首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using the gerbil model of post-ischemic neuron death in the hippocampal CA1 region, it was recently shown that there is a strong down-regulation of voltage-gated Ca2+ influx in neurons examined at 2 days after the ischemic insult (Connor, J.A., Razani-Boroujerdi, S., Greenwood, A.C., Cormier, R.J., Petrozzino, J.J. and Lin, R.C., Reduced voltage-dependent Ca2+ signaling in CA1 neurons after brief ischemia in gerbils, J. Neurophysiol., 81 (1999) 299-306). The aim of the present study was to determine whether a similar change occurs in pyramidal neurons of the CA3 region that are relatively resistant to transient ischemia. In vitro intracellular recordings and fluorometric Ca2+ measurements were made from CA3 neurons in coronal slices prepared from controls and 1 or 2 days following in vivo ischemia. In slices from control and post-ischemic animals, the electrophysiological properties of CA3 neurons were consistent with significant voltage-gated Ca2+ influx, leading to spike frequency adaptation. Quantitative results indicated no significant difference in Ca2+ transients evoked by action potential trains. This Ca2+ signaling was compared with responses in CA1 neurons from the same preparations, which showed substantially diminished Ca2+ influx at 2 days post-ischemia. These findings suggest that diminished Ca2+-signaling is not a general feature of pyramidal neurons following ischemia, but is characteristic of neurons destined to die.  相似文献   

2.
Summary The ultrastructural changes in the pyramidal neurons of the CA1 region of the hippocampus were studied 6 h, 24 h, 48 h, and 72 h following a transient 10 min period of cerebral ischemia induced by common carotid occlusion combined with hypotension. The pyramidal neurons showed delayed neuronal death (DND), i.e. at 24 h and 48 h postischemia few structural alterations were noted in the light microscope, while at 72 h extensive neuronal degeneration was apparent. The most prominent early ultrastructural changes were polysome disaggregation, and the appearance of electron-dense fluffy dark material associated with tubular saccules. Mitochondria and nuclear elements appeared intact until frank neuronal degeneration. The dark material accumulated with extended periods of recirculation in soma and in the main trunks of proximal dendrites, often beneath the plasma membrane, less frequently in the distal dendrites and seldom in spines. Protein synthesis inhibitors (anisomycin, cycloheximide) and an RNA synthesis inhibitor (actinomycin D), administered by intrahippocampal injections or subcutanously, did not mitigate neuronal damage. Therefore, DND is probably not apoptosis or a form of programmed cell death. We propose that the dark material accumulating in the postischemic period represents protein complexes, possibly aggregates of proteins or internalized plasma membrane fragments, which may disrupt vital cellular structure and functions, leading to cell death.  相似文献   

3.
We investigated ubiquitin immunoreactivity in the post-ischemic gerbil hippocampus using a panel of ubiquitin antibodies. Immunostaining for ubiquitin in the hippocampus was strongly dependent on the antibodies used. With rabbit polyclonal antibody U-5379, immunoreactivity disappeared from the hippocampus in the early reperfusion period and reappeared in the dentate granule cells and CA3 pyramidal cells but never in the CA1 pyramidal cells. In contrast, rat monoclonal antibody DF2 and mouse monoclonal antibody MAB1510 showed sustained immunoreactivity in the CA1 during the 48-hour reperfusion period. On the immunoblots of gerbil brain homogenates, three antibodies, U-5379, DF2 and MAB1510, exhibited similar specificities; all three labeled free ubiquitin most strongly. Immunoprecipitation disclosed that, under nondenaturing conditions, U-5379 bound exclusively free ubiquitin, whereas DF2 and MAB1510 had little affinity for free ubiquitin but appeared to have more affinity for conjugated ubiquitin. Immunoabsorption of these antibodies with free ubiquitin confirmed the above result. It is most likely that U-5379 recognized free ubiquitin in the tissue, whereas DF2 and MAB1510 recognized preferentially conjugated ubiquitin. Thus, transient ischemia depletes free ubiquitin but not conjugated ubiquitin in the CA1. This depletion may be caused by impaired conversion from conjugated to free ubiquitin and/or failure of de novo ubiquitin synthesis.  相似文献   

4.
5.
M Gottlieb  C Matute 《Neuroscience》1999,91(3):1027-1034
We have examined by immunoassay and immunohistochemistry, the expression of nerve growth factor in the rat hippocampus, one to 28 days after transient forebrain ischemia. In the CA1 area, the overall level of nerve growth factor expression remained constant over the first three days of reperfusion while it increased by about 45% of control levels after longer postischemic periods. In contrast, a slight decrease in nerve growth factor levels, which was most prominent at three days postlesion, was observed in the other hippocampal regions. Immunohistochemical analysis of the distribution of nerve growth factor showed that its expression was up-regulated in astrocytes but not in microglia of the postischemic CA1 region and that the intensity and temporal profile of the changes in nerve growth factor immunostaining in these cells, was consistent with that observed in the immunoassay. Interestingly, the regulation of the nerve growth factor expression in reactive astrocytes of the postischemic CA1 area closely parallels that of kainate receptor subunits GluR5-7, raising the possibility of a cause-effect relationship. These results indicate that after ischemia nerve growth factor expression is up-regulated in reactive astrocytes suggesting that these cells may contribute to rescuing damaged neurons by means of increasing nerve growth factor production.  相似文献   

6.
7.
In the present study, we observed expression and changes of mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) in the gerbil hippocampal CA1 region, but not in the CA2/3 region, after 5 min of transient forebrain ischemia. In blood, corticosterone levels were increased biphasically at 30 min and 12 h after ischemia/reperfusion, and thereafter its levels were decreased. In the sham-operated group, MR and GR immunoreactivities were weakly detected in the CA1 region. By 3 days after ischemia, MR and GR were not significantly altered in the CA1 region: at 12 h after ischemia, GR was expressed in a few neurons in the CA1 region, whereas MR was not expressed in any neurons after ischemic insult. From 4 days after ischemia, MR and GR immunoreactivities were detected in astrocytes and microglia in the CA1 region, and at 7 days after ischemia, MR and GR immunoreactivities peaked in the hippocampal CA1 region. At this time, 55% of astrocytes and 30% of microglia showed MR immunoreactivity, and 20% of astrocytes and 40% of microglia showed GR immunoreactivity. Western blot analyses showed that the pattern of changes in MR and GR protein levels was similar to the immunohistochemical changes observed after transient forebrain ischemia. From 4 days after ischemia, MR and GR protein levels were increased time-dependently after ischemia. In conclusion, enhanced MR and GR expressions in astrocytes and microglia were detected in the hippocampal CA1 region 4-7 days after ischemia/reperfusion. At this time, GR immunoreactivity was abundant in microglia, whereas MR immunoreactivity was prominent in astrocytes. The specific distribution of corticosteroid receptors in the astrocytes and microglia may be associated with the differences of MR and GR functions against ischemic damage.  相似文献   

8.
Mild hypothermia (38 degrees C) accelerated transport of fragmented DNA in apical dendrites of the gerbil CA1 pyramidal neurons and increased dendrite-terminal fragmented DNA pooling in the apoptotic process following transient forebrain ischemia. The specific DNA fragmentation after the ischemic insult in gerbil hippocampus was examined by in situ nick-end-labeling method, and fluorescence DNA detection technique by DAPI was also performed. There is a precise temperature dependence for the migration of fragmented DNA from nuclei into apical dendrites of CA1 pyramidal cells during apoptosis following transient forebrain ischemia. Increase of fragmented DNA pooling is highly temperature sensitive, occurring at 38 degrees C, while at 39 degrees C there is a marked decrease in DNA pooling.  相似文献   

9.
In the present study, age-related changes of pyridoxal 5'-phosphate (PLP) synthesizing enzymes, pyridoxal kinase (PLK) and pyridoxine 5'-phosphate oxidase (PNPO), their protein contents and activities were examined in the gerbil hippocampus proper. Significant age-dependent changes in PLK and PNPO immunoreactivities were found in the CA1 region, but not in the CA2/3 region. In the postnatal month 1 (PM 1) group, PLK and PNPO immunoreactivities were detected mainly in the stratum pyramidale of the CA1 region. PLK and PNPO immunoreactivities and their protein contents were highest in the PM 6 group, showing that many CA1 pyramidal cells had strong PLK and PNPO immunoreactivities. Thereafter, PLK and PNPO immunoreactivities started to decrease and were very low at PM 24. Alterations in the change patterns in protein contents and total activities of PLK and PNPO corresponded to the immunohistochemical data, but their specific activities were not altered in any experimental group. Based on double immunofluorescence study, PLK and PNPO immunoreactive cells in the strata oriens and radiatum were identified as GABAergic cells. Therefore, decreases of PLK and PNPO in the hippocampal CA1 region of aged brains may be involved in aging processes related with gamma-aminobutyric acid (GABA) function.  相似文献   

10.
In this study, we examined the differential effects and changes of ceruloplasmin between adult and aged gerbil hippocampus after transient forebrain ischemia. Ceruloplasmin in the hippocampal CA1 region of adult and aged gerbils was significantly changed after ischemia/reperfusion. Whereas, it was not significantly changed in the CA2/3 region compared to the CA1 region after ischemia. Ceruloplasmin immunoreactivity and its protein level in aged gerbil CA1 region were higher than those in adult gerbil CA1 region. Ceruloplasmin in the CA1 region was highest in adult gerbils and aged gerbils at 24h and 12h after transient ischemia, respectively. At these time points, strong ceruloplasmin immunoreactivity was observed in CA1 pyramidal cells. Thereafter, ceruloplasmin was decreased with time after ischemia. Four days after ischemia/reperfusion, ceruloplasmin immunoreactivity in both adult and aged gerbils was expressed in astrocytes in the CA1 region. Ceruloplasmin treatment in adult ischemic gerbils showed strong protective effect against ischemic damage in CA1 pyramidal cells compared to that in aged ischemic gerbils. We conclude that ceruloplasmin early increases in the aged gerbil CA1 region compared to that of the adult gerbil CA1 region may be associated with the earlier induction of reactive oxygen species, and ceruloplasmin shows strong neuroprotective effects in adults compared to those in aged gerbils.  相似文献   

11.
Preconditioning by brief ischemic episode induces tolerance to a subsequent lethal ischemic insult, and it has been suggested that reactive oxygen species are involved in this phenomenon. Thioredoxin 2 (Trx2), a small protein with redox‐regulating function, shows cytoprotective roles against oxidative stress. Here, we had focused on the role of Trx2 in ischemic preconditioning (IPC)‐mediated neuroprotection against oxidative stress followed by a subsequent lethal transient cerebral ischemia. Animals used in this study were randomly assigned to six groups; sham‐operated group, ischemia‐operated group, IPC plus (+) sham‐operated group, IPC + ischemia‐operated group, IPC + auranofin (a TrxR2 inhibitor) + sham‐operated group and IPC + auranofin + ischemia‐operated group. IPC was subjected to a 2 minutes of sublethal transient ischemia 1 day prior to a 5 minutes of lethal transient ischemia. A significant loss of neurons was found in the stratum pyramidale (SP) of the hippocampal CA1 region (CA1) in the ischemia‐operated‐group 5 days after ischemia‐reperfusion; in the IPC + ischemia‐operated‐group, pyramidal neurons in the SP were well protected. In the IPC + ischemia‐operated‐group, Trx2 and TrxR2 immunoreactivities in the SP and its protein level in the CA1 were not significantly changed compared with those in the sham‐operated‐group after ischemia‐reperfusion. In addition, superoxide dismutase 2 (SOD2) expression, superoxide anion radical ( ) production, denatured cytochrome c expression and TUNEL‐positive cells in the IPC + ischemia‐operated‐group were similar to those in the sham‐operated‐group. Conversely, the treatment of auranofin to the IPC + ischemia‐operated‐group significantly increased cell damage/death and abolished the IPC‐induced effect on Trx2 and TrxR2 expressions. Furthermore, the inhibition of Trx2R nearly cancelled the beneficial effects of IPC on SOD2 expression, production, denatured cytochrome c expression and TUNEL‐positive cells. In brief, this study shows that IPC conferred neuroprotection against ischemic injury by maintaining Trx2 and suggests that the maintenance or enhancement of Trx2 expression by IPC may be a legitimate strategy for therapeutic intervention of cerebral ischemia.  相似文献   

12.
CA1 pyramidal neurons are highly vulnerable to transient cerebral ischemia. In vivo studies have shown that the excitability of CA1 neurons progressively decreased following reperfusion. To reveal the mechanisms underlying the postischemic excitability change, total potassium current, transient potassium current, and delayed rectifier potassium current in CA1 neurons were studied in hippocampal slices prepared before ischemia and at different time points following reperfusion. Consistent with previous in vivo studies, the excitability of CA1 neurons decreased in brain slices prepared at 14 h following transient forebrain ischemia. The amplitude of total potassium current in CA1 neurons increased approximately 30% following reperfusion. The steady-state activation curve of total potassium current progressively shifted in the hyperpolarizing direction with a transient recovery at 18 h after ischemia. For transient potassium current, the amplitude was transiently increased approximately 30% at approximately 12 h after reperfusion and returned to control levels at later time points. The steady-state activation curve also shifted approximately 20 mV in the hyperpolarizing direction, and the time constant of removal of inactivation markedly increased at 12 h after reperfusion. For delayed rectifier potassium current, the amplitude significantly increased and the steady-state activation curve shifted in the hyperpolarizing direction at 36 h after reperfusion. No significant change in inactivation kinetics was observed in the above potassium currents following reperfusion. The present study demonstrates the differential changes of potassium currents in CA1 neurons after reperfusion. The increase of transient potassium current in the early phase of reperfusion may be responsible for the decrease of excitability, while the increase of delayed rectifier potassium current in the late phase of reperfusion may be associated with the postischemic cell death.  相似文献   

13.
14.
Maternal separation in early life can increase vulnerability to neuropsychiatric disorders over the lifespan. To investigate the effect of acupuncture on cell proliferation in the dentate gyrus (DG), 5-bromo-2'-deoxyuridine (BrdU)-immunohistochemistry was performed in maternally-separated rat pups. Maternal separation, for 7 days from postnatal day 14, induced a significant decrease of BrdU-immunoreactive cells in DG, while acupuncture treatment at acupoint Shenmen (HT7), at the end of the transverse crease of the ulnar wrist, resulted in the significant increase in the number of BrdU-positive cells in DG. However, acupuncture at acupoint ST36, near the knee joint, produced no increase in the number of BrdU-positive cells. These findings indicate that acupuncture at acupoint HT7 appears to stimulate cell proliferation, and we suggested that acupuncture may be useful in the treatment of diseases related to maternal separation.  相似文献   

15.
Hwang IK  Yoo KY  Park JK  Nam YS  Lee IS  Kang JH  Choi SY  Lee JY  Kang TC  Won MH 《Neuroscience》2004,126(4):871-877
In the present study, the temporal and spatial alterations of adrenocorticotropic hormone (ACTH) immunoreactivity in the gerbil hippocampus after 5 min transient forebrain ischemia were investigated as followed up 7 days after ischemic insult, and the effects of ACTH after ischemic insult were also investigated 4 days after ischemic insult. The ectopic expression of ACTH (1-24 fragments) immunoreactive neurons in the cornus ammonis 1 (CA1) region of hippocampus and hilar region of the dentate gyrus 1 day after the ischemic insult was observed. Judging from the double immunofluorescence study, these neurons contain GABA. Four days after ischemic insult, the ACTH immunoreactivity was localized in CA1 pyramidal cells and glia near the stratum pyramidale, which normally do not express ACTH. In addition, in the saline-treated groups, the percentage of the detected Cresyl Violet positive neurons was 11.2% compared with the sham-operated group 4 and 7 days after ischemic insult. In these groups, the OX-42 immunoreactive microglia were detected in the strata pyramidale, oriens and radiatum. However, in the Org2766 (analog of ACTH)-treated group, 57.8% neurons compared with the sham-operated group were stained with Cresyl Violet 4 and 7 days after ischemic insult. In these groups, the OX-42 immunoreactive microglia were significantly reduced in the stratum pyramidale. These results suggest that transient forebrain ischemia may provoke selective ectopic and enhanced expression of ACTH in the hippocampus, and further suggest that ACTH plays an important role in reducing the ischemic damage.  相似文献   

16.
The mechanisms underlying the depression of evoked fast excitatory postsynaptic currents (EPSCs) following superfusion with medium deprived of oxygen and glucose (in vitro ischemia) for a 4-min period in hippocampal CA1 neurons were investigated in rat brain slices. The amplitude of evoked fast EPSCs decreased by 85 +/- 7% of the control 4 min after the onset of in vitro ischemia. In contrast, the exogenous glutamate-induced inward currents were augmented, while the spontaneous miniature EPSCs obtained in the presence of tetrodotoxin (TTX, 1 microM) did not change in amplitude during in vitro ischemia. In a normoxic medium, a pair of fast EPSCs was elicited by paired-pulse stimulation (40-ms interval), and the amplitude of the second fast EPSC increased to 156 +/- 24% of the first EPSC amplitude. The ratio of paired-pulse facilitation (PPF ratio) increased during in vitro ischemia. Pretreatment of the slices with adenosine 1 (A1) receptor antagonist, 8-cyclopenthyltheophiline (8-CPT) antagonized the depression of the fast EPSCs, in a concentration-dependent manner: in the presence of 8-CPT (1-10 microM), the amplitude of the fast EPSCs decreased by only 20% of the control during in vitro ischemia. In addition, 8-CPT antagonized the enhancement of the PPF ratio during in vitro ischemia. A pair of presynaptic volleys and excitatory postsynaptic field potentials (fEPSPs) were extracellularly recorded in a proximal part of the stratum radiatum in the CA1 region. The PPF ratio for the fEPSPs also increased during in vitro ischemia. On the other hand, the amplitudes of the first and second presynaptic volley, which were abolished by TTX (0.5 microM), did not change during in vitro ischemia. The maximal slope of the Ca(2+)-dependent action potential of the CA3 neurons, which were evoked in the presence of 8-CPT (1 microM), nifedipine (20 microM), TTX (0.5 microM), and tetraethyl ammonium chloride (20 mM), decreased by 12 +/- 6% of the control 4 min after the onset of in vitro ischemia. These results suggest that in vitro ischemia depresses the evoked fast EPSCs mainly via the presynaptic A1 receptors, and the remaining 8-CPT-resistant depression of the fast EPSCs is probably due to a direct inhibition of the Ca(2+) influx to the axon terminals.  相似文献   

17.
We examined alterations in Na(+)-K(+)-Cl(-) cotransporter 1 (NKCC1) immunoreactivity following ischemia. Twelve hours after ischemia, NKCC1 immunoreactivity in the CA1 region and in the hilar region was significantly diminished. Twenty-four hours after ischemia, NKCC1 immunoreactivity was intensified in these hippocampal regions as well as CA2-3. Two days after ischemia, NKCC1 immunoreactivity in the CA1 and the hilar neurons had disappeared, although in the CA2-3 and the granule cell layer NKCC1 immunoreactivities had recovered to the sham level. This finding suggests that NKCC1 may play an important role in the ischemic neuronal injury induced by excitotoxicity as well as neuronal edema.  相似文献   

18.
目的:观察前脑缺血后NR2B反义寡核苷酸(ANR2B)对海马CA1区NR2B蛋白质表达的影响,为临床脑血管疾病的防治以及研制特异性新药提供理论基础。方法:正常SD大鼠,脑缺血手术48h前海马CA1区分别立体定位预注射ANR2B、NR2B正义寡核苷酸(SNR2B)。后行四动脉阻断全脑缺血手术,免疫组织化学反应,观察NR2B蛋白质在ANR2B的作用下的表达变化。结果:海马CA1区立体定位注射ANR2B后,注射区及其周围NR2B免疫组织化学染色强度明显下降,仅有少量锥体细胞散在分布。结论:ANR2B可以在体局部抑制缺血早期NR2B亚单位蛋白表达上升趋势。  相似文献   

19.
Delayed neuronal death was produced in the CA1 area of the hippocampus following 5 min of forebrain ischemia in adult gerbils. Immunohistochemistry and Western blotting to Bcl-2, Bax, and Bcl-x was examined in control (age-matched, non-operated and sham-operated) and ischemic gerbils. Bcl-2 immunoreactivity was low in CA1 neurons, but Bax was highly expressed in CA1 neurons of control gerbils. Moderate Bcl-x immunoreactivity was observed in control CA1 neurons. Strong Bcl-2 and Bcl-x immunoreactivity was found in CA1 neurons following ischemia. Bcl-2, Bax, and Bcl-x were localized in dying cells, thus suggesting that expression of Bcl-2 was not sufficient to prevent nerve cells from dying. Although the Bcl-x antibody does not discriminate between Bcl-xL and Bcl-xS content in tissue sections, Western blots disclosed a marked increase in the intensity of the band corresponding to Bcl-xS, but not of the band corresponding to Bcl-xL in ischemic hippocampi, thus indicating that the increase in Bcl-xS is associated with delayed cell death following transient forebrain ischemia in the adult gerbil. Received: 24 June 1997 / Accepted: 29 January 1998  相似文献   

20.
The temporal profiles of the changes of dopaminergic cells and microglial activation induced by transient cerebral ischemia were investigated in the substantia nigra pars compacta (SNc) located outside ischemic areas of rat brain. Transient cerebral ischemia was induced by intraluminal occlusion of the right middle cerebral artery for 2 h and reperfusion was continued for 1, 2, 3, 4, 7, 10, 14, 28, 60, and 120 days. Dopaminergic cells immunostained with tyrosine hydroxylase (TH)-antibody in the ipsilateral SNc were significantly decreased at 7 days post-ischemia compared with those in the contralateral side (P<0.05). However, at 60 and 120 days, there were no significant differences between ipsilateral and contralateral side of the SNc. Unlike the TH immunoreactivity, activated microglial cells immunostained with OX-42 antibody were significantly increased at 2 and 3 days and then decreased gradually until 10 days post-ischemia. Activated microglial cells were increased at 2 weeks post-ischemia, and this pattern remained until 60 days. These results suggest that the transient changes of TH-immunoreactive cells in the SNc caused by transient focal ischemia are correlated with a biphasic microglial cell activation response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号