首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The aim of this study was to determine if the angular vestibulo-ocular reflex (VOR) in response to pitch, roll, left anterior–right posterior (LARP), and right anterior–left posterior (RALP) head rotations exhibited the same linear and nonlinear characteristics as those found in the horizontal VOR. Three-dimensional eye movements were recorded with the scleral search coil technique. The VOR in response to rotations in five planes (horizontal, vertical, torsional, LARP, and RALP) was studied in three squirrel monkeys. The latency of the VOR evoked by steps of acceleration in darkness (3,000°/s2 reaching a velocity of 150°/s) was 5.8±1.7 ms and was the same in response to head rotations in all five planes of rotation. The gain of the reflex during the acceleration was 36.7±15.4% greater than that measured at the plateau of head velocity. Polynomial fits to the trajectory of the response show that eye velocity is proportional to the cube of head velocity in all five planes of rotation. For sinusoidal rotations of 0.5–15 Hz with a peak velocity of 20°/s, the VOR gain did not change with frequency (0.74±0.06, 0.74±0.07, 0.37±0.05, 0.69±0.06, and 0.64±0.06, for yaw, pitch, roll, LARP, and RALP respectively). The VOR gain increased with head velocity for sinusoidal rotations at frequencies 4 Hz. For rotational frequencies 4 Hz, we show that the vertical, torsional, LARP, and RALP VORs have the same linear and nonlinear characteristics as the horizontal VOR. In addition, we show that the gain, phase and axis of eye rotation during LARP and RALP head rotations can be predicted once the pitch and roll responses are characterized.This work was supported by NIH grant R01 DC02390  相似文献   

2.
The vestibuloocular reflex (VOR) effectively stabilizes the visual world on the retina over the wide range of head movements generated during daily activities by producing an eye movement of equal and opposite amplitude to the motion of the head. Although an intact VOR is essential for stabilizing gaze during walking and running, it can be counterproductive during certain voluntary behaviors. For example, primates use rapid coordinated movements of the eyes and head (gaze shifts) to redirect the visual axis from one target of interest to another. During these self-generated head movements, a fully functional VOR would generate an eye-movement command in the direction opposite to that of the intended shift in gaze. Here, we have investigated how the VOR pathways process vestibular information across a wide range of behaviors in which head movements were either externally applied and/or self-generated and in which the gaze goal was systematically varied (i.e., stabilize vs. redirect). VOR interneurons [i.e., type I position-vestibular-pause (PVP) neurons] were characterized during head-restrained passive whole-body rotation, passive head-on-body rotation, active eye-head gaze shifts, active eye-head gaze pursuit, self-generated whole-body motion, and active head-on-body motion made while the monkey was passively rotated. We found that regardless of the stimulation condition, type I PVP neuron responses to head motion were comparable whenever the monkey stabilized its gaze. In contrast, whenever the monkey redirected its gaze, type I PVP neurons were significantly less responsive to head velocity. We also performed a comparable analysis of type II PVP neurons, which are likely to contribute indirectly to the VOR, and found that they generally behaved in a quantitatively similar manner. Thus our findings support the hypothesis that the activity of the VOR pathways is reduced "on-line" whenever the current behavioral goal is to redirect gaze. By characterizing neuronal responses during a variety of experimental conditions, we were also able to determine which inputs contribute to the differential processing of head-velocity information by PVP neurons. We show that neither neck proprioceptive inputs, an efference copy of neck motor commands nor the monkey's knowledge of its self-motion influence the activity of PVP neurons per se. Rather we propose that efference copies of oculomotor/gaze commands are responsible for the behaviorally dependent modulation of PVP neurons (and by extension for modulation of the status of the VOR) during gaze redirection.  相似文献   

3.
The horizontal angular vestibuloocular reflex (VOR) evoked by high-frequency, high-acceleration rotations was studied in five squirrel monkeys with intact vestibular function. The VOR evoked by steps of acceleration in darkness (3,000 degrees /s(2) reaching a velocity of 150 degrees /s) began after a latency of 7.3 +/- 1.5 ms (mean +/- SD). Gain of the reflex during the acceleration was 14.2 +/- 5.2% greater than that measured once the plateau head velocity had been reached. A polynomial regression was used to analyze the trajectory of the responses to steps of acceleration. A better representation of the data was obtained from a polynomial that included a cubic term in contrast to an exclusively linear fit. For sinusoidal rotations of 0.5-15 Hz with a peak velocity of 20 degrees /s, the VOR gain measured 0.83 +/- 0.06 and did not vary across frequencies or animals. The phase of these responses was close to compensatory except at 15 Hz where a lag of 5.0 +/- 0.9 degrees was noted. The VOR gain did not vary with head velocity at 0.5 Hz but increased with velocity for rotations at frequencies of >/=4 Hz (0. 85 +/- 0.04 at 4 Hz, 20 degrees /s; 1.01 +/- 0.05 at 100 degrees /s, P < 0.0001). No responses to these rotations were noted in two animals that had undergone bilateral labyrinthectomy indicating that inertia of the eye had a negligible effect for these stimuli. We developed a mathematical model of VOR dynamics to account for these findings. The inputs to the reflex come from linear and nonlinear pathways. The linear pathway is responsible for the constant gain across frequencies at peak head velocity of 20 degrees /s and also for the phase lag at higher frequencies being less than that expected based on the reflex delay. The frequency- and velocity-dependent nonlinearity in VOR gain is accounted for by the dynamics of the nonlinear pathway. A transfer function that increases the gain of this pathway with frequency and a term related to the third power of head velocity are used to represent the dynamics of this pathway. This model accounts for the experimental findings and provides a method for interpreting responses to these stimuli after vestibular lesions.  相似文献   

4.
The horizontal angular vestibuloocular reflex (VOR) evoked by sinusoidal rotations from 0.5 to 15 Hz and acceleration steps up to 3,000 degrees /s(2) to 150 degrees /s was studied in six squirrel monkeys following adaptation with x2.2 magnifying and x0.45 minimizing spectacles. For sinusoidal rotations with peak velocities of 20 degrees /s, there were significant changes in gain at all frequencies; however, the greatest gain changes occurred at the lower frequencies. The frequency- and velocity-dependent gain enhancement seen in normal monkeys was accentuated following adaptation to magnifying spectacles and diminished with adaptation to minimizing spectacles. A differential increase in gain for the steps of acceleration was noted after adaptation to the magnifying spectacles. The gain during the acceleration portion, G(A), of a step of acceleration (3,000 degrees /s(2) to 150 degrees /s) increased from preadaptation values of 1.05 +/- 0.08 to 1.96 +/- 0.16, while the gain during the velocity plateau, G(V), only increased from 0.93 +/- 0.04 to 1.36 +/- 0.08. Polynomial fits to the trajectory of the response during the acceleration step revealed a greater increase in the cubic than the linear term following adaptation with the magnifying lenses. Following adaptation to the minimizing lenses, the value of G(A) decreased to 0.61 +/- 0.08, and the value of G(V) decreased to 0.59 +/- 0.09 for the 3,000 degrees /s(2) steps of acceleration. Polynomial fits to the trajectory of the response during the acceleration step revealed that there was a significantly greater reduction in the cubic term than in the linear term following adaptation with the minimizing lenses. These findings indicate that there is greater modification of the nonlinear as compared with the linear component of the VOR with spectacle-induced adaptation. In addition, the latency to the onset of the adapted response varied with the dynamics of the stimulus. The findings were modeled with a bilateral model of the VOR containing linear and nonlinear pathways that describe the normal behavior and adaptive processes. Adaptation for the linear pathway is described by a transfer function that shows the dependence of adaptation on the frequency of the head movement. The adaptive process for the nonlinear pathway is a gain enhancement element that provides for the accentuated gain with rising head velocity and the increased cubic component of the responses to steps of acceleration. While this model is substantially different from earlier models of VOR adaptation, it accounts for the data in the present experiments and also predicts the findings observed in the earlier studies.  相似文献   

5.
The horizontal angular vestibuloocular reflex (VOR) evoked by high-frequency, high-acceleration rotations was studied in four squirrel monkeys after unilateral labyrinthectomy. Spontaneous nystagmus was measured at the beginning and end of each testing session. During the period that animals were kept in darkness (4 days), the nystagmus at each of these times measured approximately 20 degrees /s. Within 18-24 h after return to the light, the nystagmus (measured in darkness) decreased to 2.8 +/- 1.5 degrees /s (mean +/- SD) when recorded at the beginning but was 20.3 +/- 3.9 degrees /s at the end of the testing session. The latency of the VOR measured from responses to steps of acceleration (3,000 degrees /s(2) reaching a velocity of 150 degrees /s) was 8.4 +/- 0.3 ms for responses to ipsilesional rotations and 7.7 +/- 0.4 ms for contralesional rotations. During the period that animals were kept in darkness after the labyrinthectomy, the gain of the VOR measured during the steps of acceleration was 0.67 +/- 0.12 for contralesional rotations and 0.39 +/- 0.04 for ipsilesional rotations. Within 18-24 h after return to light, the VOR gain for contralesional rotations increased to 0.87 +/- 0.08, whereas there was only a slight increase for ipsilesional rotations to 0.41 +/- 0. 06. A symmetrical increase in the gain measured at the plateau of head velocity was noted after the animals were returned to light. The VOR evoked by sinusoidal rotations of 2-15 Hz, +/-20 degrees /s, showed a better recovery of gain at lower (2-4 Hz) than at higher (6-15 Hz) frequencies. At 0.5 Hz, gain decreased symmetrically when the peak amplitude was increased from 20 to 100 degrees /s. At 10 Hz, gain was decreased for ipsilesional half-cycles and increased for contralesional half-cycles when velocity was raised from 20 to 50 degrees /s. A model incorporating linear and nonlinear pathways was used to simulate the data. Selective increases in the gain for the linear pathway accounted for the recovery in VOR gain for responses at the velocity plateau of the steps of acceleration and for the sinusoidal rotations at lower peak velocities. The increase in gain for contralesional responses to steps of acceleration and sinusoidal rotations at higher frequencies and velocities was due to an increase in the contribution of the nonlinear pathway. This pathway was driven into cutoff and therefore did not affect responses for rotations toward the lesioned side.  相似文献   

6.
The horizontal angular vestibuloocular reflex (VOR) evoked by high-frequency, high-acceleration rotations was studied in four squirrel monkeys after unilateral plugging of the three semicircular canals. During the period (1-4 days) that animals were kept in darkness after plugging, the gain during steps of acceleration (3, 000 degrees /s(2), peak velocity = 150 degrees /s) was 0.61 +/- 0.14 (mean +/- SD) for contralesional rotations and 0.33 +/- 0.03 for ipsilesional rotations. Within 18-24 h after animals were returned to light, the VOR gain for contralesional rotations increased to 0. 88 +/- 0.05, whereas there was only a slight increase in the gain for ipsilesional rotations to 0.37 +/- 0.07. A symmetrical increase in the gain measured at the plateau of head velocity was noted after animals were returned to light. The latency of the VOR was 8.2 +/- 0. 4 ms for ipsilesional and 7.1 +/- 0.3 ms for contralesional rotations. The VOR evoked by sinusoidal rotations of 0.5-15 Hz, +/-20 degrees /s had no significant half-cycle asymmetries. The recovery of gain for these responses after plugging was greater at lower than at higher frequencies. Responses to rotations at higher velocities for frequencies >/=4 Hz showed an increase in contralesional half-cycle gain, whereas ipsilesional half-cycle gain was unchanged. A residual response that appeared to be canal and not otolith mediated was noted after plugging of all six semicircular canals. This response increased with frequency to reach a gain of 0.23 +/- 0.03 at 15 Hz, resembling that predicted based on a reduction of the dominant time constant of the canal to 32 ms after plugging. A model incorporating linear and nonlinear pathways was used to simulate the data. The coefficients of this model were determined from data in animals with intact vestibular function. Selective increases in the gain for the linear and nonlinear pathways predicted the changes in recovery observed after canal plugging. An increase in gain of the linear pathway accounted for the recovery in VOR gain for both responses at the velocity plateau of the steps of acceleration and for the sinusoidal rotations at lower peak velocities. The increase in gain for contralesional responses to steps of acceleration and sinusoidal rotations at higher frequencies and velocities was due to an increase in the gain of the nonlinear pathway. This pathway was driven into inhibitory cutoff at low velocities and therefore made no contribution for rotations toward the ipsilesional side.  相似文献   

7.
The vestibuloocular reflex (VOR) needs to modulate its gain depending on target distance to prevent retinal slip during head movements. We investigated gain modulation (context compensation) for binocular gaze stabilization in human subjects during voluntary yaw and pitch head rotations. Movements of each eye were recorded, both when attempting to maintain gaze on a small visual target at straight-ahead in a darkened room and after its disappearance (remembered target). In the analysis, we relied on a binocular coordinate system yielding a version and a vergence component. We examined how frequency and target distance, approached here by using vergence angle, affected the gain and phase of the version component of the VOR and compared the results to the requirements for ideal performance. Linear regression analysis on the version gain-vergence relationship yielded a slope representing the influence of target proximity and an intercept corresponding to the response at zero vergence ("default gain"). The slope of the fitted relationship, divided by the geometrically required slope, provided a measure for the quality of version context compensation ("context gain"). In both yaw and pitch experiments, we found default version gains close to one even for the remembered target condition, indicating that the active VOR for far targets is already close to ideal without visual support. In near target experiments, the presence of visual feedback yielded near unity context gains, indicating close to optimal performance (retinal slip <0.4 degrees /s). For remembered targets, the context gain deteriorated but was still superior to performance in corresponding passive studies reported in the literature. In general, context compensation in the remembered target paradigm was better for vertical than for horizontal head rotations. The phase delay of version eye velocity relative to head velocity was small (approximately 2 degrees) for both horizontal and vertical head movements. Analysis of the vergence data from the near target experiments showed that context compensation took into account that the two eyes require slightly different VORs. In the DISCUSSION, comparison of the present default VOR gains and context gains with data from earlier passive studies has led us to propose a limited role for efference copies during self-generated movements. We also discuss how our analysis can provide a framework for evaluating two different hypotheses for the generation of binocular VOR eye movements.  相似文献   

8.
9.
Mammalian vestibular-nerve afferents innervating the semicircular canals have been divided into groups according to their discharge regularity, gain at 2-Hz rotational stimulation, and morphology. Low-gain irregular afferents terminate in calyx endings in the central crista, high-gain irregular afferents synapse more peripherally in dimorphic (bouton and calyx) endings, and regular afferents terminate in the peripheral zone as bouton-only and dimorphic endings. The response dynamics of these three groups have been described only up to 4 Hz in previous studies. Reported here are responses of chinchilla semicircular canal vestibular-nerve afferents to rotational stimuli at frequencies up to 16 Hz. The sensitivity of all afferents increased with increasing frequency with the sensitivity of low-gain irregular afferents increasing the most and matching the high-gain irregular afferents at 16 Hz. All afferents increased their phase lead with respect to stimulus velocity at higher frequencies with the highest leads in low-gain irregular afferents and the lowest in regular afferents. No attenuation of sensitivity or shift in phase consistent with the presence of a high-frequency pole over the range tested was noted. Responses were best fit with a torsion-pendulum model combined with a lead operator (tau(HF1)s + 1)(tau(HF2)s + 1). The discharge regularity of individual afferents was correlated to the value of each afferent's lead operator time constants. These findings suggest that low-gain irregular afferents are well suited for encoding the onset of rapid head movements, a property that would be advantageous for initiation of reflexes with short latency such as the vestibulo-ocular reflex.  相似文献   

10.
11.
This study investigated the static and dynamic characteristics of the pupillary light reflex (PLR) in the alert rhesus monkey. Temporal characteristics of the PLR were investigated with Maxwellian viewing during sinusoidal changes in illumination of a 36 degrees stimulus in both monkeys and humans. Bode plots of the PLR response were fitted by a linear model composed of a delay combined with a cascaded first- and second-order filter. The Bode magnitude plots conformed to this model with a sharp roll-off above 1.3 Hz for the human PLR and 1.9 Hz for the monkey PLR. Bode phase angle plots were fitted by this model with a delay of 280 ms for humans and 160 ms for monkeys. To investigate the influence of the sympathetic innervation of the iris on steady-state pupil diameter, dynamics of pupillary responses, and the latency of the PLR, we blocked this innervation pharmacologically with a selective alpha-1 adrenoreceptor antagonist. Although there was a resultant miosis (decrease in pupil diameter) from the relaxation of the pupil dilator muscle, no other measures of the PLR, including the dynamics and latency, were significantly affected by this treatment. We examined the pupillary responses evoked by visual stimuli presented either binocularly or monocularly at various locations on a 80 x 60 degrees tangent screen. These pupillomotor fields revealed that, as has been reported for humans, stimuli at the fovea and surrounding macular region of monkeys produce substantially larger pupillary responses than more peripheral stimuli and that binocular responses are substantially greater than can be accounted for by the linear summation of binocular retinal illuminance. In conclusion, we found that the spatial characteristics of the PLR of the rhesus monkey are very similar, in all important aspects, to those reported for humans and that the temporal responses of the PLR are comparable between the two species. The rhesus monkey thus provides an excellent model for experimental studies of the neural control of the pupil.  相似文献   

12.
Vertical eye position-dependence of the human vestibuloocular reflex during passive and active yaw head rotations. The effect of vertical eye-in-head position on the compensatory eye rotation response to passive and active high acceleration yaw head rotations was examined in eight normal human subjects. The stimuli consisted of brief, low amplitude (15-25 degrees ), high acceleration (4,000-6,000 degrees /s2) yaw head rotations with respect to the trunk (peak velocity was 150-350 degrees /s). Eye and head rotations were recorded in three-dimensional space using the magnetic search coil technique. The input-output kinematics of the three-dimensional vestibuloocular reflex (VOR) were assessed by finding the difference between the inverted eye velocity vector and the head velocity vector (both referenced to a head-fixed coordinate system) as a time series. During passive head impulses, the head and eye velocity axes aligned well with each other for the first 47 ms after the onset of the stimulus, regardless of vertical eye-in-head position. After the initial 47-ms period, the degree of alignment of the eye and head velocity axes was modulated by vertical eye-in-head position. When fixation was on a target 20 degrees up, the eye and head velocity axes remained well aligned with each other. However, when fixation was on targets at 0 and 20 degrees down, the eye velocity axis tilted forward relative to the head velocity axis. During active head impulses, the axis tilt became apparent within 5 ms of the onset of the stimulus. When fixation was on a target at 0 degrees, the velocity axes remained well aligned with each other. When fixation was on a target 20 degrees up, the eye velocity axis tilted backward, when fixation was on a target 20 degrees down, the eye velocity axis tilted forward. The findings show that the VOR compensates very well for head motion in the early part of the response to unpredictable high acceleration stimuli-the eye position- dependence of the VOR does not become apparent until 47 ms after the onset of the stimulus. In contrast, the response to active high acceleration stimuli shows eye position-dependence from within 5 ms of the onset of the stimulus. A model using a VOR-Listing's law compromise strategy did not accurately predict the patterns observed in the data, raising questions about how the eye position-dependence of the VOR is generated. We suggest, in view of recent findings, that the phenomenon could arise due to the effects of fibromuscular pulleys on the functional pulling directions of the rectus muscles.  相似文献   

13.
14.
Responses of single neurons were recorded in the medial and descending vestibular nuclei (MVN and DVN) and in the deep cerebellar nuclei of three juvenile rhesus monkeys (Macaca mulatta). Neuronal activity was measured during both passive sinusoidal and nonsinusoidal whole body rotation (peak velocities were under 90 degrees/s) and during active head movements. Although the active head movements occasionally exceeded 300 degrees/s, most exhibited peak velocities of less than 200 degrees/s. A total of 133 units sensitive to horizontal head rotation were recorded, and of these, 38 were held for sufficient time to obtain both passive and active head movement data. Comparison of the neuronal firing patterns obtained during active and passive head movements revealed no apparent differences. Thus neurons that were observed to burst or pause during saccades with the head fixed continued to do so when the head was free. Both the sensitivity to head velocity and the "inferred" spontaneous firing rate were compared during active and passive head movements by plotting rate-velocity curves for both conditions. When the data points were fitted with linear regression lines, no statistically significant differences in either sensitivity or spontaneous rate were found. The present study provides no evidence that efferent vestibular activity alters the properties of afferent vestibular neurons during active head movements, as has previously been suggested (21). Furthermore, neurons in the rostral portions of the vestibular nuclei in primates encode head velocity based entirely on labyrinthine information. Neither neck proprioceptors nor an efference copy of the head movement motor program seem to contribute significantly to the firing patterns observed.  相似文献   

15.
1. In natural conditions, gaze (i.e., eye + head) orientation is a complex behavior involving simultaneously the eye and head motor systems. Thus one of the key problems of gaze control is whether or not the vestibuloocular reflex (VOR) elicited by head rotation and saccadic eye movement linearly add. 2. Kinematics of human gaze saccades within the oculomotor range (OMR) were quantified under different conditions of head motion. Saccades were visually triggered while the head was fixed or passively moving at a constant velocity (200 deg/s) either in the same direction as, or opposite to, the saccade. Active eye-head coordination was also studied in a session in which subjects were trained to actively rotate their head at a nearly constant velocity during the saccade and, in another session, during natural gaze responses. 3. When the head was passively rotated toward the visual target, both maximum and mean gaze velocities increased with respect to control responses with the head fixed; these effects increased with gaze saccade amplitude. In addition, saccade duration was reduced so that corresponding gaze accuracy, although poorer than for control responses, was not dramatically affected by head motion. 4. The same effects on gaze velocity were present during active head motion when a constant head velocity was maintained throughout saccade duration, and gaze saccades were as accurate as with the head fixed. 5. During natural gaze responses, an increased gaze velocity and a decreased saccade duration with respect to control responses became significant only for gaze displacement larger than 30 degrees, due to the negligible contribution of head motion for smaller responses. 6. When the head was passively rotated in the opposite direction to target step, gaze saccades were slower than those obtained with the head fixed; but their average accuracy was still maintained. 7. These results confirm a VOR inhibition during saccadic eye movements within the OMR. This inhibition, present in all 16 subjects studied, ranged from 40 to 96% (for a 40 degree target step) between subjects and increased almost linearly with target step amplitude. Furthermore, the systematic difference between instantaneous VOR gain estimated at the time of maximum gaze velocity and mean VOR gain estimated over the whole saccadic duration indicates a decay of VOR inhibition during the ongoing saccade. 8. A simplified model is proposed with a varying VOR inhibition during the saccade. It suggests that VOR inhibition is not directly controlled by the saccadic pulse generator.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Summary Responses to sudden shifts of a pattern far away from the receptive field (shift-effect) were found in 73 out of 81 cells of the ventral, magnocellular LGN layers, but in only 26 out of 85 cells of the dorsal, parvocellular layers. Most of the former responses were clear and excitatory, and most of the latter were weak and inhibitory. Excitatory responses were stronger for steady receptive field illumination which when turned on also yielded an excitation. No convincing dependence on the colour of the receptive field illumination was observed. The results are discussed with respect to the hypothesis of transmission of steady illumination via the shift-effect (restoration), and with respect to a hypothesis assigning a signalling function of low stimulus specificity to the ventral layers.  相似文献   

17.
18.
L. W. Schultheis and D. A. Robinson showed that the axis of the rotational vestibuloocular reflex (RVOR) cannot be altered by visual-vestibular mismatch ("cross-axis adaptation") when the vestibulocerebellum is lesioned. This suggests that the cerebellum may calibrate the axis of eye velocity of the RVOR under natural conditions. Thus we asked whether patients with cerebellar disease have alterations in the RVOR axis and, if so, what might be the mechanism. We used three-axis scleral coils to record head and eye movements during yaw, pitch, and roll head impulses in 18 patients with cerebellar disease and in a comparison group of eight subjects without neurologic disease. We found distinct shifts of the eye-velocity axis in patients. The characteristic finding was a disconjugate upward eye velocity during yaw. Measured at 70 ms after the onset of head rotation, the median upward gaze velocity was 15% of yaw head velocity for patients and <1% for normal subjects (P < 0.001). Upward eye velocity was greater in the contralateral (abducting) eye during yaw and in the ipsilateral eye during roll. Patients had a higher gain (eye speed/head speed) for downward than for upward pitch (median ratio of downward to upward gain: 1.3). In patients, upward gaze velocities during both yaw and roll correlated with the difference in anterior (AC) and posterior canal excitations, scaled by the respective pitch gains. Our findings support the hypothesis that upward eye velocity during yaw results from AC excitation, which must normally be suppressed by the intact cerebellum.  相似文献   

19.
In mammals, vestibular-nerve afferents that innervate only type I hair cells (calyx-only afferents) respond nearly in phase with head acceleration for high-frequency motion, whereas afferents that innervate both type I and type II (dimorphic) or only type II (bouton-only) hair cells respond more in phase with head velocity. Afferents that exhibit irregular background discharge rates have a larger phase lead re-head velocity than those that fire more regularly. The goal of this study was to investigate the cause of the variation in phase lead between regular and irregular afferents at high-frequency head rotations. Under the assumption that externally applied galvanic currents act directly on the nerve, we derived a transfer function describing the dynamics of a semicircular canal and its hair cells through comparison of responses to sinusoidally modulated head velocity and currents. Responses of all afferents were fit well with a transfer function with one zero (lead term). Best-fit lead terms describing responses to current for each group of afferents were similar to the lead term describing responses to head velocity for regular afferents (0.006 s + 1). This finding indicated that the pre-synaptic and synaptic inputs to regular afferents were likely to be pure velocity transducers. However, the variation in phase lead between regular and irregular afferents could not be explained solely by the ratio of type I to II hair cells (Baird et al 1988), suggesting that the variation was caused by a combination of pre- (type of hair cell) and post-synaptic properties.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号