首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Magnetic responses to frequent and infrequent auditory stimuli, all presented in the same stimulus block in randomized order, were recorded. The standard stimuli, comprising 90% of all the stimuli, were 100-ms, 1000 Hz, 90dB sinusoidal tone bursts. There were three deviant tones, each presented at a probability of 3.3%, which differed from the standard tone on one dimension only: frequency deviant (1500 Hz), intensity deviant (67dB SPL), or duration deviant (50 ms). All mismatch fields, i.e., responses elicited by different deviants, as well as N100m to the standards and deviants, could be explained by neural activity in the supratemporal auditory cortex. The source of N100m to standards and deviants was significantly posterior to the sources for the three different mismatch fields. The mean locations of the equivalent dipoles for the different mismatch fields did not differ significantly from each other, but some differences were found for individual subjects.  相似文献   

2.
We made a detailed source analysis of the magnetic field responses that were elicited in the human brain by different monosyllabic speech sounds, including vowel, plosive, fricative, and nasal speech. Recordings of the magnetic field responses from a lateral area of the left hemisphere of human subjects were made using a multichannel SQUID magnetometer, having 37 field-sensing coils. A single source of the equivalent current dipole of the field was estimated from the spatial distribution of the evoked responses. The estimated sources of an N1m wave occurring at about 100 ms after the stimulus onset of different monosyllables were located close to each other within a 10-mm-sided cube in the three-dimensional space of the brain. Those sources registered on the magnetic resonance images indicated a restricted area in the auditory cortex, including Heschl's gyri in the superior temporal plane. In the spatiotemporal domain the sources exhibited apparent movements, among which anterior shift with latency increase on the anteroposterior axis and inferior shift on the inferosuperior axis were common in the responses to all monosyllables. However, selective movements that depended on the type of consonants were observed on the mediolateral axis; the sources of plosive and fricative responses shifted laterally with latency increase, but the source of the vowel response shifted medially. These spatiotemporal movements of the sources are discussed in terms of dynamic excitation of the cortical neurons in multiple areas of the human auditory cortex.  相似文献   

3.
Summary We have studied the effect of selective listening on the neuromagnetic evoked activity of the human auditory cortex. In the word categorization experiment the stimuli were 5-letter words, each beginning with /k/. Half of them were targets, i.e., names of animals or plants, and half other meaningful Finnish words. In the duration discrimination experiment equiprobable tones of 425 ms (targets) or 600 ms duration were presented. In both experiments the interstimulus interval (ISI) was 2.3 s and the stimuli of the two classes were presented randomly. Subjects either ignored the stimuli (reading condition) or counted the number of targets (listening condition). The magnetic field over the head was measured with a 7-channel 1st-order SQUID-gradiometer. The stimuli evoked a transient response followed by a sustained field. The transient response did not differ between the two conditions but the sustained field was significantly larger in the listening than reading condition; the increase began 120–200 ms after stimulus onset and continued for several hundred milliseconds. The equivalent source locations of both transient and sustained responses agreed with activation of the supratemporal auditory cortex. In the dichotic listening experiment 25-ms square-wave stimuli were presented randomly and equiprobably either to the left or to the right ear at an ISI of 0.8–1 s, either alone or in presence of a speech masker. Counting the stimuli of either ear resulted in differences between responses to relevant and irrelevant sounds. The difference began 140–150 ms after stimulus onset and peaked at 200–240 ms. During monaural speech masking, N100m was larger for attended than ignored stimuli. The results suggest that neural mechanisms underlying direction of attention include modification of the activity of the auditory cortex and that the mechanisms are similar for words and tones.  相似文献   

4.
In a focused attention paradigm, saccadic reaction time (SRT) to a visual target tends to be shorter when an auditory accessory stimulus is presented in close temporal and spatial proximity. Observed SRT reductions typically diminish as spatial disparity between the stimuli increases. Here a visual target LED (500 ms duration) was presented above or below the fixation point and a simultaneously presented auditory accessory (2 ms duration) could appear at the same or the opposite vertical position. SRT enhancement was about 35 ms in the coincident and 10 ms in the disparate condition. In order to further probe the audiovisual integration mechanism, in addition to the auditory non-target an auditory masker (200 ms duration) was presented before, simultaneous to, or after the accessory stimulus. In all interstimulus interval (ISI) conditions, SRT enhancement went down both in the coincident and disparate configuration, but this decrement was fairly stable across the ISI values. If multisensory integration solely relied on a feed-forward process, one would expect a monotonic decrease of the masker effect with increasing ISI in the backward masking condition. It is therefore conceivable that the relatively high-energetic masker causes a broad excitatory response of SC neurons. During this state, the spatial audio-visual information from multisensory association areas is fed back and merged with the spatially unspecific excitation pattern induced by the masker. Assuming that a certain threshold of activation has to be achieved in order to generate a saccade in the correct direction, the blurred joint output of noise and spatial audio-visual information needs more time to reach this threshold prolonging SRT to an audio-visual object.  相似文献   

5.
Summary The extra- and intracellular responses of 262 neurons in A1 to tones of best frequency with durations ranging from 10 ms to 1.2 min were studied acute experiments on ketamine-anesthetized cats. Following the generation of action potentials in response to the tone stimulus, inhibition of both the background and the auditory stimulus-evoked spike activity were observed in 91% of the investigated neurons. The duration of this inhibition corresponded to the stimulus duration. For the remaining neurons (9%) an inhibition of the stimulus-evoked spike activity alone was seen, also corresponding to the stimulus duration. Maximal inhibition of the spike activity occurred for the first 100–200 ms of the inhibitory response (the period which equalled the time of development of an IPSP in a cell). During this period of IPSP development, the membrane resistance of the neuron was reduced to 60–90% of its initial value. Varying the duration of the acoustic signal within a range of 10–200 ms was accompanied by a change in the IPSP duration and inhibition of the spike acitivity of the neuron. Whenever the tone lasted more than 200 ms, the membrane potential of the neuron was restored to the resting potential. However, during this period, the responsiveness of the neuron was lower than that initially observed. Measurement of the membrane resistance during the inhibitory pause that was not accompanied by hyperpolarization produced an index with an average 17% lower than the initial value for 87% of the neurons.The data indicate that inhibition of the spike activity in Al neurons evoked by tone stimuli of various durations is due to the appearance of postsynaptic inhibition on their membrane. It is concluded that the time course of the cortical inhibitory input to neurons is the major factor determining variations in duration of the inhibition of response of auditory cortex neurons to an auditory stimulus.  相似文献   

6.
Temporal window of integration of auditory information in the human brain   总被引:2,自引:0,他引:2  
A deviation in the acoustic environment activates an automatic change-detection system based on a memory mechanism that builds a neural trace representing the preceding sounds. The present study revealed that the auditory-cortex mechanisms underlying this sensory memory integrate acoustic events over time, producing a perception of a unitary auditory event. We recorded magnetic responses (MMNm) to occasional stimulus omissions in trains of stimuli presented at a constant stimulus-onset asynchrony (SOA) that was, in different blocks, either shorter or longer in duration than the assumed length of the temporal window of integration. A definite MMNm was elicited by stimulus omission only with the three shortest SOAs used: 100, 125, and 150 ms, but not with 175 ms. Thus, 160–170 ms was estimated as the length of the temporal window used by the central auditory system in integrating successive auditory input into auditory event percepts.  相似文献   

7.
The aim of the present study was to clarify what change detection process leads to the elicitation of the auditory change-sensitive N1ms using magnetoencephalography (MEG). We brought our attention to whether these N1ms would be elicited if physical changes to the stimulus are eliminated. For this purpose, sound movement (SM), which entails a very subtle change only to the manner of stimuli presentation, was used in the present study. SM presentation was achieved by inserting an interaural time difference to one ear. The results indicate that both SM and the onset of the control stimulus (ON) elicited MEG responses at the superior temporal gyrus (STG) of both hemispheres. ON-N1m peak latencies were significantly shorter than those of SM-N1m as well. Interestingly, the pre-event (ON or SM) length (PreEL) was a significant factor determining the amplitude of the STG activity. Due to these findings, we hypothesize that both ON and SM activate similar groups of neurons or even an identical group of neurons. In addition, since correlations between PreEL and ON/SM-N1m amplitude exist, it is suggestible that N1m is not merely a nonspecific automatic response to physical change, but rather a much more sophisticated change-sensitive response employing a memory mechanism.  相似文献   

8.
We studied an effect of predictability in an audio–visual apparent motion task using magnetoencephalography. The synchronous sequences of audio–visual stimuli were self-triggered by subjects. The task was to detect the direction of the apparent motion in experimental blocks in which the motion either started from the side selected by subjects (predictable condition) or was random (unpredictable condition). Magnetic fields yielded three patterns of activity in the motor, auditory, and visual areas. Comparison of the dipole strength between predictable and unpredictable conditions revealed a significant difference of the preparatory motor activity in the time interval from −450 to −100 ms before self-triggering the stimulus. Perception of the audio–visual apparent motion was also modulated by predictability. However, the modulation was found only for the auditory activity but not for the visual one. The effect of predictability was selective and modulated only the auditory component N1 (100 ms after stimulus), which reflects initial evaluation of stimulus meaning. Importantly, the preparatory motor activity correlates with the following auditory activity mainly in the same hemisphere. Similar modulation by predictability of the motor and auditory activities suggests interactions between these two systems within an action–perception cycle. The mechanism of these interactions can be understood as an effect of anticipation of the own action outcomes on the preparatory motor and perceptual activity. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.
Mikhail ZvyagintsevEmail:
  相似文献   

9.
A spatial filter algorithm based on minimum-variance beamforming (synthetic aperture magnetometry (SAM)) was applied to single trial neuromagnetic recordings in order to localize primary somatosensory cortex. Magnetoencephalography (MEG) responses to electrical stimulation of the right and left median nerve were recorded using a whole-head MEG system and localized using both SAM spatial filtering and dipole analysis. Spatial filtering was applied to single trial neuromagnetic recordings to produce 3-dimensional difference images of source power between active (0–50 ms) and control states (−50–0 ms) in the range of 15–300 Hz. Average difference between N20m dipole location and location of maximal increase in power in the SAM images was 3.7 mm (1.5 mm SD) and localized to primary somatosensory cortex. Time-frequency analysis of spatially filtered output for the peak SAM locations showed a brief (10 ms) increase in the 60–100 Hz band coincident with the N20m response and a longer duration (approx. 80 ms) increase in power in the 10–40 Hz band following N20m onset. These results indicate that beamformer based spatial filter methods such as SAM can be used to localize temporally discrete cortical activity produced by median nerve stimulation.  相似文献   

10.
Auditory evoked magnetic fields were recorded over the right hemisphere of healthy humans The stimuli were noise bursts presented either to the contra- (C) or ipsilateral (I) ear in different combinations. The largest deflection of the responses, N100m (magnetic counterpart of electric N100), showed a field pattern which suggests activation of the supratemporal auditory cortex. In an oddball paradigm, where the standards (90%) were 400-ms noise bursts presented to the contralateral ear, and the deviants (10%) similar stimuli to the ipsilateral ear, the deviants elicited on the average 130% stronger equivalent dipoles for N100m than standards. Contralateral standards did not substantially decrease the response amplitude of ipsilateral deviants as compared with the response amplitude to ipsilateral stimuli alone presented at the interstimulus interval of the deviants. When two 50 ms noise bursts, separated by 310 ms, were presented once every 2 s, N100m evoked by the second stimulus of the pair was smaller when the stimuli were presented monaurally (C-C, or I-I) than to different ears (I-C or C-I). The results suggest that contra- and ipsilateral auditory stimuli are analyzed, at least in part, in different neural networks at the human auditory cortex.  相似文献   

11.
We recorded auditory evoked magnetic fields (AEFs) to monaural 400 Hz tone bursts and investigated spatio-temporal features of the N100m current sources in the both hemispheres during the time before the N100m reaches at the peak strength and 5 ms after the peak. A hemispheric asymmetry was evaluated as the asymmetry index based on the ratio of N100m peak dipole strength between right and left hemispheres for either ear stimulation. The results of asymmetry indices showed right-hemispheric dominance for left ear stimulation but no hemispheric dominance for right ear stimulation. The current sources for N100m in both hemispheres in response to monaural 400 Hz stimulation moved toward anterolateral direction along the long axis of the Heschl gyri during the time before it reaches the peak strength; the ipsilateral N100m sources were located slightly posterior to the contralateral N100m ones. The onset and peak latencies of the right hemispheric N100m in response to right ear stimulation are shorter than those of the left hemispheric N100m to left ear stimulation. The traveling distance of the right hemispheric N100m sources following right ear stimulation was longer than that for the left hemispheric ones following left ear stimulation. These results suggest the right-dominant hemispheric asymmetry in pure tone processing.  相似文献   

12.
Temporal characteristics of auditory sensory memory: Neuromagnetic evidence   总被引:3,自引:0,他引:3  
We investigated the temporal dependencies of N100m, the most prominent deflection of the auditory evoked response, using whole-head neuromagnetic recordings. Stimuli were presented singly or in pairs (tones in the pair were separated by 210 ms) at interstimulus intervals (ISIs) of 0.6–8.1 s. N100m to single stimuli and to the first tone of the pair had similar temporal recovery functions, plateauing at ISIs of 6 s. N100m to the second tone in the pair, which was smaller than that to the first except with short ISIs, plateaued with ISIs of about 4 s. Source analysis revealed that the N100m could be decomposed into two sources separated by about 1 cm on the supratemporal plane. The recovery function of the posterior source was not affected by stimulus presentation, whereas that of the anterior source was. Activity in the anterior area appears to reflect the effects of temporal integration. We relate these results to auditory sensory memory.  相似文献   

13.
Auditory motion can be simulated by presenting binaural sounds with time-varying interaural intensity differences. We studied the human cortical response to both the direction and the rate of illusory motion by recording the auditory evoked magnetic fields with a 122-channel whole-head neuromagnetometer. The illusion of motion from left to right, right to left, and towards and away from the subject was produced by varying a 6-dB intensity difference between the two ears in the middle of a 600-ms tone. Both the onset and the intensity transition within the stimulus elicited clear responses in auditory cortices of both hemispheres, with the strongest responses occurring about 100 ms after the stimulus and transition onsets. The transition responses were significantly earlier and larger for fast than slow shifts and larger in the hemisphere contralateral to the increase in stimulus intensity for azimuthal shifts. Transition response amplitude varied with the direction of the simulated motion, suggesting that these responses are mediated by directionally selective cells in auditory cortex.  相似文献   

14.
The present study examined long-term repetition effects on human auditory event-related potentials (ERPs). ERPs were recorded from subjects performing the same multidimensional auditory selective attention task on six separate occasions spaced one week apart. The task required subjects to attend to tones that varied along the dimensions of location (L), pitch (P), and duration (D) and to detect prespecified target (L + P + D +) combinations of these attributes. Processing negativity (PN) between 100-400 ms did not change in amplitude or onset latency as a function of repeated experience with the task. In contrast, two measures of "very late" PN were reduced with practice. Specifically, the location effect measured over the 400-700-ms epoch was significant only for Weeks 1 and 2, and the separation of the L + P + D- ERP from other D- ERPs, measured over the 700-1000-ms epoch, was significantly reduced from Week 1 to Week 2. A late negative component (700-1000 ms) elicited by correctly identified targets increased between Weeks 1 and 2, consistent with subjects adopting the strategy of rehearsal of the target itself rather than the L + P + D- standard. P2 amplitude increased significantly for all standards, possibly due to decreased latency jitter in later weeks. N1 latency became significantly shorter over weeks, reflecting either increasing confidence in stimulus discrimination with repeated testing or the overlapping of an unchanging N1 with an increasing P2.  相似文献   

15.
To analyze the temporal changes in localization of an equivalent current dipole (ECD) for the auditory N100m, we recorded auditory evoked magnetic fields (AEFs) to 400 Hz tone pips presented at the right or left ear. Using a single ECD model, the dipole location for the N100m sources was successively calculated from the AEFs obtained from the hemisphere contralateral to the stimulated ear. We found that the location of the N100m current sources moved dynamically in medio-lateral and postero-anterior directions before the N100m peak. This direction was parallel to the surface of the supratemporal cortex. We propose that the dynamic movement of the N100m dipole reflects spread of intracortical activation through horizontal fibers of pyramidal neurons in the auditory cortex, forming the isofrequency bands in humans.  相似文献   

16.
Numerous studies have suggested that the CNV (contingent negative variation), a negative slow wave developing between a warning and an imperative stimulus, reflects, among other things, temporal processing of the interval between these two stimuli. One aim of the present work was to specify the relationship between CNV activity and the perceived duration. A second aim was to establish if this relationship is the same over the left and right hemispheres. Event-related potentials (ERPs) were recorded for 12 subjects performing a matching-to-sample task in which they had to determine if the duration of a tone (490 ms, 595 ms, 700 ms, 805 ms, and 910 ms) matched that of a previously presented standard (700 ms). CNV activity measured at the FCZ electrode was shown to increase until the standard duration had elapsed. By contrast, right frontal activity increased until the end of the current test duration, even when the standard duration had elapsed. Moreover, for long test durations (805 ms and 910 ms), correlations were observed between CNV peak latency and subjective standard, over left and medial frontal sites. We propose that left and medial frontal activity reflects an accumulation of temporal information that stops once the memorized standard duration is over, while right frontal activity subserves anticipatory attention near the end of the stimulus.  相似文献   

17.
Previous findings have shown that subjects respond to an alteration, or shift, of auditory feedback pitch with a change in voice fundamental frequency (F0). When pitch shifts exceeding 500 ms in duration were presented, subjects' averaged responses appeared to consist of both an early and a late component. The latency of the second response was long enough to be produced voluntarily. To test the hypothesis that there are two responses to pitch-shift stimuli and to clarify the role of intention, subjects were instructed to change their voice F0 in the opposite direction of the pitch-shift stimulus, in the same direction, or not to respond at all. In a second group, subjects were tested under the above conditions as well as under instructions to raise voice F0 or to lower F0 as rapidly as possible upon hearing a pitch shift. Results showed that, when given instructions to produce a voluntary response, subjects made both an early vocal response (VR1) and a later vocal response (VR2). The second response, VR2, was almost always made in the instructed direction, whereas VR1 was often made incorrectly. The latency of VR1 was reduced under instructions to respond to feedback pitch shifts by changing voice F0 in the opposite direction, compared with that when told to ignore the pitch shifts. Latency and amplitude measures of VR2 differed under the various experimental conditions. These results demonstrate that there are two responses to pitch-shift stimuli. The first is relatively automatic but may be modulated by instructions to the participant. The second response is probably a voluntary one.  相似文献   

18.
Yan W  Zhang T  Jia W  Sun X  Liu X 《Neuroscience letters》2011,497(2):85-89
The anterior N2 is a component of the event-related brain potential (ERP) elicited by visual novel stimuli. Previous studies have reported that the stimuli that were viewed for longer periods of time elicited a larger anterior N2 than the stimuli viewed for shorter periods of time. To scrutinize this relationship between the ERP and viewing duration in response to visual materials, 18 university students were asked to look at various random polygons one-by-one for as long as they wished. ERPs time-locked to stimulus onset were averaged separately for three levels of complexity (12-, 24-, and 48-sided polygons). We found that the more complex the stimulus, the larger the anterior negativity (N2, 200-300 ms) and the posterior positivity (late positive potential [LPP], 400-800 ms), and the longer the viewing duration. However, when ERPs were calculated separately for the stimuli viewed for longer or shorter than the median viewing time of each participant at each complexity level, no amplitude differences were found in either component. These results suggest that the previously reported correlation between the anterior N2 and visual duration is spurious and produced by a third variable, namely, the perceptual demand of the eliciting stimulus such as complexity.  相似文献   

19.
When speakers hear the fundamental frequency (F0) of their voice altered, they shift their F0 in the direction opposite the perturbation. The current study used ERPs to examine sensory processing of short feedback perturbations during an ongoing utterance. In one session, participants produced a vowel at an F0 of their own choosing. In another session, participants matched the F0 of a cue voice. An F0 perturbation of 0, 25, 50, 100, or 200 cents was introduced for 100 ms. A mismatch negativity (MMN) was observed. Differences between sessions were only found for 200-cent perturbations. Reduced compensation when speakers experienced the 200-cent perturbations suggests that this larger perturbation was perceived as externally generated. The presence of an MMN, and no earlier (N100) response suggests that the underlying sensory process used to identify and compensate for errors in mid-utterance may differ from feedback monitoring at utterance onset.  相似文献   

20.
Bone-conducted ultrasound (BCU) modulated by speech sound is recognized as speech sound and activates the auditory cortex similar to audible sound. To investigate the mechanisms of perception, the effects of stimulus duration on N1m were compared among air-conducted audible speech sound (AC speech), AC speech with carrier BCU and speech-modulated BCU in eight native Japanese with normal hearing. The Japanese vowel sound /a/ was used as a stimulus with durations of 10, 15, 20, 30, 40 and 60 ms. Comparison between AC speech with and without carrier showed that the presentation of carrier had no effect on N1m evoked by AC speech. Comparison among the three conditions showed that N1m amplitude for speech-modulated BCU differed from that for the two AC speeches. Moreover, N1m amplitude growth saturated at 40 ms for speech-modulated BCU, and at 20 ms for two AC speeches. These results suggest a difference in temporal integration of N1m between speech-modulated BCU and AC speech. Considering these results, it is reasonable to conclude that N1m evoked by speech-modulated BCU is influenced mainly by the ultrasonic component rather than demodulated audible sound. Given this finding, the notion needs to be considered that the mechanisms underlying perception and recognition of speech-modulated BCU depend on the ultrasonic component to some extent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号