首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The epsilon4 allele of apolipoprotein E APOE is a risk factor for Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA), and the epsilon2 allele is associated with a decreased risk for AD. There is strong evidence to suggest that a major, if not the main, mechanism underlying the link between apoE and both AD and CAA is related to the ability of apoE to interact with the amyloid-beta (Abeta) peptide and influence its clearance, aggregation, and conformation. In addition to a number of in vitro studies supporting this concept, in vivo studies with amyloid precursor protein (APP) transgenic mice indicate that apoE and a related molecule, clusterin (also called apolipoprotein J), have profound effects on the onset of Abeta deposition, as well as the local toxicity associated with Abeta deposits both in the brain parenchyma and in cerebral blood vessels. Taken together, these studies suggest that altering the expression of apoE and clusterin in the brain or the interactions between these molecules and Abeta would alter AD pathogenesis and provide new therapeutic avenues for prevention or treatment of CAA and AD.  相似文献   

2.
An important event in the pathogenesis of Alzheimer's disease (AD) is the deposition of the amyloid beta (Abeta)1-40 and 1-42 peptides in a fibrillar form, with Abeta42 typically having a greater propensity to undergo this conformational change. A major risk factor for late-onset AD is the inheritance of the apolipoprotein E (apoE) 4 allele [3,14,31]. We previously proposed that apoE may function as a "pathological chaperone" in the pathogenesis of AD (i.e. modulate the structure of Abeta, promoting or stabilizing a beta-sheet conformation), prior to the discovery of this linkage [7,40,41,42]. Data from apoE knockout / AbetaPP^(V717F) mice, has shown that the presence of apoE is necessary for cerebral amyloid formation [1,2], consistent with our hypothesis. However, in betaPP^(V717F) mice expressing human apoE3 or E4 early Abeta deposition at 9 months is suppressed, but by 15 months both human apoE expressing mice had significant fibrillar Abeta deposits with the apoE4 expressing mice having a 10 fold greater amyloid burden [8,9]. This and other data has suggested that apoE, in addition to having a facilitating role in fibril formation, may also influence clearance of Abeta peptides. In order to address if apoE affects the clearance of Abeta peptides across the blood-brain barrier (BBB) and whether there are differences in the clearance of Abeta40 versus Abeta42, we performed stereotactic, intra-ventricular micro-injections of Abeta40, Abeta42 or control peptides in wild-type, apoE knock-out (KO) or human apoE3 or apoE4 expressing transgenic mice. We found that consistent with other studies [5], Abeta40 is rapidly cleared from the brain across the BBB; however, Abeta42 is cleared much less effectively. This clearance of exogenous Abeta peptides across the BBB does not appear to be affected by apoE expression. This data suggests that Abeta42 production may favor amyloid deposition due to a reduced clearance across the BBB, compared to Abeta40. In addition, our experiments support a role of apoE as a pathological chaperone, and do not suggest an isotype specific role of apoE in exogenous Abeta peptide clearance from the CSF across the BBB.  相似文献   

3.
A transgenic mouse expressing the human beta-amyloid precursor protein with the 'Swedish' mutation, Tg2576, was used to investigate the mechanism of beta-amyloid (Abeta) deposition. Previously, we have reported that the major species of Abeta in the amyloid plaques of Tg2576 mice are Abeta1-40 and Abeta1-42. Moreover, Abeta1-42 deposition precedes Abeta1-40 deposition, while Abeta1-40 accumulates in the central part of the plaques later in the pathogenic process. Those data indicate that Abeta deposits in Tg2576 mice have similar characteristics to those in Alzheimer's disease. In the present study, to understand more fully the amyloid deposition mechanism implicating Alzheimer's disease pathogenesis, we examined immunohistochemically the distributions of apolipoprotein E (apoE) and Abeta in amyloid plaques of aged Tg2576 mouse brains. Our findings suggest that Abeta1-42 deposition precedes apoE deposition, and that Abeta1-40 deposition follows apoE deposition during plaque maturation. We next examined the relationship between apoE and astrogliosis associated with amyloid plaques using a double-immunofluorescence method. Extracellular apoE deposits were always associated with reactive astrocytes whose processes showed enhancement of apoE-immunoreactivity. Taken together, the characteristics of amyloid plaques in Tg2576 mice are similar to those in Alzheimer's disease with respect to apoE and astrogliosis. Furthermore, apoE deposition and astrogliosis may be necessary for amyloid plaque maturation.  相似文献   

4.
Apolipoprotein E (apoE) and apoE-derived proteolytic fragments are present in amyloid deposits in Alzheimer disease (AD) and cerebral amyloid angiopathy (CAA). In this study, we examined which apoE fragments are most strongly associated with amyloid deposits and whether apoE receptor binding domains were present. We found that both apoE2- and apoE4-specific residues were present on plaques and blood vessels in AD and CAA. We quantified Abeta plaque burden and apoE plaque burdens in 5 AD brains. ApoE N-terminal-specific and C-terminal-specific antibodies covered 50% and 74% of Abeta plaque burden, respectively (p < 0.003). Double-labeling demonstrated that the plaque cores contained the entire apoE protein, but that outer regions contained only a C-terminal fragment, suggesting a cleavage in the random coil region of apoE. Presence of N- and C-terminal apoE cleavage fragments in brain extracts was confirmed by immunoblotting. The numbers of plaques identified by the apoE N-terminal-specific antibodies and the apoE C-terminal-specific antibody were equal, but were only approximately 60% of the total Abeta plaque number (p < 0.0001). Analysis of the size distribution of Abeta and apoE deposits demonstrated that most of the Abeta-positive, apoE-negative deposits were the smallest deposits (less than 150 microm2). These data suggest that C-terminal residues of apoE bind to Abeta and that apoE may help aid in the progression of small Abeta deposits to larger deposits. Furthermore, the presence of the apoE receptor binding domain in the center of amyloid deposits could affect surrounding cells via chronic interactions with cell surface apoE receptors.  相似文献   

5.
Increasing evidence suggests that intraneuronal amyloid-beta (Abeta) accumulation may be an early event in Alzheimer's disease (AD) pathogenesis. However direct in vivo evidence regarding initial Abeta seeding is missing. Using an APP transgenic mouse model, our sensitive immunocytochemical procedures revealed a novel intraneuronal Abeta deposition in the somas of hippocampal CA1/subiculum neurons far in advance of the occurrence of extracellular Abetaplaques. These deposits increased exponentially with age and were elevated approximately 4-fold (p < 0.001) by high fat/high cholesterol diet. Abeta40 and Abeta42 were the major constituents of these deposits and were co-localized with lysosomal markers. Our results are consistent with the notion that the earliest Abeta deposition occurs intraneuronally, prior to extracellular amyloid plaque formation.  相似文献   

6.
The epsilon4 allele of apolipoprotein E (apoE) is associated with increased risk for the development of Alzheimer's disease (AD), possibly due to interactions with the beta-amyloid (Abeta) protein. The mechanism by which these two proteins are linked to AD is still unclear. To further assess their potential relationship with the disease, we have determined levels of apoE and Abeta isoforms from three brain regions of neuropathologically confirmed AD and non-AD tissue. In two brain regions affected by AD neuropathology, the hippocampus and frontal cortex, apoE levels were found to be decreased while Abeta(1-40) levels were increased. Levels of apoE were unchanged in AD cerebellum. Furthermore, levels of apoE and Abeta(1-40) were found to be apoE genotype dependent, with lowest levels of apoE and highest levels of Abeta(1-40) occurring in epsilon4 allele carriers. These results suggest that reduction in apoE levels may give rise to increased deposition of amyloid peptides in AD brain.  相似文献   

7.
The apolipoprotein E epsilon4 allele (APOE, gene; apoE, protein) is widely accepted as a risk factor for Alzheimer's disease (AD). Our previous studies found that APOEepsilon4 promotes AD pathogenesis by fostering the early deposition of the amyloidogenic peptide Abeta in the aging brain. Recent reports suggest that polymorphisms in the upstream promoter region of APOE differentially affect the production of apoE and also may have an important influence on the probability of developing AD. In this study, we asked whether APOE promoter -491 (A/T) variants interact with APOE polymorphisms to modulate the degree of beta-amyloid- and tau-related pathology in the medial temporal lobe of the non-demented elderly. Our results confirm that APOEepsilon4 is associated with increased formation of senile plaques, cerebrovascular amyloid, and neurofibrillary tangles in the medial temporal lobe. We also found that homozygosity for A at position -491 of the APOE promoter (-491AA) correlates with increased Abeta17-24 and Abeta42 deposition in APOEepsilon4-positive cases, but not in cases lacking the epsilon4 allele. In comparison, Abeta burden is significantly less in epsilon4 carriers with the -491AT and -491TT promoter allelotypes. There was no effect of -491 polymorphisms on Abeta40 deposition (which is relatively sparse in the non-demented elderly), on the number of activated microglia, or on the amount of neurofibrillary tangles. We conclude that the amyloidogenic effects of apoE4 are exacerbated by polymorphisms in the APOE promoter that enhance apoE production.  相似文献   

8.
beta-Amyloid (Abeta) deposits are found in the brains of approximately one-third of patients who die within days after a severe head injury; their presence correlating strongly with possession of an apolipoprotein E (apoE)-epsilon4 allele. The aim of the study was to investigate the relationship between Abeta42, Abeta40 and apoE immunostaining of Abeta plaques in the cerebral cortex and the relevance of apoE genotype in 23 fatally head-injured patients. These cases were known to have Abeta deposits from a previous study in which they were examined and semiquantified and related to apoE genotype. In the present study, the temporal cortex was probed using four different antibodies that recognize Abeta42(43), Abeta40 and an antibody to apoE. Abeta42(43)-positive plaques were observed in all of the 23 cases and Abeta40 immunoreactivity in only 11 of the 23 cases. In addition, semiquantitative analysis showed that relatively fewer plaques were detected with anti-Abeta40 than anti-Abeta42(43). ApoE-immunoreactive plaques were identified in 18 of the 23 cases. The number of plaques stained for apoE was relatively less than for Abeta42(43) but greater than for Abeta40. Furthermore, the density of Abeta plaques detected using either Abeta42(43), Abeta40 or apoE antibodies was associated with possession of apoE-epsilon4 in an allele dose-dependent manner. The results are consistent with Abeta42(43) as the initially deposited species in brain parenchyma and provide evidence that apoE is involved in the early stages of amyloid deposition. Further, the findings may be of relevance to the role of apoE genotype in influencing outcome after acute brain injury.  相似文献   

9.
Alzheimer's disease (AD) is a progressive, neurodegenerative disorder characterized by amyloid deposition in the cerebral neuropil and vasculature. These amyloid deposits comprise predominantly fragments and full-length (40 or 42 residue) forms of the amyloid beta-protein (Abeta) organized into fibrillar assemblies. Compelling evidence indicates that factors that increase overall Abeta production or the ratio of longer to shorter forms, or which facilitate deposition or inhibit elimination of amyloid deposits, cause AD or are risk factors for the disease. In vitro studies have demonstrated that fibrillar Abeta has potent neurotoxic effects on cultured neurons. In vivo experiments in non-human primates have demonstrated that Abeta fibrils directly cause pathologic changes, including tau hyperphosphorylation. In concert with histologic studies revealing a lack of tissue injury in areas of the neuropil in which non-fibrillar deposits were found, these data suggested that fibril assembly was a prerequisite for Abeta-mediated neurotoxicity in vivo. Recently, however, both in vitro and in vivo studies have revealed that soluble, oligomeric forms of Abeta also have potent neurotoxic activities, and in fact, may be the proximate effectors of the neuronal injury and death occurring in AD. A paradigm shift is thus emerging that necessitates the reevaluation of the relative importance of polymeric (fibrillar) vs. oligomeric assemblies in the pathobiology of AD. In addition to AD, an increasing number of neurodegenerative disorders, including Parkinson's disease, familial British dementia, familial amyloid polyneuropathy, amyotrophic lateral sclerosis, and prion diseases, are associated with abnormal protein assembly processes. The archetypal features of the assembly-dependent neuropathogenetic effects of Abeta may thus be of relevance not only to AD but to these other disorders as well.  相似文献   

10.
It has been postulated that neuroinflammation plays a critical role in the pathogenesis of Alzheimer's disease (AD). To directly test whether an inflammatory stimulus can accelerate amyloid deposition in vivo, we chronically administered the bacterial endotoxin, lipopolysaccharide (LPS), intracerebroventricularly (i.c.v.) to 2-month-old APPV717F+/+ transgenic (TG) mice, which overexpress a mutant human amyloid precursor protein (APP 717V-F) with or without apolipoprotein E (apoE) for 2 weeks. Two weeks following central LPS administration a striking global reactive astrocytosis with increased GFAP immunoreactivity was found throughout the brains of all LPS-treated wild-type and transgenic mice including the contralateral brain hemisphere. Localized microglial activation was also evident from lectin immunostaining adjacent to the cannula track of LPS-treated mice. Quantification of thioflavine-S-positive Abeta deposits revealed a marked acceleration of amyloid deposition in LPS-treated APPV717F+/+-apoE+/+ mice compared to nontreated or vehicle-treated APPV717F+/+-apoE+/+ mice (P = 0.005). By contrast, no amyloid deposits were detected by thioflavine-S staining in LPS or vehicle-treated apoE-deficient APPV717F TG mice. Our data suggest that neuroinflammation can accelerate amyloid deposition in the APPV717F+/+ mouse model of AD and that this process requires the expression of apoE.  相似文献   

11.
One of the major histopathological hallmarks of Alzheimer's disease (AD) is redundant senile plaques mainly composed of beta-amyloid (Abeta) aggregates. Alternative cleavage of the amyloid precursor protein (APP), occurring in both normal and AD subjects, results in the generation and secretion of soluble APP (sAPP) and Abeta. We examined the cerebrospinal fluid (CSF) for alpha- and beta-secretase cleaved sAPP (alpha-sAPP and beta-sAPP) in 81 sporadic AD patients, 19 patients with mild cognitive impairment, and 42 healthy controls by using newly developed sandwich enzyme-linked immunosorbent assay methods. We found that neither the level of CSF-alpha-sAPP nor CSF-beta-sAPP differed between sporadic AD patients and healthy controls. These findings further support the conclusion that there is no change in APP expression in sporadic AD. However, the level of CSF-beta-sAPP was significantly increased in patients with mild cognitive impairment compared to controls. We also investigated the relationship between the CSF level of alpha/beta-sAPP and Abeta(42) and the apoE epsilon 4 (apoE4) allele. Significantly lower levels of CSF-alpha-sAPP were found in AD patients possessing one or two apoE4 alleles than in those not possessing the apoE4 allele. Neither the levels of CSF-beta-sAPP nor CSF-Abeta(42) differed when comparing ApoE4 allele-positive with allele-negative individuals.  相似文献   

12.
Inhibiting aggregation and deposition of amyloid beta-peptide (Abeta) in brain is a therapeutic strategy for Alzheimer's disease (AD). A Congo-red-like molecule, X-34, is reported to bind to Abeta deposits. Oxidative stress associated with Abeta is hypothesized to be critical for the neurotoxic properties of this peptide. The present study was undertaken to test the hypothesis that X-34, with its salicylate groups, would act as an antioxidant. When challenged by hydroxyl or peroxyl free radicals or Abeta(1-42), oxidative stress and neurotoxicity occurred in neural systems as assessed by several indices. However, pretreatment of synaptosomes and primary neuronal cell culture with X-34 greatly ameliorated lipid peroxidation induced by these free radicals and Abeta(1-42). Protein oxidation was not prevented by X-34. These results are discussed in terms of potential therapeutic use of X-34 and related compounds in AD.  相似文献   

13.
Yanagisawa K 《Pharmacopsychiatry》2003,36(Z2):S127-S129
Regarding deposition of amyloid beta-protein (Abeta) in brains with Alzheimer's disease (AD), we previously identified a novel Abeta species that strongly binds to GM1 ganglioside (GM1) in human brains that exhibit early pathological changes of AD. We hypothesized that Abeta undergoes conformational alteration through its binding to GM1 and acts as a seed. We recently found that an increase in the cholesterol concentration in host membranes markedly accelerates Abeta binding to GM1. We then investigated whether the cholesterol concentration in neuronal membranes could be altered under biological conditions that are associated with risk factors for AD development. We attempted to determine the distribution of cholesterol in the synaptic plasma membranes (SPMs) of human apolipoprotein E (apoE)-knock-in mice and found that the cholesterol concentration in the exofacial leaflet of SPMs of the human apoE4-knock-in mice was approximately twice that of human apoE3-knock-in mice. The results of our studies suggest that an increase in the cholesterol concentration in the neuronal membranes accelerates Abeta aggregation through the formation of an endogenous seed.  相似文献   

14.
Cerebral amyloid-beta (Abeta) deposition is central to the neuropathological definition of Alzheimer disease (AD) with Abeta related toxicity being linked to its beta-sheet conformation and/or aggregation. We show that a beta-sheet breaker peptide (iAbeta5) dose-dependently and reproducibly induced in vivo disassembly of fibrillar amyloid deposits, with control peptides having no effect. The iAbeta5-induced disassembly prevented and/or reversed neuronal shrinkage caused by Abeta and reduced the extent of interleukin-1beta positive microglia-like cells that surround the Abeta deposits. These findings suggest that beta-sheet breakers, such as iAbeta5 or similar peptidomimetic compounds, may be useful for reducing the size and/or number of cerebral amyloid plaques in AD, and subsequently diminishing Abeta-related histopathology.  相似文献   

15.
Doubly transgenic mice (PSAPP) overexpressing mutant APP and PS1 transgenes were examined using antibodies to Abeta subtypes and glial fibrillary acidic protein (GFAP). Visible Abeta deposition began primarily in the cingulate cortex of PSAPP mice at approximately 10 weeks of age. By 6 months, the mice had extensive amyloid deposition throughout the hippocampus and cortex as well as other regions of the brain. Highly congophilic deposits consisting of N-terminal normal and modified forms of Abeta were identified, reminiscent of those found in human AD brain. Both immunohistochemistry and mass spectrometry showed that Abeta42 forms were underrepresented relative to Abeta40, and Abeta43 was undetectable. Deposits were associated with prominent gliosis which increased with age, but in 14-month-old PSAPP mice, GFAP immunoreactivity in the vicinity of amyloid deposits was substantially reduced compared to APP littermates. These mice have considerable utility in the study of the amyloid phenotype of AD.  相似文献   

16.
Both the beta-amyloid precursor protein (APP) and the apoliprotein E (apoE) genes are involved in the pathogenesis of Alzheimer's disease (AD). We previously showed that mice over-expressing a human mutated form of APP (APP(V717F)) display age-dependent recognition memory deficits associated with the progression of amyloid deposition. Here, we asked whether 10- to 12-month-old APP(V717F) mice lacking the apoE gene, which do not present obvious amyloid deposition, differ from APP(V717F) mice in the object recognition task. The recognition performance is decreased in both transgenic mouse groups compared to control groups. Moreover, some behavioral disturbances displayed by APP mice lacking apoE are even more pronounced than those of APP mice expressing apoE. Our results suggest that the recognition memory deficits are related to high levels of soluble Abeta rather than to amyloid deposits.  相似文献   

17.
The epsilon4 allele of apolipoprotein E (apoE) is a risk factor for Alzheimer's disease (AD), perhaps through effects on amyloid-beta (Abeta) metabolism. Detailed analyses of various Abeta parameters in aging APP(V717F+/-) transgenic mice expressing mouse apoE, no apoE, or human apoE2, apoE3, or apoE4 demonstrate that apoE facilitates, but is not required for, Abeta fibril formation in vivo. Human apoE isoforms markedly delayed Abeta deposition relative to mouse apoE, with apoE2 (and apoE3 to a lesser extent) having a prolonged ability to prevent Abeta from converting into fibrillar forms. Isoform-specific effects of human apoE on Abeta levels and neuritic plaque formation mimicked that observed in AD (E4 > E3 > E2). Importantly, observation of an apoE-dependent decrease in percent soluble Abeta and enrichment of Abeta in membrane microdomains prior to Abeta deposition indicates that apoE influences Abeta metabolism early in the amyloidogenic process and provides a possible novel mechanism by which apoE affects AD pathogenesis.  相似文献   

18.
To determine the role of apolipoprotein E (apoE) in the deposition of different forms of Alzheimer amyloid deposit, we studied mice expressing both mutant human amyloid beta-protein precursor (AbetaPP) and presenilin 1 (PS1) that, in addition, were either normal or knocked-out for apoE. By 7 months of age, extensive deposits of amorphous amyloid beta (Abeta) had developed equally in both lines, indicating that, when present in high amounts, Abeta alone is sufficient for such deposition to occur. In contrast, filamentous, thioflavine S-positive amyloid deposition in AbetaPP/PS mice was catalyzed at least 3000 fold by apoE. Electron micrographs further illustrated the filamentous nature of Abeta deposits in mice expressing apoE. These and other behavior data indicate that the primary function of apoE in Alzheimer's disease is to promote the polymerization of Abeta into mature, beta pleated sheet filaments, a process that is necessary for inducing cognitive decline. Thus, preventing apoE from binding to Abeta may prove to be an effective means of therapeutic intervention.  相似文献   

19.
The primary feature of dementia with Lewy bodies (DLB) is the aggregation of alpha-synuclein into characteristic lesions: Lewy bodies (LBs) and Lewy neurites. However, in most of DLB cases, LBs are associated with neurofibrillary tangles and amyloid plaques (both Alzheimer disease [AD]-related lesions). We wanted to determine if this overlap of lesions is statistical, as a result of the late onset of both diseases, or results from a specific physiopathological synergy between synucleinopathy and either tauopathy or amyloid pathology. All patients with DLB from our prospective and multidisciplinary study were analyzed. These cases were compared with cases with pure AD and patients with Parkinson disease and controls. All cases were analyzed thoroughly at the neuropathologic and biochemical levels with a biochemical staging of aggregated alpha-synuclein, tau, and Abeta species. All sporadic cases of DLB were associated with abundant deposits of Abeta x-42 that were similar in quality and quantity to those of AD. Amyloid precursor protein (APP) dysfunction is a risk factor for AD as demonstrated by pathogenic mutations and Abeta accumulation. The constant and abundant Abeta x-42 deposition in sporadic DLB suggests that synucleinopathy is also promoted by APP dysfunction. Therefore, we conclude that APP is a therapeutic target for both AD and DLB.  相似文献   

20.
Accumulation of the beta-amyloid peptide (Abeta) in the brain is a major pathological hallmark of Alzheimer's disease (AD), leading to synaptic dysfunction, neuronal death, and memory impairment. The levels of neprilysin, a major Abeta-degrading enzyme, are decreased in AD brains and during aging. Because neprilysin cleaves Abeta in vivo, its down-regulation may contribute to the pathophysiology of AD. The aim of this study was to assess the consequences of neprilysin deficiency on accumulation of murine Abeta in brains and associated pathologies in vivo by investigating neprilysin-deficient mice on biochemical, morphological, and behavioral levels. Aged neprilysin-deficient mice expressed physiological amyloid precursor protein (APP) levels and exhibited elevated brain Abeta concentrations and amyloid-like deposits in addition to signs of neuronal degeneration in their brains. Behaviorally, neprilysin-deficient mice acquired a significantly weaker conditioned taste aversion that extinguished faster than the aversion of age-matched controls. Our data establish that, under physiological APP expression levels, neprilysin deficiency is associated with increased Abeta accumulation in the brain and leads to deposition of amyloid-like structures in vivo as well as with signs of AD-like pathology and with behavioral deficits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号