首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reconstruction of extended maxillary and mandibular defects with prefabricated free flaps is a two stage procedure, that allows immediate function with implant supported dentures. The appropriate delay between prefabrication and reconstruction depends on the interfacial strength of the bone-implant surface. The purpose of this animal study was to evaluate the removal torque of unloaded titanium implants in the fibula, the scapula and the iliac crest. Ninety implants with a sandblasted and acid-etched (SLA) surface were tested after healing periods of 3, 6, and 12 weeks, respectively. Removal torque values (RTV) were collected using a computerized counterclockwise torque driver. The bicortical anchored 8mm implants in the fibula revealed values of 63.73 Ncm, 91.50 Ncm, and 101.83 Ncm at 3, 6, and 12 weeks, respectively. The monocortical anchorage in the iliac crest showed values of 71.40 Ncm, 63.14 Ncm, and 61.59 Ncm with 12 mm implants at the corresponding times. The monocortical anchorage in the scapula demonstrated mean RTV of 62.28 Ncm, 97.63 Ncm, and 99.7 Ncm with 12 mm implants at 3, 6, and 12 weeks, respectively. The study showed an increase of removal torque with increasing healing time. The interfacial strength for bicortical anchored 8mm implants in the fibula was comparable to monocortical anchored 12 mm implants in the iliac crest and the scapula at the corresponding times. The resistance to shear seemed to be determined by the type of anchorage (monocortical vs. bicortical) and the length of the implant with greater amount of bone-implant interface.  相似文献   

2.

STATEMENT OF PROBLEM

A number of studies about the nano-treated surfaces of implants have been conducting along with micro-treated surfaces of implants.

PURPOSE

The purpose of this study was to get information for the clinical use of nano-treated surfaces compared with micro-treated surfaces by measuring removal torque and analyzing histological characteristics after the placement of various surface-treated implants on femurs of dogs.

MATERIAL AND METHODS

Machined surface implants were used as a control group. 4 nano-treated surface implants and 3 micro-treated surface implants [resorbable blast media surface (RBM), sandblast and acid-etched surface (SAE), anodized RBM surface] were used as experimental groups. Removal torque values of implants were measured respectively and the histological analyses were conducted on both 4weeks and 8weeks after implant surgery. The surfaces of removed implants after measuring removal torque values were observed by scanning electron microscopy (SEM) at 8 weeks.

RESULTS

1. Removal torque values of the nano-treated groups were lower than those of micro-treated groups. 2. Removal torque values were similar in the anodized RBM surface groups. 3. On the histological views, there was much of bone formation at 8 weeks, but there was no difference between 4 and 8 weeks, and between the types of implant surfaces as well.

CONCLUSION

It is suggested that implant topography is more effective in removal torque test than surface chemistry. To get better clinical result, further studies should be fulfilled on the combined effect of surface topography and chemistry for the implant surface treatments.  相似文献   

3.
Initially, implant surface analyses were performed on 10 machined implants and on 10 sandblasted and acid-etched implants. Subsequently, sandblasted and acid-etched implant cytotoxicity (using L929 mouse fibroblasts), morphologic differences between cells (osteoblast-like cells MG63) adhering to the machined implant surfaces, and cell anchorage to sandblasted and acid-etched implant surfaces were evaluated. Results indicated that acid etching with 1% hydrofluoric acid/30% nitric acid after sandblasting eliminated residual alumina particles. The average roughness (Ra) of sandblasted and acid-etched surfaces was about 2.15 microns. Cytotoxicity tests showed that sandblasted and acid-etched implants had non-cytotoxic cellular effects and appeared to be biocompatible. Scanning electron microscopic examination showed that the surface roughness produced by sandblasting and acid etching could affect cell adhesion mechanisms. Osteoblast-like cells adhering to the machined implants presented a very flat configuration, while the same cells adhering to the sandblasted and acid-etched surfaces showed an irregular morphology and many pseudopodi. These morphologic irregularities could improve initial cell anchorage, providing better osseointegration for sandblasted and acid-etched implants.  相似文献   

4.
Success in implant dentistry also comes from the implant macrodesign and nanostructure of its surface. Titanium implant surface treatments have been shown to enhance osseointegration, maximize bone healing, and bone-to-implant contact for predictable clinical results. The aim of the study, was to evaluate the geometric macrodesign and the surface nanostructure of a novel dental implant full contact covering (FCC) obtained by electrochemical procedures. FCC implants were analyzed by scanning electronic microscope, profilometer, and x-ray photoelectron spectroscopy and compared with commercial sandblasted and sandblasted, large-grit acid-etched dental implants. Sample analysis allowed to distinguish the different implant macrodesigns, the step and the profile of the coils that cover the fixture, and the surface characteristics. FCC implant showed novel macro-characteristic of crestal module, coils, and apical zone compared with sandblasted and sandblasted and acid-etched dental implants. Moreover, the FCC nanostructure surface showed roughness values statistically higher than the 2 other surfaces, with a more homogeneity in a peaks and valleys arrangement. Finally, the x-ray photoelectron spectroscopy analysis detected differences between the examined surfaces, with the presence of several contaminants according to the different treatment procedures. Research on new macrostructures and nano morphology should result in a better qualitative and quantitative osseointegration response, with a predictability of the clinical results and long-term success of the implants.  相似文献   

5.
PURPOSE: Current literature has revealed that surface etching of endosseous implants can improve bone-implant contact. The aim of this study was to evaluate the differences in bone-implant contact (BIC) between sandblasted/acid-etched and machined-surface implants. MATERIALS AND METHODS: Thirty-two Sprague-Dawley rats were used in this study. Two implant surfaces, Ecotek (sandblasted/ acid-etched) and machined, were used with 1 implant placed in each tibia of the animals. A total of 64 implants were placed. BIC was evaluated at 5, 15, 30, and 60 days. Histomorphometry of the BIC was evaluated statistically. RESULTS: The sandblasted/acid-etched surface demonstrated a greater BIC percentage than the machined surface. This difference was statistically significant only at 30 and 60 days after healing. DISCUSSION AND CONCLUSION: The sandblasted/acid-etched surface demonstrated a stronger bone response than the machined one at a later period of healing.  相似文献   

6.
Advanced surface modifications and materials were tested on the same implant geometry. Six types of dental implants were tested for osseointegration after 2, 4 and 8 weeks in a sheep pelvis model. Four titanium implant types were treated with newly developed surface modifications, of which two were chemically and two were pharmacologically modified. One implant was made of zirconia. A sandblasted and acid-etched titanium surface was used as reference. The chemically modified implants were plasma-anodized or coated with calcium phosphate. The pharmacological coatings contained either bisphosphonate or collagen type I with chondroitin sulphate. The implants were evaluated using macroscopic, radiographic and histomorphometric methods. All implants were well osseointegrated at the time of death. All titanium implants had similar bone implant contact (BIC) at 2 weeks (57-61%); only zirconia was better (77%). The main BIC increase was between 2 and 4 weeks. The pharmacologically coated implants (78-79%) and the calcium phosphate coating (83%) showed similar results compared with the reference implant (80%) at 8 weeks. There were no significant differences in BIC. Compared with previous studies the results of all implants were comparatively good.  相似文献   

7.
Promising biomaterial characteristics of diamond-coatings in biomedicine have been described in the literature. However, there is a lack of knowledge about implant osseointegration of this surface modification compared to the currently used sandblasted acid-etched Ti-Al6-V4 implants. The aim of this study was to investigate the osseointegration of microwave plasma-chemical-vapour deposition (MWP-CVD) diamond-coated Ti-Al6-V4 dental implants after healing periods of 2 and 5 months.Twenty-four MWP-CVD diamond-coated and 24 un-coated dental titanium-alloy implants (Ankylos®) were placed in the frontal skull of eight adult domestic pigs. To evaluate the effects of the nano-structured surfaces on bone formation, a histomorphometric analysis was performed after 2 and 5 months of implant healing. Histomorphometry analysed the bone-to-implant contact (BIC). No significant difference in BIC for the diamond-coated implants in comparison to reference implants could be observed for both healing periods. Scanning electron microscopy revealed an adequate interface between the bone and the diamond surface. No delamination or particle-dissociation due to shearing forces could be detected. In this study, diamond-coated dental titanium-alloy implants and sandblasted acid-etched implants showed a comparable degree of osseointegration.  相似文献   

8.
Li DH  Liu BL  Zou JC  Xu KW 《Implant dentistry》1999,8(3):289-294
To study the effects of a modified sandblasting surface treatment on the osseointegration of dental implants at the level of interfacial biomechanics, an in vivo pullout test was conducted using bone-interfacial shear strength as a criterion. Titanium implants were inserted into the medialis condyli of dogs and harvested 2, 4, and 12 weeks after insertion. Shear strength was determined with an Instron pullout tester. Observation and analysis of the surface of modified sandblasted implants after pullout at 12 weeks were performed with scanning electron microscopy and x-ray spectroscopy. Results showed that the shear strength of implants with a modified sandblasted surface was about five times as high as that of implants with a smooth surface. We concluded that the rough surface of titanium dental implants created by the modified sandblasting treatment can greatly enhance the shear strength at the dental implant-bone interface and that, with this enhancement, the secondary micropores play a much more important role in implant-bone bonding.  相似文献   

9.
BACKGROUND: Mechanical properties and biocompatibility make zirconia ceramics suitable implant material. The characteristics of tooth-color like, the ability to be machined and the low plaque affinity make zirconia especially suitable as a dental implant material. The influence of surface modification on the osseointegration of this material has not been extensively investigated. PURPOSE: Long-term investigations with titanium implants have shown superior biomechanical results with the sandblasted acid-etched (SLA) surface, demonstrating a high bone-implant interaction. The objective of this study was to compare two different zirconia surface topographies biomechanically and histologically with the well-documented titanium SLA surface. MATERIAL AND METHODS: Zirconia implants with either a machined (ZrO2m) or a sandblasted (rough, ZrO2r) surface were manufactured with the exact same cylindrical shape with a standard ITI thread configuration as the SLA titanium implants. The incisors 2 and 3 were removed from both sides of the maxillae of 13 adult miniature pigs and the tissues left to heal for 6 months. After this time period the animals received a total of 78 implants using a randomized scheme, with the titanium SLA implant used as an only individual reference. After healing periods of 4, 8, and 12 weeks 20, 24, and 25 implants, respectively, were subjected to removal torque tests (RTQ) as the main biomechanical analysis of the of the study. A fewer number was resected on bloc, embedded in methylmethacrylat and analyzed for their direct bone apposition under a light microscope. RESULTS: Surface analysis revealed the highest surface roughness for the SLA-implant, followed by ZrO2r and ZrO2m. The turned ZrO2m implants showed statistically significant lower RTQ values than the other two implants types after 8 and 12 weeks, while the SLA implant showed significantly higher RTQs values than ZrO2r surface after 8 weeks. Differences in the bone apposition were observed in the histomorphometric analysis using light microscopy for all surfaces at any time point. CONCLUSION: The findings suggest that ZrO2r implants can achieve a higher stability in bone than ZrO2m implants. Roughening the turned zirconia implants enhances bone apposition and has a beneficial effect on the interfacial shear strength.  相似文献   

10.
In this prospective randomized controlled clinical study, small titanium implants were placed in posterior maxillae for the purpose of assessing the rate and extent of new bone development. Nine pairs of site evaluation implants were placed in posterior areas of maxillae and retrieved with trephine drills after 4 or 8 weeks of unloaded healing. The amount of bone in linear contact (%) with the implant surface was used to determine the osteoconductive potential of the implant surface. Implant surfaces were dual acid etched (n = 9) (controls) or dual acid etched and further conditioned with nanometer-scale crystals of calcium phosphate (n = 9) (test implants), and the surfaces were compared. The implants and surrounding tissues were processed for histologic analysis. The mean bone-to-implant contact value for the test surface was significantly increased over that of the control implants at both time intervals (P <.01). For the implants/patients included in this study, the addition of a nanometer-scale calcium phosphate treatment to a dual acid-etched implant surface appeared to increase the extent of bone development after 4 and 8 weeks of healing.  相似文献   

11.
PURPOSE: The aim of this study was to evaluate the success rate of 2 different implant systems with sandblasted and acid-etched modified surfaces loaded after reduced healing periods. MATERIALS AND METHODS: One-hundred seventeen patients with a mean observation period of 3.75 years (24 to 61 months) were included in this evaluation. Chart reviews of a standardized recall program were evaluated. All 532 placed implants showed an unloaded healing time of 6 weeks in the mandible and 12 weeks in the maxilla. At abutment placement a torque value of 35 Ncm was one of the primary variables, and the success of the implants over time was determined by the criteria of Buser et al. The survival was analyzed using Kaplan-Meier method, and the probability of an event within 1 group independent of time was evaluated using the chi-square test and Fisher exact test. RESULTS: Of the 532 implants, 235 were placed in female and 297 in male patients; 448 implants were located in the maxilla and 84 in the mandible. Three implants were lost prior to abutment connection in 3 patients. Life table analyses show an overall success rate of 99.4% at 5 years, as no implants were lost after abutment connection. There was no significant association of the implant type (P = .185), gender (P = .99), or jaw (maxilla/mandible; P = .06) and the survival of the implants within this study. CONCLUSION: Based on the data found in this investigation, it can be concluded that implants with sandblasted, acid-etched surfaces can be restored after a 6- to 12-week healing period with a high predictability of success.  相似文献   

12.
BACKGROUND: Studies have demonstrated that roughened dental implant surfaces show firmer bone fixation and an increased percentage of bone-to-implant contact (BIC%) compared to commercially pure titanium-surface (machined) implants. Therefore, the purpose of this study was to evaluate the influence of implant-surface topography on human bone tissue after 2 months of unloaded healing. METHODS: Fourteen subjects with a mean age of 46.87 +/- 9.45 years received two microimplants each (2.5 mm in diameter and 6 mm in length), one test (sandblasted acid-etched surface) and one control (machined surface), either in the mandible or in the maxilla. After a healing period of 2 months, the microimplants and surrounding tissues were removed with a trephine bur and prepared for histologic analysis. RESULTS: All microimplants, except for one of the controls, were clinically stable after the healing period. Histometric evaluation indicated that the mean BIC% was 23.08% +/- 11.95% and 42.83% +/- 9.80% for machined and rough microimplant surfaces, respectively (P = 0.0005). The bone area within the threads was also higher for sandblasted-surface implants (P = 0.0005). The mean percentage of bone density did not differ between the two groups (P = 0.578). CONCLUSION: Data from the present histological study suggest that the sandblasted acid-etched implant provides a better human bone tissue response than machined implants under unloaded conditions after a healing period of 2 months.  相似文献   

13.
PURPOSE: Chemical modification to a sandblasted, large-grit, acid-etched (SLA) implant surface has been shown to enhance the rate of osseointegration. The goal of the present study was to examine changes in stability for implants with a chemically modified SLA surface and to compare their outcomes to those of control implants. MATERIALS AND METHODS: A randomized controlled trial was conducted with 31 patients. Each patient received 2 implants with the same physical properties but with surfaces that were chemically different. The control implants had a standard SLA surface, while the test implants had a chemically modified surface. Resonance frequency analysis was assessed weekly over the first 6 weeks following implant placement. RESULTS: All implants proved clinically successful, allowing for restoration. Most implants were placed in the mandible (50 of 62). A shift in implant stability from decreasing stability to increasing stability (P < .001), occurred after 2 weeks for the test implants and after 4 weeks for the control implants. CONCLUSION: The findings from this pilot study provide clinical support for the potential for chemical modification of the SLA surface to alter biologic events during the osseointegration process and demonstrate levels of short-term clinical success similar to those observed for implants with an SLA surface.  相似文献   

14.

STATEMENT OF PROBLEM

Macroscopic and especially microscopic properties of implant surfaces play a major role in the osseous healing of dental implants. Dental implants with modified surfaces have shown stronger osseointegration than implants which are only turned (machined). Advanced surface modification techniques such as anodic oxidation and Ca-P application have been developed to achieve faster and stronger bonding between the host bone and the implant.

PURPOSE

The purpose of this study was to investigate the effect of surface treatment of titanium dental implant on implant stability after insertion using the rabbit tibia model.

MATERIAL AND METHODS

Three test groups were prepared: sandblasted, large-grit and acid-etched (SLA) implants, anodic oxidized implants, and anodized implants with Ca-P immersion. The turned implants served as control. Twenty rabbits received 80 implants in the tibia. Resonance frequencies were measured at the time of implant insertion, 2 weeks and 4 weeks of healing. Removal torque values (RTV) were measured 2 and 4 weeks after insertion.

RESULTS

The implant stability quotient (ISQ) values of implants for resonance frequency analysis (RFA) increased significantly (P < .05) during 2 weeks of healing period although there were no significant differences among the test and control groups (P > .05). The test and control implants also showed significantly higher ISQ values during 4 weeks of healing period (P < .05). No significant differences, however, were found among all the groups. All the groups showed no significant differences in ISQ values between 2 and 4 weeks after implant insertion (P > .05). The SLA, anodized and Ca-P immersed implants showed higher RTVs at 2 and 4 weeks of healing than the machined one (P < .05). However, there was no significant difference among the experimental groups.

CONCLUSION

The surface-modified implants appear to provide superior implant stability to the turned one. Under the limitation of this study, however, we suggest that neither anodic oxidation nor Ca-P immersion techniques have any advantage over the conventional SLA technique with respect to implant stability.  相似文献   

15.
Aim: The aim of this study was to determine whether bone formation around surface-conditioned implants is enhanced compared with non-surface-conditioned sandblasted acid-etched titanium implants.
Materials and Methods: One hundred and forty-four implants were placed in the mandible of 18 minipigs. Before placement, implants were either surface conditioned in a solution containing hydroxide ions (conSF) or assigned to controls. Animals were euthanized after 2, 4 and 8 weeks of submerged healing, the 8-week group receiving polyfluorochrome labelling at week 2, 4, 6 and 8. One jaw quadrant per animal was selected for histological and histomorphometrical evaluation of mineralized bone–implant contact (mBIC), osteoid–implant contact (OIC) and bone volume (BV) analysis.
Results: Polyfluorochrome labelling showed no general differences in bone dynamics. mBIC showed the most pronounced differences after 2 weeks, reaching 65.5% for conSF compared with 48.1% for controls, p =0.270. Differences levelled out after 4 weeks (67.4% control, 65.7% conSF) and 8 weeks (64.0% control, 70.2% conSF). OIC levels were initially comparable, showing a slower decline for conSF after 4 weeks. BV was higher for conSF at all times. No significant differences could be found.
Conclusion: A tendency towards increased mBIC was shown for surface-conditioned implants after short-term healing.  相似文献   

16.
The aim of this study was to evaluate the survival and success rates of immediately restored implants with sandblasted, large-grit, acid-etched (SLA) surfaces over a period of 5 years. Twenty patients (mean age, 47.3 years) received a total of 21 SLA wide-neck implants in healed mandibular first molar sites after initial periodontal treatment. To be included in the study, the implants had to demonstrate primary stability with an insertion torque value of 35 Ncm. A provisional restoration was fabricated chairside and placed on the day of surgery. Definitive cemented restorations were inserted 8 weeks after surgery. Community Periodontal Index of Treatment Needs (CPITN) indices and the radiographic distance between the implant shoulder and the first visible bone-implant contact (DIB) were measured and compared over the study period. The initial mean CPITN was 3.24, and decreased over the study period to 1.43. At the postoperative radiographic examination, the mean DIB was 1.41 mm for the 21 implants, indicating that part of the machined neck of the implants was placed slightly below the osseous crest. The mean DIB value increased to 1.99 mm at the 5-year examination. This increase proved to be statistically significant (P < .0001). Between the baseline and 5-year examinations, the mean bone crest level loss was 0.58 mm. Success and survival rates of the 21 implants after 5 years of function were 100%. This 5-year study confirms that immediate restoration of mandibular molar wide-neck implants with good primary stability, as noted by insertion torque values of at least 35 Ncm, is a safe and predictable procedure.  相似文献   

17.
The knowledge of how nanostructures might affect early bone healing and osseointegration is limited. The aim of this study was to investigate if nanometer thick coatings of hydroxyapatite nanocrystals applied on a moderately rough surface might enhance early bone healing on screw-shaped dental implants and to evaluate if the thickness of the coat influences healing. Sandblasted and acid etched titanium implants coated with two different thicknesses of hydroxyapatite (test implants) and sandblasted and acid etched titanium implants (control implants), were inserted in rabbit tibia. After a healing time of 2, 4 and 9 weeks, a removal torque analysis and a histological evaluation were performed. The results from the removal torque analysis showed a tendency for higher values for the double coated hydroxyapatite after 4 weeks and for both the coated surfaces after 9 weeks of healing. The histological evaluations indicated slightly more new bone formation with the coated implants compared with the control; the differences did not reach statistical significance. The present study could not support the importance of nanometer thick coatings of hydroxyapatite nanocrystals in early bone healing, at least not when applied on a blasted and etched surface and placed in a cortical bone.  相似文献   

18.
Purpose: The aim of this study was to evaluate the early bone response of tapered and cylindrical root form implants with two different surface treatments in fresh extraction sockets after 4 and 8 weeks. Materials and Methods: Surface treatments and implant design comprised (n = 9 each): tapered with dual acid‐etched surface; tapered with dual acid‐etched and sandblasted surface (T DAE SB); cylindrical with dual acid‐etched surface (C DAE); and cylindrical with dual acid‐etched and sandblasted surface (C DAE SB). Implants were placed in the distal sockets of mandibular premolars (2P2,3P3,4P4) of six beagle dogs, remaining in vivo for 4 and 8 weeks. After sacrifice, the implants were subjected to torque to the point of interface fracture and subsequently nondecalcified for histomorphological study. Statistical analysis was performed by a General Linear Model (GLM) analysis of variance model with a significance level of 5%. Results: Torque to interface fracture was significantly greater for the C DAE SB group than for the other groups (p < .001). Histomorphological analysis showed woven bone formation around all implant surfaces at 4 weeks and its replacement by lamellar bone at 8 weeks. Study time (4 or 8 weeks) did not affect torque measures. Conclusions: The double acid‐etched and sandblasted sample surface increased early bone biomechanical fixation of both cylindrical and tapered root form implants. The cylindrical root form implants showed higher torque to interface fracture values when compared with the tapered root form implants. The C DAE SB surface group showed the highest biomechanical fixation values (p < .001).  相似文献   

19.
PURPOSE: Prefabrication of free vascularized fibular flaps is a 2-stage procedure for the reconstruction of maxillary and mandibular defects. The delay between prefabrication and flap transfer is 6 weeks and depends on biomechanical stability and osseointegration of the implants. The purpose of this animal study was to evaluate implant stability by measuring the removal torque values (RTVs) at 3, 6, and 12 weeks and to compare the results with interface strength of the bone-implant surface in the fibula, the scapula, and the iliac crest under unloaded conditions. MATERIALS AND METHODS: ITI implants (n = 108) with a sandblasted and acid-etched surface were placed in the fibula, the scapula, and the iliac crest of 6 Yorkshire pigs. Biomechanical, histologic, and histomorphometric results were collected at 3, 6, and 12 weeks, respectively. RESULTS: Bicortical anchored 8-mm implants in the fibula (63.7 to 101.8 Ncm) showed RTVs similar to those of monocortical anchored 12-mm implants in the scapula (62.3 to 99.7 Ncm). The RTVs of monocortical anchored 8-mm and 10-mm implants in the iliac crest (19.1 to 44.3 Ncm) and the scapula (27.2 to 55.3 Ncm) were significantly lower. The bone-to-implant contact in the fibula at 3, 6, and 12 weeks (35.2%, 44.4%, and 46.8%, respectively) was similar to that in the iliac crest (24.2%, 44.2%, and 52.5%, respectively), but significantly lower than in the scapula (63.7%, 73.8%, and 74.2%, respectively). DISCUSSION AND CONCLUSION: Bicortical anchorage determined implant stability in the fibula, whereas interfacial strength seemed to define stability in the scapula. The quality and type of bone determined the bone's response in terms of biomechanical press fit or biologic interface strength.  相似文献   

20.
PURPOSE: The aim of this study was to evaluate bone apposition to a modified sandblasted and acid-etched (SLA) implant surface (modSLA) in the canine mandible as compared with the standard SLA surface. MATERIAL AND METHODS: In this experimental study, all mandibular premolars and first molars were extracted bilaterally in five foxhounds. After a healing period of 6 months, each side of the mandible received six randomly assigned dental implants alternating between the standard SLA and modSLA surface. The dogs were sacrificed at 2 weeks (n=2) or 4 weeks (n=3) after implant placement. Histologic and histomorphometric analyses were then performed for each implant. RESULTS: The microscopic healing patterns at weeks 2 and 4 for the two implant types with the standard SLA and modSLA surfaces showed similar qualitative findings. New bone tissue had already established direct contact with implant surfaces after 2 weeks of healing. The mean percentage of newly formed bone in contact with the implant (BIC) was significantly greater for modSLA (28.2+/-7.9%) than for SLA (22.2+/-7.3%) (P<0.05). This difference was no longer evident after 4 weeks. An increase in BIC for both implant surface types occurred from weeks 2 to 4. This increase was statistically significant when compared with SLA at 2 weeks (P<0.05), but not when compared with modSLA at 2 weeks. CONCLUSION: The data from the present study demonstrate significantly more bone apposition for the modSLA surface than the standard SLA surface after 2 weeks of healing. This increased bone apposition may allow a further reduction of the healing period following implant placement for patients undergoing early loading procedures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号