首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dalbavancin is a novel semisynthetic glycopeptide with enhanced activity against gram-positive species. Its comparative in vitro activities and those of nine comparator agents, including daptomycin, vancomycin, linezolid, and quinupristin-dalfopristin, against 290 recent gram-positive clinical isolates strains, as determined by the NCCLS agar dilution method, were studied. The MICs of dalbavancin at which 90% of various isolates tested were inhibited were as follows: Actinomyces spp., 0.5 μg/ml; Clostridium clostridioforme, 8 μg/ml; C. difficile, 0.25 μg/ml; C. innocuum, 0.25 μg/ml; C. perfringens, 0.125 μg/ml; C. ramosum, 1 μg/ml; Eubacterium spp., 1 μg/ml; Lactobacillus spp., >32 μg/ml, Propionibacterium spp., 0.5 μg/ml; and Peptostreptococcus spp., 0.25 μg/ml. Dalbavancin was 1 to 3 dilutions more active than vancomycin against most strains. Dalbavancin exhibited excellent activity against gram-positive strains tested and warrants clinical evaluation.  相似文献   

2.
Vancomycin, linezolid, and daptomycin are very active against staphylococci, but isolates with decreased susceptibility to these antimicrobial agents are isolated sporadically. A total of 19,350 Staphylococcus aureus isolates (51% methicillin resistant [MRSA]) and 3,270 coagulase-negative staphylococci (CoNS) were collected consecutively from 82 U.S. medical centers from January 2008 to December 2011 and tested for susceptibility against ceftaroline and comparator agents by the reference broth microdilution method. Among S. aureus strains, 14 isolates (0.07%) exhibited decreased susceptibility to linezolid (MIC, ≥8 μg/ml), 18 (0.09%) to daptomycin (MIC, ≥2 μg/ml), and 369 (1.9%) to vancomycin (MIC, ≥2 μg/ml; 368 isolates at 2 μg/ml and 1 at 4 μg/ml). Fifty-one (1.6%) CoNS were linezolid resistant (MIC, ≥8 μg/ml), and four (0.12%) were daptomycin nonsusceptible (MIC, ≥2 μg/ml). Ceftaroline was very active against S. aureus overall (MIC50/90, 0.5/1 μg/ml; 98.5% susceptible), including MRSA (MIC50/90, 0.5/1 μg/ml; 97.2% susceptible). All daptomycin-nonsusceptible and 85.7% of linezolid-resistant S. aureus isolates were susceptible to ceftaroline. Against S. aureus isolates with a vancomycin MIC of ≥2 μg/ml, 91.9, 96.2, and 98.9% were susceptible to ceftaroline, daptomycin, and linezolid, respectively. CoNS strains were susceptible to ceftaroline (MIC50/90, 0.25/0.5 μg/ml; 99.1% inhibited at ≤1 μg/ml), including methicillin-resistant (MIC50/90, 0.25/0.5 μg/ml), linezolid-resistant (MIC50/90, 0.5/0.5 μg/ml), and daptomycin-nonsusceptible (4 isolates; MIC range, 0.03 to 0.12 μg/ml) strains. In conclusion, ceftaroline demonstrated potent in vitro activity against staphylococci with reduced susceptibility to linezolid, daptomycin, or vancomycin, and it may represent a valuable treatment option for infections caused by these multidrug-resistant staphylococci.  相似文献   

3.
A total of 84,704 isolates were collected from 191 medical centers in 2009 to 2013 and tested for susceptibility to ceftaroline and comparator agents by broth microdilution methods. Ceftaroline inhibited all Staphylococcus aureus isolates at ≤2 μg/ml and was very active against methicillin-resistant strains (MIC at which 90% of the isolates tested are inhibited [MIC90], 1 μg/ml; 97.6% susceptible). Among Streptococcus pneumoniae isolates, the highest ceftaroline MIC was 0.5 μg/ml, and ceftaroline activity against the most common Enterobacteriaceae species (MIC50, 0.12 μg/ml; 78.9% susceptible) was similar to that of ceftriaxone (MIC50, ≤0.25 μg/ml; 86.8% susceptible).  相似文献   

4.
Susceptibility of 230 penicillin- and erythromycin-susceptible and -resistant pneumococci to HMR 3647 (RU 66647), a new ketolide, was tested by agar dilution, and results were compared with those of erythromycin, azithromycin, clarithromycin, roxithromycin, rokitamycin, clindamycin, pristinamycin, ciprofloxacin, sparfloxacin, trimethoprim-sulfamethoxazole, doxycycline, chloramphenicol, cefuroxime, ceftriaxone, imipenem, and vancomycin. HMR 3647 was very active against all strains tested, with MICs at which 90% of the strains were inhibited (MIC90s) of 0.03 μg/ml for erythromycin-susceptible strains (MICs, ≤0.25 μg/ml) and 0.25 μg/ml for erythromycin-resistant strains (MICs, ≥1.0 μg/ml). All other macrolides yielded MIC90s of 0.03 to 0.25 and >64.0 μg/ml for erythromycin-susceptible and -resistant strains, respectively. The MICs of clindamycin for 51 of 100 (51%) erythromycin-resistant strains were ≤0.125 μg/ml. The MICs of pristinamycin for all strains were ≤1.0 μg/ml. The MIC90s of ciprofloxacin and sparfloxacin were 4.0 and 0.5 μg/ml, respectively, and were unaffected by penicillin or erythromycin susceptibility. Vancomycin and imipenem inhibited all strains at ≤1.0 μg/ml. The MICs of cefuroxime and cefotaxime rose with those of penicillin G. The MICs of trimethoprim-sulfamethoxazole, doxycycline, and chloramphenicol were variable but were generally higher in penicillin- and erythromycin-resistant strains. HMR 3647 had the best kill kinetics of all macrolides tested against 11 erythromycin-susceptible and -resistant strains, with uniform bactericidal activity (99.9% killing) after 24 h at two times the MIC and 99% killing of all strains at two times the MIC after 12 h for all strains. Pristinamycin showed more rapid killing at 2 to 6 h, with 99.9% killing of 10 of 11 strains after 24 h at two times the MIC. Other macrolides showed significant activity, relative to the MIC, against erythromycin-susceptible strains only.  相似文献   

5.
Rifaximin, ampicillin-sulbactam, neomycin, nitazoxanide, teicoplanin, and vancomycin were tested against 536 strains of anaerobic bacteria. The overall MIC of rifaximin at which 50% of strains were inhibited was 0.25 μg/ml. Ninety percent of the strains tested were inhibited by 256 μg/ml of rifaximin or less, an activity equivalent to those of teicoplanin and vancomycin but less than those of nitazoxanide and ampicillin-sulbactam.  相似文献   

6.
The agar dilution MIC method was used to test the activity of cefminox, a β-lactamase-stable cephamycin, compared with those of cefoxitin, cefotetan, moxalactam, ceftizoxime, cefotiam, cefamandole, cefoperazone, clindamycin, and metronidazole against 357 anaerobes. Overall, cefminox was the most active β-lactam, with an MIC at which 50% of isolates are inhibited (MIC50) of 1.0 μg/ml and an MIC90 of 16.0 μg/ml. Other β-lactams were less active, with respective MIC50s and MIC90s of 2.0 and 64.0 μg/ml for cefoxitin, 2.0 and 128.0 μg/ml for cefotetan, 2.0 and 64.0 μg/ml for moxalactam, 4.0 and >128.0 μg/ml for ceftizoxime, 16.0 and >128.0 μg/ml for cefotiam, 8.0 and >128.0 μg/ml for cefamandole, and 4.0 and 128.0 μg/ml for cefoperazone. The clindamycin MIC50 and MIC90 were 0.5 and 8.0 μg/ml, respectively, and the metronidazole MIC50 and MIC90 were 1.0 and 4.0 μg/ml, respectively. Cefminox was especially active against Bacteroides fragilis (MIC90, 2.0 μg/ml), Bacteroides thetaiotaomicron (MIC90, 4.0 μg/ml), fusobacteria (MIC90, 1.0 μg/ml), peptostreptococci (MIC90, 2.0 μg/ml), and clostridia, including Clostridium difficile (MIC90, 2.0 μg/ml). Time-kill studies performed with six representative anaerobic species revealed that at the MIC all compounds except ceftizoxime were bactericidal (99.9% killing) against all strains after 48 h. At 24 h, only cefminox and cefoxitin at 4× the MIC and cefoperazone at 8× the MIC were bactericidal against all strains. After 12 h, at the MIC all compounds except moxalactam, ceftizoxime, cefotiam, cefamandole, clindamycin, and metronidazole gave 90% killing of all strains. After 3 h, cefminox at 2× the MIC produced the most rapid effect, with 90% killing of all strains.  相似文献   

7.
Ninety-four erythromycin-susceptible and 107 erythromycin-resistant enterococcal strains (MIC of ≥512 μg/ml) were inhibited by the ketolide HMR3647 at MICs of ≤0.007 to 0.06 and 0.03 to 8 μg/ml, respectively. Eighteen vanA-positive isolates and 29 high-level-penicillin-resistant isolates, all of them erythromycin resistant, were inhibited by HMR3647 at an MIC range of 0.015 to 4 μg/ml. The new ketolide has excellent activity against Enterococcus species.  相似文献   

8.
The in vitro activities of HMR 3647, roxithromycin, erythromycin, and azithromycin against 19 strains of Chlamydia pneumoniae were tested. The MIC at which 90% of the isolates are inhibited and the minimum bactericidal concentration at which 90% of the isolates are killed of HMR 3647 were 0.25 μg/ml (range, 0.015 to 2 μg/ml). Nine recently obtained clinical isolates from children with pneumonia were more susceptible (MICs, 0.015 to 0.0625 μg/ml) than older strains that had been passaged more extensively.  相似文献   

9.
BC-3781 is a novel semisynthetic pleuromutilin antibiotic inhibiting bacterial protein synthesis. BC-3781 has completed a phase 2 clinical trial in acute bacterial skin and skin structure infections (ABSSSI). Its antibacterial spectrum additionally covers the predominant pathogens causing community-acquired bacterial pneumonia (CABP). In this study, the antibacterial activity of BC-3781 was evaluated against a contemporary collection of 10,035 bacterial isolates predominately causing ABSSSI and CABP, among other infections, collected within the SENTRY Antimicrobial Surveillance Program worldwide in 2010. BC-3781 exhibited potent activity against organisms commonly isolated from ABSSSI such as Staphylococcus aureus (MIC50/90, 0.12/0.12 μg/ml; 99.8% inhibited at ≤0.5 μg/ml), beta-hemolytic streptococci (MIC50/90, 0.03/0.03 μg/ml; 99.3% inhibited at ≤0.5 μg/ml), and coagulase-negative staphylococci (CoNS; MIC50/90, 0.06/0.12 μg/ml; 97.8% inhibited at ≤1 μg/ml). BC-3781 displayed similar MIC distributions among methicillin-susceptible (MSSA) and methicillin-resistant (MRSA) S. aureus strains. BC-3781 was also active against Enterococcus faecium, with 76.3% of vancomycin-susceptible and 97.0% of vancomycin-resistant isolates being inhibited at BC-3781 concentrations of ≤1 μg/ml. Beta-hemolytic and viridans group streptococci were highly susceptible to BC-3781, with 99.3% and 96.7% of isolates inhibited at ≤0.5 μg/ml, respectively. Further, activity of BC-3781 against Streptococcus pneumoniae (MIC50/90, 0.12/0.25 μg/ml), Haemophilus influenzae (MIC50/90, 1/2 μg/ml), and Moraxella catarrhalis (MIC50/90, 0.12/0.25 μg/ml) was not negatively influenced by β-lactamase production or resistance to other antimicrobial classes tested. In all, BC-3781 displayed a very potent antibacterial profile including the most prevalent bacterial pathogens causing ABSSSI and CABP, thus warranting further clinical development of this antibiotic in these and possibly other indications.  相似文献   

10.
The activities of the novel β-lactam–β-lactamase inhibitor combination ceftazidime-avibactam and comparator agents were evaluated against a contemporary collection of clinically significant Gram-negative bacilli. Avibactam is a novel non-β-lactam β-lactamase inhibitor that inhibits Ambler class A, C, and some D enzymes. A total of 10,928 Gram-negative bacilli—8,640 Enterobacteriaceae, 1,967 Pseudomonas aeruginosa, and 321 Acinetobacter sp. isolates—were collected from 73 U.S. hospitals and tested for susceptibility by reference broth microdilution methods in a central monitoring laboratory (JMI Laboratories, North Liberty, IA, USA). Ceftazidime was combined with avibactam at a fixed concentration of 4 μg/ml. Overall, 99.8% of Enterobacteriaceae strains were inhibited at a ceftazidime-avibactam MIC of ≤4 μg/ml. Ceftazidime-avibactam was active against extended-spectrum β-lactamase (ESBL)-phenotype Escherichia coli and Klebsiella pneumoniae, meropenem-nonsusceptible (MIC ≥ 2 μg/ml) K. pneumoniae, and ceftazidime-nonsusceptible Enterobacter cloacae. Among ESBL-phenotype K. pneumoniae strains, 61.1% were meropenem susceptible and 99.3% were inhibited at a ceftazidime-avibactam MIC of ≤4 μg/ml. Among P. aeruginosa strains, 96.9% were inhibited at a ceftazidime-avibactam MIC of ≤8 μg/ml, and susceptibility rates for meropenem, ceftazidime, and piperacillin-tazobactam were 82.0, 83.2, and 78.3%, respectively. Ceftazidime-avibactam was the most active compound tested against meropenem-nonsusceptible P. aeruginosa (MIC50/MIC90, 4/16 μg/ml; 87.3% inhibited at ≤8 μg/ml). Acinetobacter spp. (ceftazidime-avibactam MIC50/MIC90, 16/>32 μg/ml) showed high rates of resistance to most tested agents. In summary, ceftazidime-avibactam demonstrated potent activity against a large collection of contemporary Gram-negative bacilli isolated from patients in U.S. hospitals in 2012, including organisms that are resistant to most currently available agents, such as K. pneumoniae carbapenemase (KPC)-producing Enterobacteriaceae and meropenem-nonsusceptible P. aeruginosa.  相似文献   

11.
We have tested the in vitro activities of eight fluoroquinolones against 160 Brucella melitensis strains. The most active was sitafloxacin (MIC at which 90% of the isolates are inhibited [MIC90], 0.12 μg/ml). In decreasing order, the activities (MIC90s) of the rest of the tested fluoroquinolones were as follows: levofloxacin, 0.5 μg/ml; ciprofloxacin, trovafloxacin, and moxifloxacin, 1 μg/ml; and ofloxacin, grepafloxacin, and gatifloxacin, 2 μg/ml.  相似文献   

12.
Staphylococcus aureus and coagulase-negative staphylococci (CoNS) are responsible for a wide variety of human infections. The investigational antibacterial Debio1450 (previously AFN-1720), a prodrug of Debio1452 (previously AFN-1252), specifically targets staphylococci without significant activity against other Gram-positive or Gram-negative species. Debio1452 inhibits FabI, an enzyme critical to fatty acid biosynthesis in staphylococci. The activity of Debio1452 against CoNS, methicillin-susceptible S. aureus (MSSA), and methicillin-resistant S. aureus (MRSA), including significant clones, was determined. A globally diverse collection of 574 patient isolates from 35 countries was tested that included CoNS (6 species, 103 strains), MSSA (154 strains), MRSA (163 strains), and molecularly characterized strains (including spa-typed MRSA clones; 154 strains). The isolates were tested for susceptibility by CLSI broth microdilution methods against Debio1452 and 10 comparators. The susceptibility rates for the comparators were determined using CLSI and EUCAST breakpoint criteria. All S. aureus and CoNS strains were inhibited by Debio1452 concentrations of ≤0.12 and ≤0.5 μg/ml, respectively. The MIC50s for MSSA, MRSA, and molecularly characterized MRSA strains were 0.004 μg/ml, and the MIC90s ranged from 0.008 to 0.03 μg/ml. The MICs were higher for the CoNS isolates (MIC50/90, 0.015/0.12 μg/ml). Among S. aureus strains, resistance was common for erythromycin (61.6%), levofloxacin (49.0%), clindamycin (27.6%), tetracycline (15.7%), and trimethoprim-sulfamethoxazole (7.0%). Debio1452 demonstrated potent activity against MSSA, MRSA, and CoNS. Debio1452 showed significantly greater activity overall (MIC50, 0.004 μg/ml) than the other agents tested against these staphylococcal species, which included dominant MRSA clones and strains resistant to currently utilized antimicrobial agents.  相似文献   

13.
Linezolid showed MIC50s and MIC90s of 1 μg/ml (for both) against Staphylococcus aureus. Two S. aureus strains exhibited higher MICs (4 to 8 μg/ml) caused by cfr and/or target site mutations, including the first detection of cfr in Poland. Linezolid (MIC50 and MIC90, 0.5 and 1 μg/ml) had potent MICs against coagulase-negative staphylococci (CoNS). Four CoNS had MICs of 16 to 128 μg/ml due to alterations in 23S rRNA and/or L3/L4. Linezolid inhibited all enterococci and streptococci at ≤2 μg/ml, except for one Enterococcus faecium strain (MIC, 8 μg/ml; G2576T [Escherichia coli numbering] mutation).  相似文献   

14.
The minimal inhibitory concentrations (MICs) of sulfamethoxazole and trimethoprim against 144 strains of obligately anaerobic bacteria were determined on Diagnostic Sensitivity Test agar (Oxoid) or in prereduced Diagnostic Sensitivity Test broth, both supplemented with sodium pyruvate (1 mg/ml), hemin (5 μg/ml), and vitamin K1 (1 μg/ml). Fifty-eight percent of the strains were susceptible to sulfamethoxazole alone (MIC ≤ 16 μg/ml), only 12% were susceptible to trimethoprim alone (MIC ≤ 1 μg/ml), and 85% were susceptible to the combination of sulfamethoxazole plus trimethoprim (MIC ≤ 16 μg/ml) at a ratio of 19:1. All 45 strains of the Bacteroides fragilis group were susceptible to the combination. Synergy of the combination was often observed by a checkerboard MIC determination of 123 strains, usually most markedly when the ratio of the two components was near 1:1. However, there was also synergism at the ratio of sulfamethoxazole to trimethoprim of 16:1 in 61 (53.5%) of the 114 strains that could be evaluated for synergistic activity. When the strains were tested by the broth-disk test proposed by Wilkins and Thiel, modified by using prereduced Diagnostic Sensitivity Test broth instead of brain heart infusion broth and by using a smaller inoculum, there was over 90% correlation with the MICs. Poor results were found when the broth-disk tests were performed in brain heart infusion broth. There was very poor correlation between inhibition zone diameters by an agar diffusion method and MICs.  相似文献   

15.
Solithromycin, a fourth-generation macrolide (a fluoroketolide with enhanced activity against macrolide-resistant bacteria due to interaction with three ribosomal sites) and the first fluoroketolide, was tested against a 2014 collection of 6,115 isolates, including Streptococcus pneumoniae (1,713 isolates), Haemophilus influenzae (1,308), Moraxella catarrhalis (577), Staphylococcus aureus (1,024), and beta-hemolytic streptococci (1,493), by reference broth microdilution methods. The geographic samples included 2,748 isolates from the United States, 2,536 from Europe, 386 from Latin America, and 445 from the Asia-Pacific region. Solithromycin was observed to be very active against S. pneumoniae (MIC50/90, 0.008/0.12 μg/ml), demonstrating 2-fold greater activity than telithromycin (MIC50/90, 0.015/0.25 μg/ml) and 16- to >256-fold greater activity than azithromycin (MIC50/90, 0.12/>32 μg/ml), with all strains being inhibited at a solithromycin MIC of ≤1 μg/ml. Against H. influenzae, solithromycin showed potency identical to that of telithromycin (MIC50/90, 1/2 μg/ml), and both of these compounds were 2-fold less active than azithromycin (MIC50/90, 0.5/1 μg/ml). All but one of the M. catarrhalis isolates were inhibited by solithromycin at ≤0.25 μg/ml. Solithromycin inhibited 85.3% of S. aureus isolates at ≤1 μg/ml, and its activity was lower against methicillin-resistant (MIC50/90, 0.06/>32 μg/ml) than against methicillin-susceptible (MIC50/90, 0.06/0.06 μg/ml) isolates. Little variation in solithromycin activity was observed by geographic region for the species tested. Solithromycin was very active against beta-hemolytic streptococci (MIC50/90, 0.015/0.03 μg/ml), and all isolates were inhibited at MIC values of ≤0.5 μg/ml. In conclusion, solithromycin demonstrated potent activity against global and contemporary (2014) pathogens that represent the major causes of community-acquired bacterial pneumonia. These data support the continued clinical development of solithromycin for the treatment of this important indication.  相似文献   

16.
The activities of piperacillin, piperacillin-tazobactam, ticarcillin, ticarcillin-clavulanate, ampicillin, ampicillin-sulbactam, vancomycin, and teicoplanin were tested against 212 Enterococcus faecalis strains (9 β-lactamase producers) by standard agar dilution MIC testing (104 CFU/spot). The MICs at which 50 and 90% of the isolates were inhibited (MIC50s and MIC90s, respectively) were as follows (μg/ml): piperacillin, 4 and 8; piperacillin-tazobactam, 4 and 8; ticarcillin, 64 and 128; ticarcillin-clavulanate, 64 and 128; ampicillin, 2 and 2; ampicillin-sulbactam, 1 and 2; vancomycin, 1 and 4; and teicoplanin, 0.5 and 1. Agar dilution MIC testing of the nine β-lactamase-positive strains with an inoculum of 106 CFU/spot revealed higher β-lactam MICs (piperacillin, 64 to >256 μg/ml; ticarcillin, 128 to >256 μg/ml; and ampicillin, 16 to 128 μg/ml); however, MICs with the addition of inhibitors were similar to those obtained with the lower inoculum. Time-kill studies of 15 strains showed that piperacillin-tazobactam was bactericidal (99.9% killing) for 14 strains after 24 h at four times the MIC, with 90% killing of all 15 strains at two times the MIC. After 12 and 6 h, 90% killing of 14 and 13 strains, respectively, was found at two times the MIC. Ampicillin gave 99.9% killing of 14 β-lactamase-negative strains after 24 h at eight times the MIC, with 90% killing of all 15 strains at two times the MIC. After 12 and 6 h, 90% killing of 14 and 13 strains, respectively, was found at two times the MIC. Killing by ticarcillin-clavulanate was slower than that observed for piperacillin-tazobactam, relative to the MIC. For the one β-lactamase-producing strain tested by time-kill analysis with a higher inoculum, addition of the three inhibitors (including sulbactam) to each of the β-lactams resulted in bactericidal activity at 24 h at two times the MIC. For an enzyme-negative strain, addition of inhibitors did not influence kinetics. Kinetics of vancomycin and teicoplanin were significantly slower than those of the β-lactams, with bactericidal activity against 6 strains after 24 h at eight times the MIC, with 90% killing of 12 and 14 strains, respectively, at four times the MIC. Slower-kill kinetics by both glycopeptides were observed at earlier periods.  相似文献   

17.
Susceptibility of Anaerobic Bacteria to Ten Antimicrobial Agents   总被引:5,自引:14,他引:5       下载免费PDF全文
The susceptibility pattern of 265 anaerobic bacteria from clinical isolates to 10 antimicrobial agents was investigated by the agar dilution technique. Penicillin G, in a concentration of 16 μg/ml, was active against most organisms, important exceptions being 12% of Bacteroides melaninogenicus and 24% of B. fragilis strains. The susceptibility of strains to ampicillin was similar to their susceptibility to penicillin G. Carbenicillin, at ≤128 μg/ml, inhibited all but a few strains. Cefamandole was less active than the penicillins; 82% of B. melaninogenicus, 32% of B. fragilis, and 75% of Fusobacterium strains were inhibited by ≤16 μg/ml. A trend towards tetracycline resistance was seen in many bacterial groups, especially Bacteroides, Fusobacterium, and Clostridium. All organisms were susceptible to chloramphenicol and clindamycin in concentrations of ≤16 μg/ml and ≤4 μg/ml, respectively. Erythromycin was less active than clindamycin against all strains tested. Metronidazole and tinidazole were active against most anaerobes, but resistance of a few strains in each group was encountered. The increased resistance of B. melaninogenicus strains to penicillin, and emergence of anaerobes resistant to >16 μg of imidazole per ml may have therapeutic implications.  相似文献   

18.
We have evaluated the in vitro activity of voriconazole against 61 strains of Aspergillus fumigatus by using broth microdilution, disk diffusion, and minimal fungicidal concentration procedures. We observed an excellent correlation between the results obtained with the three methods. Five percent of the strains showed MICs greater than or equal to the epidemiological cutoff value (ECV; 1 μg/ml). To assess whether MICs were predictive of in vivo outcome, we tested the efficacy of voriconazole at 25 mg/kg of body weight daily in an immunosuppressed murine model of disseminated infection using 10 strains representing various patterns of susceptibility to the drug as determined by the in vitro study. Voriconazole prolonged survival and reduced fungal load in the kidneys and brain in those mice infected with strains with MICs of ≤0.25 μg/ml, while in mice infected with strains with MICs of 0.5 to 2 μg/ml, the efficacy was varied and strain dependent and in mice infected with the strain with a MIC of 4 μg/ml, the antifungal did not show efficacy. Voriconazole reduced galactomannan antigenemia against practically all strains with a MIC of <4 μg/ml. Our results demonstrate that some relationship exists between voriconazole MICs and in vivo efficacy; however, further studies testing additional strains are needed to better ascertain which MIC values can predict clinical outcome.  相似文献   

19.
RX-P873 is a novel antibiotic from the pyrrolocytosine series which exhibits high binding affinity for the bacterial ribosome and broad-spectrum antibiotic properties. The pyrrolocytosines have shown in vitro activity against multidrug-resistant Gram-negative and Gram-positive strains of bacteria known to cause complicated urinary tract, skin, and lung infections, as well as sepsis. Enterobacteriaceae (657), Pseudomonas aeruginosa (200), and Acinetobacter baumannii (202) isolates from North America and Europe collected in 2012 as part of a worldwide surveillance program were tested in vitro by broth microdilution using Clinical and Laboratory Standards Institute (CLSI) methodology. RX-P873 (MIC90, 0.5 μg/ml) was >32-fold more active than ceftazidime and inhibited 97.1% and 99.5% of Enterobacteriaceae isolates at MIC values of ≤1 and ≤4 μg/ml, respectively. There were only three isolates with an MIC value of >4 μg/ml (all were indole-positive Protea). RX-P873 (MIC50/90, 2/4 μg/ml) was highly active against Pseudomonas aeruginosa isolates, including isolates which were nonsusceptible to ceftazidime or meropenem. RX-P873 was 2-fold less active against P. aeruginosa than tobramycin (MIC90, 2 μg/ml; 91.0% susceptible) and colistin (MIC90, 2 μg/ml; 99.5% susceptible) and 2-fold more potent than amikacin (MIC90, 8 μg/ml; 93.5% susceptible) and meropenem (MIC90, 8 μg/ml; 76.0% susceptible). RX-P873, the most active agent against Acinetobacter baumannii (MIC90, 1 μg/ml), was 2-fold more active than colistin (MIC90, 2 μg/ml; 97.0% susceptible) and 4-fold more active than tigecycline (MIC90, 4 μg/ml). This novel agent merits further exploration of its potential against multidrug-resistant Gram-negative bacteria.  相似文献   

20.
In the course of clinical studies with the investigational streptogramin antimicrobial dalfopristin-quinupristin, isolates of vancomycin-resistant Enterococcus faecium were referred to our laboratory from across the United States. Seventy-two percent of the strains were of the VanA type, phenotypically and genotypically, while 28% were of the VanB type. High-level resistance to streptomycin or gentamicin was observed in 86 and 81%, respectively, of the VanA strains but in only 69 and 66%, respectively, of the VanB strains. These enterococci were resistant to ampicillin (MIC for 50% of the isolates tested [MIC50] and MIC90, 128 and 256 μg/ml, respectively) and to the other approved agents tested, with the exception of chloramphenicol (MIC90, 8 μg/ml) and novobiocin (MIC90, 1 μg/ml). Considering all of the isolates submitted, dalfopristin-quinupristin inhibited 86.4% of them at concentrations of ≤1 μg/ml and 95.1% of them at ≤2 μg/ml. However, for the data set comprised of only the first isolate submitted for each patient, 94.3% of the strains were inhibited at concentrations of ≤1 μg/ml and 98.9% were inhibited at concentrations of ≤2 μg/ml. Multiple drug resistance was very common among these isolates of vancomycin-resistant E. faecium, while dalfopristin-quinupristin inhibited the majority at concentrations that are likely to be clinically relevant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号