determine whether Ca2+ modulates the number of L-type Ca2+ channels. Skeletal myoballs cultured in a normal medium showed, when exposed to a high extracellular [Ca2+], ([Ca2+]e) a transient increase in intracellular [Ca2+] ([Ca2+]i) from a resting concentration of 60 to 160 nM. By day 3, however, when the experiments were made, [Ca2+]i no longer differed from control (pre-exposure to high Ca2+). The maximum charge movements in myoballs incubated in 1.8 and 4.8 mM were 16.4+/-1.05 (n=56) and 24.1+/-1.18 nC/microF (n=58; P<0.01), respectively, and peak Ca2+ currents at 20 mV were -10.8+/-1.09 (n=46) and -12.8+/-0.75 nA/microF (n=82), respectively (P>0.05). The tail current amplitudes in 1.8 and 4.8 mM Ca2+-treated cells were -9.3+/-1.23 and -14.2+/-1.37 nA/microF (P<0.05), respectively, at 10 mV and -15.3+/-1.76 and -23.6+/-2.02 nA/microF (P<0.05), respectively at 60 mV. The maximum binding of [3H]PN200-110 (a radioligand specific for L-type Ca2+ channel alpha1 subunits) in myoballs cultured in 1.8 and 4.8 mM [Ca2+]e was 1.34+/-0.23 and 3.2+/-0.63 pmol/mg protein (n=8; P<0.02), respectively. The increase in [Ca2+]i associated with the increases in charge movements, tail currents and the number of L-type Ca2+ channel alpha1 subunits in skeletal muscle cells cultured in high [Ca2+]e support the concept that extracellular Ca2+ influx modulates the expression of L-type Ca2+ channels in skeletal muscle cells.  相似文献   

7.
1. gamma-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter affecting dorsal root ganglion (DRG) neurons. This study compares properties of current activated by the GABAA receptor in two populations of DRG neurons. DRG neurons were isolated from adult rat with the use of enzymatic and mechanical means. Within hours of being isolated, neurons were recorded from with the use of the whole-cell variant of the patch-clamp technique. 2. One population of neurons exhibited an afterdepolarizing potential (ADP), a low threshold for action-potential generation (-45 to -50 mV), a short-duration action potential (less than 2 ms) that was abolished in the presence of 1-2 microM tetrodotoxin (TTX), and an insensitivity to 50 nM capsaicin. The second population of neurons exhibited a high threshold for action-potential generation (less than -40 mV), a shoulder on the falling phase of the action potential, insensitivity of action-potential generation to TTX (1-2 microM), and a depolarizing response to application of 50 nM capsaicin. 3. Sensitivity to GABA (over the range of 1-1,000 microM) was comparable for the two populations of neurons. 4. GABA-activated current was greater in ADP neurons than in non-ADP-type neurons of a comparable diameter (30-50 microns). The mean +/- SE amplitude of current activated by 10 microM GABA in ADP neurons was 0.310 +/- 0.050 nA (range = 0.110-0.460 nA, n = 8), and 0.037 +/- 0.016 nA (range = 0.010-0.130 pA, n = 7) in non-ADP neurons. Ten microM GABA elicited cell firing in ADP neurons but not in non-ADP neurons.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Long lasting outward currents mediated by Ca2+-activated K+ channels can be induced by Ca2+ influx through N-methyl-D-aspartate (NMDA)-receptor channels in voltage-clamped hippocampal pyramidal neurons. Using specific inhibitors, we have attempted to identify the channels that underlie these outward currents. At a holding potential of -50 mV, applications of 1 mM NMDA to the soma of cultured hippocampal pyramidal neurons induced the expected inward currents. In 44% of cells tested, these were followed by outward currents (average amplitude 60 +/- 7 pA) that peaked 2.5 s after the initiation of the inward NMDA currents and decayed with a time constant of 1.4 s. In 43% of those cells exhibiting an outward current, SK channel inhibitors, UCL 1848 (100 nM) and apamin (100 nM) abolished the outward current. In the remainder of the cells, the outward currents were either insensitive or only partly inhibited (44 +/- 4%) by 100 nM UCL 1848. In these cells, the outward currents were reduced by the slow afterhyperpolarization (sAHP) inhibitors, muscarine (3 microM; 43 +/- 9%), UCL 1880 (3 microM; 34 +/- 10%), and UCL 2027 (3 microM; 57 +/- 6%). Neither the BK channel inhibitor, charybdotoxin (100 nM), nor the Na+/K+ ATPase inhibitor, ouabain (100 microM), reduced these outward currents. Irrespective of the pharmacology, the time course of the outward current did not differ. Interestingly, no correlation was observed between the presence of a slow apamin-insensitive afterhyperpolarization and an outward current insensitive to SK channel blockers following NMDA-receptor activation. It is concluded that an NMDA-mediated rise in [Ca2+]i can result in the activation of apamin-sensitive SK channels and of the channels that underlie the sAHP. The activation of these channels may, however, depend on their location relative to NMDA receptors as well as on the spatial Ca2+ buffering within individual neurons.  相似文献   

9.
Crustacean cardiac ganglion neuronal somata, although incapable of generating action potentials, produce regenerative, slow (greater than 200 ms) depolarizing potentials reaching -20 mV (from -50 mV) in response to depolarizing stimuli. These potentials initiate a burst of action potentials in the axon and are thus termed driver potentials. The somata of the anterior-most neurons (cells 1 or 2) were isolated by ligaturing for study of their membrane currents with a two-electrode voltage clamp. Inward current is attributed to Ca2+ by reason of dependence of driver potential amplitude on [Ca2+]0, independence of [Na+]0, resistance to tetrodotoxin, and inhibition by Cd (0.2 mM) and Mn (4 mM). Ca-mediated current (ICa) is present at -40 mV. It is optimally activated by a holding potential (Vh) of -50 to -60 mV and by clamps (command potential, Vc) to -10 mV. Time to peak (10-30 ms) and amplitude are strongly voltage dependent. Maximum tail-current amplitudes observed at -70 to -85 mV are ca. 100 nA. Inward tail peaks may not be resolved by our clamp (settling time, 2 ms). Tails relax with a time constant (tau) of approximately equal to 12 ms (at -70 to -85 mV). ICa exhibits inactivation in double pulse regimes. Recovery has a tau of approximately equal to 0.7 s. Tail current analyses indicate an exponential decline (tau approximately equal to 23 ms at -20 mV) toward a maintained amplitude of inward current tails. Analysis of outward currents indicates the presence of three conductance mechanisms having voltage dependences, time courses, and pharmacology similar to those of early outward current (IA), delayed outward current (IK), and outward current (IC) of molluscan neurons. Analysis of tail currents indicates a reversal potential for each of these near -75 mV, indicating that they are K currents. Early outward current, IA, shows a peak at 5 ms followed by rapid decline. Response to a second clamp given within 0.4 s is reduced; recovery is exponential, with a tau of approximately equal to 200 ms (at Vh = -50 mV). The amplitude of IA tested at 0 mV shows activation or deactivation by subthreshold shifts of Vh. The extent and rate of these changes shows voltage dependence (tau approximately equal to 100-500 ms for subthreshold prepulses). At the normal cell resting potential of -50 mV the amplitude of IA is 25% of that tested from -80 mV.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Whole-cell voltage-clamp recordings of outward currents were obtained from acutely dissociated neurons of the rat neostriatum in conditions in which inward Ca2+ current was not blocked and intracellular Ca2+ concentration was lightly buffered. Na+ currents were blocked with tetrodotoxin. In this situation, about 53 +/- 4% (mean +/- S.E.M.; n = 18) of the outward current evoked by a depolarization to 0 mV was sensitive to 400 microM Cd2+. A similar percentage was sensitive to high concentrations of intracellular chelators or to extracellular Ca2+ reduction (<500 microM); 35+/-4% (n=25) of the outward current was sensitive to 3.0 mM 4-aminopyridine. Most of the remaining current was blocked by 10 mM tetraethylammonium. The results suggest that about half of the outward current is activated by Ca2+ entry in the present conditions. The peptidic toxins charybdotoxin, iberotoxin and apamin confirmed these results, since 34 +/- 5% (n = 14), 29 5% (n= 14) and 28 +/- 6% (n=9) of the outward current was blocked by these peptides, respectively. The effects of charybdotoxin and iberotoxin added to that of apamin, but their effects largely occluded each other. There was additional Cd2+ block after the effect of any combination of toxins. Therefore, it is concluded that Ca2+-activated outward currents in neostriatal neurons comprise several components, including small and large conductance types. In addition, the present experiments demonstrate that Ca2+-activated K+ currents are a very important component of the outward current activated by depolarization in neostriatal neurons.  相似文献   

11.
Calcium-activated potassium currents have an essential role in regulating excitability in a variety of neurons. Although it is well established that mature CA1 pyramidal neurons possess a Ca(2+)-activated K(+) conductance (I(K(Ca))) with early and late components, modulation by various endogenous neurotransmitters, and sensitivity to K(+) channel toxins, the properties of I(K(Ca)) on hippocampal interneurons (or immature CA1 pyramidal neurons) are relatively unknown. To address this problem, whole-cell voltage-clamp recordings were made from visually identified interneurons in stratum lacunosum-moleculare (L-M) and CA1 pyramidal cells in hippocampal slices from immature rats (P3-P25). A biphasic calcium-activated K(+) tail current was elicited following a brief depolarization from the holding potential (-50 mV). Analysis of the kinetic properties of I(K(Ca)) suggests that an early current component differs between these two cell types. An early I(K(Ca)) with a large peak current amplitude (200.8 +/- 13.2 pA, mean +/- SE), slow time constant of decay (70.9 +/- 3.3 ms), and relatively rapid time to peak (within 15 ms) was observed on L-M interneurons (n = 88), whereas an early I(K(Ca)) with a small peak current amplitude (112.5 +/- 7.3 pA), a fast time constant of decay (39.4 +/- 1.6 ms), and a slower time-to-peak (within 26 ms) was observed on CA1 pyramidal neurons (n = 85). Removal of extracellular calcium or addition of inorganic Ca(2+) channel blockers (cadmium, nickel, or cobalt) was used to demonstrate the calcium dependence of these currents. Addition of norepinephrine, carbachol, and a variety of channel toxins (apamin, iberiotoxin, verruculogen, paxilline, penitrem A, and charybdotoxin) were used to further distinguish between I(K(Ca)) on these two hippocampal cell types. Verruculogen (100 nM), carbachol (100 microM), apamin (100 nM), TEA (1 mM), and iberiotoxin (50 nM) significantly reduced early I(K(Ca)) on CA1 pyramidal neurons; early I(K(Ca)) on L-M interneurons was inhibited by apamin and TEA. Combined with previous work showing that the firing properties of hippocampal interneurons and pyramidal cells differ, our kinetic and pharmacological data provide strong support for the hypothesis that different types of Ca(2+)-activated K(+) current are present on these two cell types.  相似文献   

12.
1. The membrane properties and synaptic responses of guinea pig nucleus accumbens neurons in vitro were studied with intracellular recording methods. 2. The population of neurons could be divided into groups of low (20-60 M omega, average 46.5 M omega) and high (60-180 M omega, average 96.5 M omega) input resistance. The resting membrane potential in both groups was approximately -70 mV. 3. Other membrane properties were quite similar in both groups. Inward rectification occurred at potentials more negative than -80 mV; this was blocked by Cs+ (2 mM). Membrane potential oscillations were observed at potentials between -65 and -55 mV; these were blocked by tetrodotoxin (TTX, 0.5 microM). Outward rectification occurred at potentials less negative than -45 mV; this was depressed by tetraethylammonium (TEA, 10 mM). 4. Action potentials elicited by small depolarizing current pulses (2-5 ms, 0.3-0.5 nA) were approximately 95 mV in amplitude and 1.0 ms in duration. The afterhyperpolarization following each action potential was less than 30 ms in duration, and no accommodation of action-potential discharge was seen at frequencies up to 40 Hz. The action potentials were reversibly blocked by TTX (0.3 microM). In addition, TTX-insensitive, Ca2+-dependent spikes were evoked by passing larger and more prolonged current pulses (greater than 40 ms, greater than 0.5 nA) across the membrane. 5. Focal electrical stimulation of the slice surface with low intensity (1 ms, less than 10 V) elicited excitatory postsynaptic potentials (EPSPs) in neurons of both high- and low-resistance groups. The reversal potential (+10.2 mV) for the EPSPs was close to the reversal potential (+7.7 mV) of the responses to glutamate applied in the superfusing solution. The N-methyl-D-aspartic acid (NMDA) receptor antagonists, D-alpha-aminoadipic acid (1 mM) and DL-2-amino-5-phosphonovaleric acid (DL-APV, 250 microM), reversibly depressed the EPSP; the glutamate uptake inhibitor, L-aspartic acid-beta-hydroxamate (50 microM), or removal of Mg2+ from the superfusate, augmented the EPSP. 6. When the intensity of the focal stimulus was increased (1 ms, greater than or equal to 10 V), a second larger depolarizing response (duration, 800 ms to 2 s) could be evoked in addition to the smoothly graded EPSP. This was seen only in cells of the high-resistance group (90-130 M omega).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Na(+) currents were studied by whole cell patch clamp of chalice-shaped afferent terminals attached to type I hair cells isolated from the gerbil semicircular canal and utricle. Outward K(+) currents were blocked with intracellular Cs(+) or with extracellularly applied 20 microM linopirdine and 2.5 mM 4-aminopyridine (4-AP). With K(+) currents blocked, inward currents activated and inactivated rapidly, had a maximum mean peak amplitude of 0.92 +/- 0.60 (SD) nA (n = 24), and activated positive to -60 mV from holding potentials of -70 mV and more negative. The transient inward currents were blocked almost completely by 100 nM TTX, confirming their identity as Na(+) currents. Half-inactivation of Na(+) currents occurred at -82.6 +/- 0.9 mV, with a slope factor of 9.2 +/- 0.8 (n = 7) at room temperature. In current clamp, large overshooting action potential-like events were observed only after prior hyperpolarizing current injections. However, spontaneous currents consistent with quantal release from the hair cell were observed at holding potentials close to the zero-current potential. This is the first report of ionic conductances in calyx terminals postsynaptic to type I hair cells in the mammalian vestibular system.  相似文献   

14.
Effects of anoxia on K and Ca currents in isolated guinea pig cardiocytes   总被引:3,自引:0,他引:3  
Whole cell currents were measured in isolated cardiocytes of guinea pig under anoxic conditions (pO2 <0.5 torr). After 2 to 32 (mean 11.2) minutes of anoxia, time independent outward currents developed gradually which had a linear current-voltage relation between -100 and +20 mV and reversed at the resting potential of the cells (-82 to -90 mV). After 20 to 170 (mean 38) seconds, the amplitude of these outward currents saturated (3.6±0.5 nA at +10 mV, n=23). Reoxygenation within one minute after the appearance of the first extra outward currents led in most cells (>90%) to their complete disappearance in 2 to 4 (mean 2.87, n=15) seconds. Ca currents were not affected at the time when the first extra outward currents occurred. It is concluded that (i) the anoxia-induced outward current is carried by K+ ions probably through KATP channels which open at intracellular ATP concentrations below 1 mmol/l (Noma and Shibasaki 1985) and (ii) this degree of ATP depletion does not affect normal Ca channel function.  相似文献   

15.
In epilepsy models, organic calcium antagonists regularly induce a transient activity increase before suppression of epileptiform discharges. This action was speculated to be mediated by a modulation of potassium currents. Since A-type currents potently regulate neuronal excitability, their modulation by calcium channel blockers was investigated in acutely isolated human neocortical temporal lobe neurons and CA1 neurons of guinea pigs using the whole-cell voltage-clamp technique. In human neurons, 40 microM nifedipine caused an amplitude reduction by 28% at a command potential of -6 mV and produced a biexponential, markedly accelerated current inactivation with time constants of 8.4 +/- 1.1 ms (n = 6) and 62.9 +/- 6.4 ms (n = 5). The time constant under control conditions was 50.1 +/- 8.5 ms (n = 6). Verapamil (40 microM) did not affect the current amplitude, but accelerated the monoexponential current inactivation from 40.2 +/- 7.1 ms to 13.3 +/- 0.8 ms (n = 9). Accordingly, verapamil accelerated the inactivation from 42.3 +/- 5.9 ms to 15.0 +/- 1.3 ms (n = 11) in guinea pig CA1 neurons, without affecting the current amplitude. In this preparation, it was shown that the two enantiomers of verapamil do not differ in their actions. The results show that the A-type current in human neocortical and in guinea pig hippocampal neurons is reduced by organic calcium channel blockers.  相似文献   

16.
17.
 A transient outward current (I to) has been observed in the atrioventricular node (AVN), but its characteristics in Ca-tolerant AVN myocytes have not been investigated previously. In this study, I to was measured from Ca-tolerant rabbit AVN myocytes at 37°C, using the whole-cell patch-clamp technique. With interfering currents inhibited, 500-ms voltage-clamp pulses applied from –80 mV elicited I to at potentials positive to –30 mV, which increased in magnitude with test potential amplitude. This current was completely blocked by external application of 5 mM 4-aminopyridine (4-AP). During a command pulse, I to activated rapidly then inactivated with a bi-exponential time-course. Fast and slow time constants of current inactivation (τf and τs, respectively) showed voltage dependence. At 0 mV, τf was 14.5±2.7 ms and τs was 112.8±21.2 ms, whilst at +60 mV τf was 6.7±1.1 ms and τs was 63.7±9.2 ms (n=25). The steady-state inactivation relationship showed half-maximal inactivation at –33.8 mV (n=8). Re-activation of I to after an inactivating pre-pulse showed a bi-exponential time-course of recovery: τ1 was 196±70 ms, and τ2 was 2707±1010 ms (n=6, at –80 mV). Repetitive application of voltage-clamp test pulses showed that I to inactivation accumulated on repetitive stimulation, but reached a steady state rapidly for a given pulse frequency (0.2–1.0 Hz). AVN I to was sensitive to the class 1 anti-arrhythmic flecainide (EC50 for peak current of 24 μM), which showed selectivity for the rapidly inactivating current component. Quinidine also inhibited I to in a dose-dependent fashion, but did not affect the current time-course. Under voltage-clamp conditions, a simulated diastolic depolarisation from –70 to –45 mV did not significantly reduce I to amplitude, and under current-clamp conditions 4-AP inhibited spontaneous action potentials. Although this is consistent with a significant role for I to in shaping AVN activity, under the conditions of this study 4-AP also partially blocked the ”rapid” delayed rectifier current, I Kr, and so the effects of 4-AP on action potentials could not be attributed exclusively to its effects on I to. Received: 22 October 1998 / Received after revision: 19 January 1999 / Accepted: 20 January 1999  相似文献   

18.
Although divalent cations and lanthides are well-known inhibitors of voltage-dependent Ca2+ currents (ICa), their ability to selectively inhibit a voltage-gated K+ current is less widely documented. We report that La3+ inhibits the transient K+ current (IA) of crab (Cardisoma carnifex) neurosecretory cells at ED50 approximately 5 microM, similar to that blocking ICa, without effecting the delayed rectifier K+ current (IK). Neurons were dissociated from the major crustacean neuroendocrine system, the X-organ-sinus gland, plated in defined medium, and recorded by whole cell patch clamp after 1-2 days in culture. The bath saline included 0.5 microM TTX and 0.5 mM CdCl2 to eliminate inward currents. Responses to depolarizing steps from a holding potential of -40 mV represented primarily IK. They were unchanged by La3+ up to 500 microM. Currents from -80 mV in the presence of 20 mM TEA were shown to represent primarily IA. La3+ (with TEA) reduced IA and maximum conductance (GA) by approximately 10% for 1 microM and another 10% each in 10 and 100 microM La3+. Normalized GA-V curves were well fit with a single Boltzmann function, with V1/2 +4 mV and slope 15 mV in control; V1/2 was successively approximately 15 mV depolarized and slope increased approximately 2 mV for each of these La3+ concentrations. Cd2+ (1 mM), Zn2+ (200 microM), and Pb2+ (100 microM) or removal of saline Mg2+ (26 mM) had little or no effect on IA. Steady-state inactivation showed similar right shifts (from V1/2 -39 mV) and slope increases (from 2.5 mV) in 10 and 100 microM La3+. Time to peak IA was slowed in 10 and 100 microM La3+, whereas curves of normalized time constants of initial decay from peak IA versus Vc were right-shifted successively approximately 15 mV for the three La3+ concentrations. The observations were fitted by a Woodhull-type model postulating a La3+-selective site that lies 0.26-0.34 of the distance across the membrane electric field, and both block of K+ movement and interaction with voltage-gating mechanisms; block can be relieved by depolarization and/or outward current. The observation of selective inhibition of IA by micromolar La3+ raises concerns about its use in studies of ICa to evaluate contamination by outward current.  相似文献   

19.
1. Whole-cell patch-clamp techniques were used to record outward currents in embryonic rat neocortical neurons maintained in culture. In the presence of tetrodotoxin and cadmium, depolarization evoked an outward current with a complex waveform. This outward current consisted of an initial fast transient component and a late, slowly inactivating component. 2. The two outward current components could be separated pharmacologically with the use of tetraethylammonium (TEA) and 4-aminopyridine (4-AP). TEA (20 mM) applied extracellularly completely blocked the late component, unmasking a fast transient outward current (TOC). 4-AP (5 mM) applied extracellularly blocked the early component while reducing the late component by 27.8 +/- 9.7% (mean +/- SE). 3. The TOC activated after a short delay and rose rapidly to a peak. The time to peak was voltage dependent and decreased with depolarization. In the presence of 200 microM extracellular cadmium, activation threshold was around -25 mV, and current amplitude increased with depolarization. The voltage-conductance relationship was well fitted by the use of the Boltzmann equation with a Vm of +19 mV for half activation and a slope factor of +6 mV. 4. On sustained depolarization the TOC rapidly inactivated and decayed to baseline within 500-600 ms. The decay phase followed a single exponential time course with a time constant of 55-65 ms. The decay time was most rapid at potentials from +5 to +20 mV and increased slightly with further depolarization. 5. Steady-state inactivation of the TOC, in the presence of cadmium, was complete near -10 mV and was totally relieved at potentials more negative than -75 mV. With the use of the Boltzmann equation, a Vm of -34 mV for half inactivation and a slope factor of -8.6 mV were found. 6. Recovery of the TOC from steady-state inactivation followed a single exponential time course and was voltage dependent. When the membrane potential was held at -84 mV during the conditioning pulse, the time constant of recovery was 17 ms, increasing to 45.2 and 58.1 ms at holding potentials of -64 and -44 mV, respectively. Holding at potentials more negative than -84 mV produced no further change in the recovery time course. 7. The presence of 200 microM external cadmium altered the TOC activation and inactivation curves. Removal of cadmium produced a -16-mV shift in the Vm for half activation and a -25-mV shift in the inactivation curve. This sensitivity to cadmium is higher than that reported in other systems.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Ionic currents in crustacean neurosecretory cells.   总被引:2,自引:0,他引:2  
1. The patterns of electrical activity and membrane characteristics of a population of neurosecretory-cell somata in the X-organ of the crayfish were investigated with microelectrodes and whole-cell, voltage-clamp techniques. Some neurons (56%) were silent but could be excited by intracellular current injection: other cells showed spontaneous tonic activity (35%), and some had spontaneous bursting activity (9%). The spiking activity was abolished by tetrodotoxin (TTX) exposure and by severing the axon near the cell body. After axotomy, only a small, slow, regenerative depolarization remained that could be blocked by Cd2+. 2. Under voltage clamp the steady-state I-V curve in low [Ca2+]i (9 X 10(-9) M) showed a slope conductance of 16.7 +/- 3.9 (SD) nS (n = 10) at -50 mV and zero current potential of -50.1 +/- 7.7 mV. In current-clamp mode these neurons were either silent or fired tonically. With high [Ca2+]i (1.7 X 10(-6) M) both the slope conductance and inward and outward currents were reduced. In some neurons high [Ca2+]i reveals a negative slope resistance in the range of -46 to -41 mV. It could be supressed by removing [Na+]o, but it was TTX insensitive. These are the neurons that under current clamp showed bursting activity. 3. The main inward current in cell somata was a Ca2+ current of 2 +/- 0.6 nA (n = 18), activated at -40 mV and peaking at 20 mV. It showed relaxation with prolonged pulses. No Na(+)-dependent, TTX-sensitive inward currents were recorded with short (100-ms) pulses in axotomized neurons. 4. Two outward currents could be distinguished.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号