首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Clustering of neurotransmitter receptors in postsynaptic densities involves proteins that aggregate the receptors and link them to the cytoskeleton. In the case of glycine and GABA(A) receptors, gephyrin has been shown to serve this function. However, it is unknown whether gephyrin is involved in the clustering of all glycine and GABA(A) receptors or whether it interacts only with specific isoforms. This was studied in the retinae of mice, whose gephyrin gene was disrupted, with immunocytochemistry and antibodies that recognize specific subunits of glycine and GABA(A) receptors. Because homozygous (geph -/-) mutants die around birth, an organotypic culture system of the mouse retina was established to study the clustering of gephyrin and the receptors in vitro. We found that all gephyrin and all glycine receptor clusters (hot spots) were abolished in the geph (-/-) mouse retina. In the case of GABA(A) receptors, there was a significant reduction of clusters incorporating the gamma2, alpha2, and alpha3 subunits; however, a substantial number of hot spots was still present in geph (-/-) mutant retinae. This shows that gephyrin interacts with all glycine receptor isoforms but with only certain forms of GABA(A) receptors. In heterozygous geph (+/-) mutants, no reduction of hot spots was observed in the retina in vivo, but a significant reduction was found in the organotypic cultures. This suggests that mechanisms may exist in vivo that allow for the compensation of a partial gephyrin deficit.  相似文献   

2.
In the hypoglossal nucleus, GABA and glycine mediate inhibition at separate or mixed synapses containing glycine receptors (GlyRs) and/or GABA(A) receptors (GABA(A)Rs). The functional development of mixed inhibitory synapses depends on the brain area studied, but their relative proportion to total synapses generally decreases with time. We have determined the sequential process of inhibitory synapse maturation in the hypoglossal nucleus in vivo. Immunocytochemistry and confocal microscopy were used for codetection of VIAAT, the common presynaptic vesicular transporter of glycine and GABA, GlyRs, GABA(A)R alpha1 and gamma2 subunits, and gephyrin, the scaffold protein implicated in the synaptic localization of inhibitory receptors. In E17 embryos, GlyRs were already clustered while GABA(A)R alpha1 and gamma2 subunit immunoreactivity (IR) displayed both diffuse and clustered patterns. Quantitative analysis at this stage revealed that the majority of GlyR clusters were apposed to VIAAT-IR accumulation and that 30% of them colocalized with gamma2GABA(A)R clusters. This proportion increased with age to 50% at P30. GlyR clusters that did not colocalize with gamma2GABA(A)R clusters were associated with GABA(A)R gamma2 diffuse IR. Interestingly, the percentage of GlyR clusters surrounded by GABA(A)R gamma2 diffuse IR decreased with age, while GlyR clusters colocalized with gamma2GABA(A)R clusters increased. The developmental coclustered pattern of gephyrin and GABA(A)R alpha1 and gamma2 subunits paralleled the coclustered pattern of GlyRs and GABA(A)R alpha1 and gamma2 subunits. Our results indicate that the proportion of GlyR-GABA(A)R coclusters increases until adulthood. A developmental sequence of the postsynaptic events is proposed in which diffuse extrasynaptic GABA(A)Rs accumulate at inhibitory synapses to form postsynaptic clusters, most of them being colocalized with GlyR clusters in the adult.  相似文献   

3.
Christie SB  de Blas AL 《Neuroreport》2002,13(17):2355-2358
We have used triple-label fluorescence immunocytochemistry to demonstrate that alpha5 subunit-containing GABA(A) receptors (GABA(A)Rs) form large clusters at GABAergic synapses in dendrites and axon initial segment of cultured hippocampal neurons. The large synaptic clusters of alpha5 subunit-containing GABA(A)Rs also contained alpha1, beta2/3, gamma2 GABA(A)R subunits and gephyrin. The alpha5 subunit-containing GABA(A)Rs also formed small clusters. The small clusters were not associated with GABAergic synapses and often did not co-localize with gephyrin.  相似文献   

4.
Inhibitory synapses with large and gephyrin-rich postsynaptic receptor areas are likely indicative of higher synaptic strength. We investigated the presynaptic inhibitory neurotransmitter content (GABA, glycine, or both) and the presence and subunit composition of GABA(A) and glycine postsynaptic receptors in one example of gephyrin-rich synapses to determine neurochemical characteristics that could also contribute to enhance synaptic strength. Hence, we analyzed subunit receptor expression in gephyrin patches located on Renshaw cells, a type of spinal interneuron that receives powerful excitatory and inhibitory inputs and displays many large gephyrin patches on its surface. GABA(A) and glycine receptors were almost always colocalized inside Renshaw cell gephyrin clusters. According to the subunit-immunoreactivities detected, the composition of GABA(A) receptors was inferred to be either alpha(3)beta((2or3))gamma(2), alpha(5)beta((2or3))gamma(2), alpha(3)alpha(5)beta((2or3))gamma(2) or a combination of these. The types of neurotransmitters contained inside boutons presynaptic to Renshaw cell gephyrin patches were also investigated. The majority (60-75%) of terminals presynaptic to Renshaw cell gephyrin patches contained immunocytochemical markers for GABA as well as glycine, but a proportion contained markers only for glycine. Significantly, 40% of GABA(A) receptor clusters were opposed to presynaptic boutons that contained only glycinergic markers. We postulate that GABA and glycine corelease, and the presence of alpha3-containing GABA(A) receptors can enhance the postsynaptic current and contribute to strengthen inhibitory input on Renshaw cells. In addition, a certain degree of imprecision in the localization of postsynaptic GABA(A) receptors in regard to GABA release sites onto adult Renshaw cells was also found.  相似文献   

5.
Summary Amyotrophic lateral sclerosis (ALS) is a devastating motoneuronal degenerative disease, which is inevitably fatal in adults. ALS is characterized by an extensive loss of motoneurons in the cerebrospinal axis, except for those motoneurons that control eye movements and bladder contraction. The reason for this selectivity is not known. Systematic differences have been found in the organization of excitatory synaptic transmission in ALS-resistant vs. ALS-susceptible motor nuclei. However, although motoneurons express high levels of glycine receptors (GlyR) and GABA(A) receptors (GABA(A)R), no such studies have been carried out yet for inhibitory synaptic transmission. In this study, we compared the subunit composition, patterns of expression, density and synaptic localization of inhibitory synaptic receptors in ALS-resistant (oculomotor, trochlear and abducens) and ALS-vulnerable motoneurons (trigeminal, facial and hypoglossi). Triple immunofluorescent stainings of the major GABA(A)R subunits (alpha1, alpha2, alpha3, and alpha5), the GlyR alpha1 subunit and gephyrin, were visualized by confocal microscopy and analysed quantitatively. A strong correlation was observed between the vulnerability of motoneurons and the subunit composition of GABA(A)R, the GlyR/GABA(A)R density ratios and the incidence of synaptic vs. extrasynaptic GABA(A)R. These differences contrast strikingly with the uniform gephyrin cluster density and synaptic GlyR levels recorded in all motor nuclei examined. These results suggest that the specific patterns of inhibitory receptor organization observed might reflect functional differences that are relevant to the physiopathology of ALS.  相似文献   

6.
Any given subunit of the heteromultimeric type-A gamma-aminobutyric acid (GABA) GABAA receptor may be present in several receptor subtypes expressed by individual neurons. Changes in the expression of a subunit may result in differential changes in the expression of other subunits depending on the subunit composition of the receptor subtype, leading to alterations in neuronal responsiveness to GABA. We used the targeted disruption of the alpha6 subunit gene to test for changes in the expression of other GABAA receptor subunits. Immunoprecipitation and ligand binding experiments indicated that GABAA receptors were reduced by approximately 50% in the cerebellum of alpha6 -/- mice. Western blot experiments indicated that the alpha6 subunit protein completely disappeared from the cerebellum of alpha6 -/- mice, which resulted in the disappearance of the delta subunit from the plasma membrane of granule cells. The amount of beta2, beta3 and gamma2 subunits was reduced by approximately 50%, 20% and 40%, respectively, in the cerebella of alpha6 -/- mice. A comparison of the reduction in the level of alpha1, beta2, beta3, gamma2, or delta-subunit-containing receptors in alpha6 -/- cerebellum with those observed after removal of alpha6-subunit-containing receptors from the cerebella of alpha6 +/+ mice by immuno-affinity chromatography demonstrated the presence of a significantly higher than expected proportion of receptors containing beta3 subunits in alpha6 -/- mice. The receptors containing alpha1, beta2, beta3 and gamma2 subunits were present in the plasma membrane of granule cells of alpha6 -/- mice at both synaptic and extrasynaptic sites, as shown by electron microscopic immunocytochemistry. Despite the changes, the alpha1 subunit content of Golgi-cell-to-granule-cell synapses in alpha6 -/- animals remained unaltered, as did the frequency of alpha1 immunopositive synapses in the glomeruli. Furthermore, no change was apparent in the expression of the alpha1, beta2 and gamma2 subunits in Purkinje cells and interneurons of the molecular layer. These results demonstrate that in alpha6 -/- mice, the cerebellum expresses only half of the number of GABAA receptors present in wild-type animals. Since these animals have no gross motor deficits, synaptic integration in granule cells is apparently maintained by alpha1-subunit-containing receptors with an altered overall subunit composition, and/or by changes in the expression of other ligand and voltage gated channels.  相似文献   

7.
GABA(A) receptors, the key mediators of fast synaptic inhibition in the brain, are predominantly constructed from alpha(1-6), beta(1-3), gamma(1-3), and delta subunit classes. Phosphorylation by cAMP-dependent protein kinase (PKA) differentially regulates receptor function dependent upon beta subunit identity, but how this kinase is selectively targeted to GABA(A) receptor subtypes remains unresolved. Here we establish that the A-kinase anchoring protein 150 (AKAP150), directly binds to the receptor beta1 and beta3, but not to alpha1, alpha2, alpha3, alpha6, beta2, gamma2, or delta subunits. Furthermore, AKAP79/150 is critical for PKA-mediated phosphorylation of the receptor beta3 subunit. Together, our observations suggest a mechanism for the selective targeting of PKA to GABA(A) receptor subtypes containing the beta1 or beta3 subunits dependent upon AKAP150. Therefore, the selective interaction of beta subunits with AKAP150 may facilitate GABA(A) receptor subtype-specific functional modulation by PKA activity which may have profound local effects on neuronal excitation.  相似文献   

8.
Clustering of gamma aminobutyric acid (GABA)(A) receptors to postsynaptic sites requires the presence of both the gamma2 subunit and gephyrin. Here, we analyzed by double-immunofluorescence staining the colocalization of gephyrin and major GABA(A)-receptor subtypes distinguished by the subunits alpha1, alpha2, alpha3, or gamma2 in adult rat brain. By using confocal laser scanning microscopy, GABA(A)-receptor subunit staining revealed brightly stained clusters that were colocalized with gephyrin-positive clusters of similar size and distribution in several brain regions, including cerebellum, hippocampus, thalamus, and olfactory bulb. In addition, a diffuse staining was observed for GABA(A)-receptor subunits in the neuropil, presumably representing extrasynaptic receptors. Overall, only few gephyrin-positive clusters were not colocalized with GABA(A)-receptor subunit clusters. Electron microscopic analysis in cerebellar cortex confirmed the selective postsynaptic localization of gephyrin. High-resolution images (voxel size, 50 x 50 x 150 nm) were restored with an iterative image deconvolution procedure based on a measured point-spread function to analyze the colocalization between GABA(A)-receptor subunits and gephyrin in individual clusters. This analysis revealed a considerable heterogeneity in the micro-organization of these presumptive GABAergic postsynaptic sites. For instance, whereas gephyrin- and gamma2 subunit-positive clusters largely overlapped in the cerebellar molecular layer, the colocalization was only partial in glomeruli of the granule cell layer, where small gephyrin clusters typically were "embedded" in larger GABA(A)-receptor clusters. These findings show that gephyrin is associated with a majority of GABA(A)-receptor subtypes in brain, and document the usefulness of image deconvolution for analyzing the structural organization of the postsynaptic apparatus by fluorescence microscopy.  相似文献   

9.
Immunoreactivity of GABA(A) receptor subunits and the receptor anchoring protein gephyrin was investigated in the human globus pallidus using antibodies raised against the alpha(1) and gamma(2) subunits of the GABA(A) receptor complex and gephyrin. The results revealed increased GABA(A) receptor subunit immunoreactivity and unchanged levels of gephyrin immunoreactivity in Huntington's diseased (HD) globus pallidus (GP). The results demonstrate that gephyrin immunoreactivity did not change in unison with GABA(A) receptor changes in HD, suggesting that the receptor anchoring protein gephyrin is unaltered and maintains a stable lattice structure in the face of GABA(A) receptor changes in HD.  相似文献   

10.
11.
Mitral and tufted cells of the olfactory bulb receive strong gamma-aminobutyric acid (GABA)-ergic input and express GABA(A) receptors containing the alpha1 or alpha3 subunit. The distribution of these subunits was investigated in rats via multiple immunofluorescence and confocal microscopy, by using gephyrin as a marker of GABAergic synapses. A prominent immunoreactivity was detected throughout the external plexiform layer (EPL) and glomerular layer (GL). However, although staining for the alpha1 subunit was uniform throughout the EPL, that of the alpha3 subunit was most intense in the outer one-third of this layer. All mitral cells were positive for the alpha1 subunit. In contrast, the alpha3 subunit was restricted to a subpopulation of mitral cells, many of which also expressed calretinin. Likewise, external tufted cells could be subdivided into distinct groups, either singly labeled for the alpha1 or alpha3 subunit or doubly labeled. At the subcellular level, staining for the alpha1 and alpha3 subunits was punctate, forming clusters partially colocalized with gephyrin. However, many alpha1- and alpha3-positive clusters lacked gephyrin, suggesting the existence of either nonsynaptic GABA(A) receptor clusters or synaptic receptors not associated with gephyrin. Quantitative analysis of colocalization among the three markers in the inner EPL, outer EPL, and GL revealed considerable heterogeneity, suggestive of a differential organization of GABA(A) receptor subtypes in the apical and basal dendrites of mitral and tufted cells. Together these results reveal a complex subunit organization of GABA(A) receptors in the olfactory bulb and suggest that mitral and tufted cells participate in different synaptic circuits controlled by distinct GABA(A) receptor subtypes.  相似文献   

12.
GABA(A) receptor subtypes comprising the alpha1 and alpha3 subunits change with development and have a specific anatomical localization in the adult brain. These receptor subtypes have been previously demonstrated to greatly differ in deactivation kinetics but the underlying gating mechanisms have not been fully elucidated. Therefore, we expressed rat alpha1beta2gamma2 and alpha3beta2gamma2 receptors in human embryonic kidney 293 cells and recorded current responses to ultrafast GABA applications at macroscopic and single-channel levels. We found that the slow deactivation of alpha3beta2gamma2-mediated currents is associated with a relatively small rate and extent of apparent desensitization. In contrast, responses mediated by alpha1beta2gamma2 receptors had faster deactivation and stronger desensitization. Alpha3beta2gamma2 receptors had faster recovery in the paired-pulse agonist applications than alpha1beta2gamma2 channels. The onset of currents mediated by alpha3beta2gamma2 receptors was slower than that of alpha1beta2gamma2 for a wide range of GABA concentrations. Single-channel analysis did not reveal differences in the opening/closing kinetics of alpha1beta2gamma2 and alpha3beta2gamma2 channels but burst durations were longer in alpha3beta2gamma2 receptors. Simulation with a previously reported kinetic model was used to explore the differences in respective rate constants. Reproduction of major kinetic differences required a smaller desensitization rate as well as smaller binding and unbinding rates in alpha3beta2gamma2 compared with alpha1beta2gamma2 receptors. Our work describes the mechanisms underlying the kinetic differences between two major GABA(A) receptor subtypes and provides a framework to interpret data from native GABA receptors.  相似文献   

13.
Hevers W  Korpi ER  Lüddens H 《Neuroreport》2000,11(18):4103-4106
Transgenic mice deficient in the alpha6 subunit of the GABA(A) receptor show reduced levels of the delta subunit protein and an altered GABA(A) receptor pharmacology, suggesting selective assembly mechanisms. Delta reduced the binding of [3H]Ro15-4513 or t-butylbicyclophosphoro[35S]thionate and, to a lesser extent, [3H]muscimol to recombinant alpha1beta1gamma2(delta), alpha4beta1gamma2(delta) and alpha6beta1gamma2(delta) receptors, paralleled by diminished GABA-evoked maximal currents in electrophysiological recordings for the latter one. The delta subunit gave rise to a lower EC50 for GABA and a slowed desensitization indicating its assembly in alpha6beta2delta, alpha6beta1gamma2delta and alpha6beta2gamma2delta receptors. The data show that the delta subunits assemble in various functional GABA(A) receptor subtypes in vitro to reduce GABA-evoked maximal currents and ligand binding, but increase the potency for GABA.  相似文献   

14.
Targeted deletion of the alpha1 subunit gene results in a profound loss of gamma-aminobutyric acid type A (GABA(A)) receptors in adult mouse brain but has only moderate behavioral consequences. Mutant mice exhibit several adaptations in GABA(A) receptor subunit expression, as measured by Western blotting. By using immunohistochemistry, we investigated here whether these adaptations serve to replace the missing alpha1 subunit or represent compensatory changes in neurons that normally express these subunits. We focused on cerebellum and thalamus and distinguished postsynaptic GABA(A) receptor clusters by their colocalization with gephyrin. In the molecular layer of the cerebellum, alpha1 subunit clusters colocalized with gephyrin disappeared from Purkinje cell dendrites of mutant mice, whereas alpha3 subunit/gephyrin clusters, presumably located on dendrites of Golgi interneurons, increased sevenfold, suggesting profound network reorganization in the absence of the alpha1 subunit. In thalamus, a prominent increase in alpha3 and alpha4 subunit immunoreactivity was evident, but without change in regional distribution. In the ventrobasal complex, which contains primarily postsynaptic alpha1- and extrasynaptic alpha4-GABA(A) receptors, the loss of alpha1 subunit was accompanied by disruption of gamma2 subunit and gephyrin clustering, in spite of the increased alpha4 subunit expression. However, in the reticular nucleus, which lacks alpha1-GABA(A) receptors in wild-type mice, postsynaptic alpha3/gamma2/gephyrin clusters were unaffected. These results demonstrate that adaptive responses in the brain of alpha1(0/0) mice involve reorganization of GABAergic circuits and not merely replacement of the missing alpha1 subunit by another receptor subtype. In addition, clustering of gephyrin at synaptic sites in cerebellum and thalamus appears to be dependent on expression of a GABA(A) receptor subtype localized postsynaptically.  相似文献   

15.
Sun C  Sieghart W  Kapur J 《Brain research》2004,1029(2):207-216
GABAA receptors are pentamers composed of subunits derived from the alpha, beta, gamma, delta, theta, epsilon, and pi gene families. alpha1, alpha4, gamma2, and delta subunits are expressed in the dentate gyrus of the hippocampus, but their subcellular distribution has not been described. Hippocampal sections were double-labeled for the alpha1, alpha4, gamma2, and delta subunits and GAD65 or gephyrin, and their subcellular distribution on dentate granule cells was studied by means of confocal laser scanning microscopy (CLSM). The synaptic versus extrasynaptic localization of these subunits was inferred by quantitative analysis of the frequency of colocalization of various subunits with synaptic markers in high-resolution images. GAD65 immunoreactive clusters colocalized with 26.24+/-0.86% of the alpha1 subunit immunoreactive clusters and 32.35+/-1.49% of the gamma2 subunit clusters. In contrast, only 1.58+/-0.13% of the alpha4 subunit immunoreactive clusters and 1.92+/-0.15% of the delta subunit clusters colocalized with the presynaptic marker GAD65. These findings were confirmed by studying colocalization with immunoreactivity of a postsynaptic marker, gephyrin, which colocalized with 27.61+/-0.16% of the alpha1 subunit immunoreactive clusters and 23.45+/-0.32% of the gamma2 subunit immunoreactive clusters. In contrast, only 1.90+/-0.13% of the alpha4 subunit immunoreactive clusters and 1.76+/-0.10% of the delta subunit clusters colocalized with gephyrin. These studies demonstrate that a subset of alpha1 and gamma2 subunit clusters colocalize with synaptic markers in hippocampal dentate granule cells. Furthermore, all four subunits, alpha1, alpha4, gamma2, and delta, are present in the extrasynaptic locations.  相似文献   

16.
17.
Collybistin is a brain-specific guanine nucleotide exchange factor (GEF) that is crucial for the postsynaptic accumulation of gephyrin and γ-aminobutyric acid A receptors (GABA(A) Rs) at a specific subset of inhibitory synapses. Our understanding of the in vivo function of collybistin has been hampered by lack of information about the synaptic localization of this protein in brain circuits. Here we describe the subcellular localization of endogenous collybistin by using antibodies raised against distinct molecular domains that should recognize the majority of endogenous collybistin isoforms. We show that collybistin co-clusters with gephyrin and GABA(A) Rs in synaptic puncta and is recruited to postsynaptic specializations early during synapse development. Notably, collybistin is present in only a subset of gephyrin-positive synapses, with variable co-localization values in different brain regions. Moreover, collybistin co-localizes with GABA(A) Rs containing the α1, α2, or α3 subunits, arguing against a selective association with specific GABA(A) R subtypes. Surprisingly, we found that collybistin is expressed only transiently in Purkinje cells, suggesting that in these cerebellar neurons collybistin plays a selective role during the initial assembly of postsynaptic specializations. These data reveal a remarkable heterogeneity in the organization of GABAergic synapses and provide an anatomical basis for interpreting the variable effects caused by disruption of the collybistin gene in human X-linked intellectual disability and mouse knockout models.  相似文献   

18.
The cellular and subcellular distribution of four GABA(A) receptor subtypes, identified by the presence of the alpha1, alpha2, alpha3, or alpha5 subunit, was investigated immunocytochemically in dissociated cultures of hippocampal neurons. We addressed the questions whether (1) cell-type specific expression, (2) axonal/somatodendritic targeting, and (3) synaptic/extrasynaptic clustering of GABA(A) receptor subtypes was retained in vitro. For comparison, the in vivo distribution pattern was assessed in sections from adult rat brain. The differential expression of GABA(A) receptor subunits allowed to identify five morphologically distinct cell types in culture: the alpha1 subunit was observed in glutamic acid decarboxylase-positive interneurons, the alpha2 and alpha5 subunits marked pyramidal-like cells, and the alpha3 subunit labeled three additional cell types, including presumptive hilar cells. All subunits were found in the somatodendritic compartment. In addition, appropriate axonal targeting was evidenced by the intense alpha2, and sometimes alpha3 subunit labeling of axon-initial segments (AIS) of pyramidal cells and hilar cells, respectively. Accordingly, both receptor subtypes were targeted to AIS in vivo, as well. Synaptic receptors were identified by colocalization with gephyrin, a postsynaptic clustering protein, and apposition to presynaptic terminals labeled with synapsin I. In vitro and in vivo, alpha1- and alpha2-receptor subtypes formed numerous synaptic clusters, alpha3-GABA(A) receptors were located either synaptically or extrasynaptically depending on the cell type, whereas alpha5-GABA(A) receptors were extrasynaptic. We conclude that receptor targeting to broad subcellular locations does not require specific GABAergic innervation patterns, which are disturbed in vitro, but depends on protein-protein interactions in the postsynaptic cell that are both subunit- and neuron-specific.  相似文献   

19.
Expression, functional properties, and clustering of alpha 1-, alpha 2-, and alpha 3-subunit containing GABA(A) receptors (GABA(A)Rs) were studied in dorsomedial SON neurons of the adult female rat supraoptic nucleus (SON) around parturition. We show that, although the decay time constant (tau(decay)) of GABAergic postsynaptic currents between and within individual recordings was very diverse, ranging from fast (i.e., alpha 1-like) to significantly slower (i.e., non-alpha 1-like), there was an overall shift towards slower decaying synaptic currents during the onset of lactation. This shift is not due to changes in mRNA expression levels, because real-time quantitative PCR assays indicated that the relative contribution of alpha 1, alpha 2, and alpha 3 remained the same before and after parturition. Also, changes in phosphorylation levels are not likely to affect the tau(decay) of postsynaptic currents. In alpha-latrotoxin (alpha-LTX)-induced bursts of synaptic currents from individual synapses, the tau(decay) of consecutive synaptic events within bursts was very similar, but between bursts there were large differences in tau(decay). This suggested that different synapses within individual SON neurons contain distinct GABA(A)R subtypes. Using multilabeling confocal microscopy, we examined the distribution of postsynaptic alpha 1-, alpha 2-, and alpha 3-GABA(A)Rs, based on colocalization with gephyrin. We show that the three GABA(A)R subtypes occurred either in segregated clusters of one subtype as well as in mixed clusters of two or possibly even three receptor subtypes. After parturition, the density and proportion of clusters containing alpha 2- (or alpha 3-), but not alpha1-GABA(A)Rs, was significantly increased. Thus, the functional synaptic diversity at the postsynaptic level in dorsomedial SON neurons is correlated with a differential clustering of distinct GABA(A)R subtypes at individual synapses.  相似文献   

20.
Gamma-aminobutyric acid(A) (GABA(A)) receptors (GABA(A)R) are inhibitory heteropentameric chloride ion channels comprising a variety of subunits and are localized at postsynaptic sites within the central nervous system. In this study we present the first detailed immunohistochemical investigation on the regional, cellular, and subcellular localisation of alpha(1), alpha(2), alpha(3), beta(2,3), and gamma(2) subunits of the GABA(A)R in the human substantia nigra (SN). The SN comprises two major regions, the SN pars compacta (SNc) consisting of dopaminergic projection neurons, and the SN pars reticulata (SNr) consisting of GABAergic parvalbumin-positive projection neurons. The results of our single- and double-labeling studies demonstrate that in the SNr GABA(A) receptors contain alpha(1), alpha(3), beta(2,3), and gamma(2) subunits and are localized in a weblike network over the cell soma, dendrites, and spines of SNr parvalbumin-positive nonpigmented neurons. By contrast, GABA(A)Rs on the SNc dopaminergic pigmented neurons contain predominantly alpha(3) and gamma(2) subunits; however there is GABA(A)R heterogeneity in the SNc, with a small subpopulation (6.5%) of pigmented SNc neurons additionally containing alpha(1) and beta(2,3) GABA(A)R subunits. Also, in the SNr, parvalbumin-positive terminals are adjacent to GABA(A)R on the soma and proximal dendrites of SNr neurons, whereas linear arrangements of substance P-positive terminals are adjacent to GABA(A) receptors on all regions of the dendritic tree. These results show marked GABA(A)R subunit hetereogeneity in the SN, suggesting that GABA exerts quite different effects on pars compacta and pars reticulata neurons in the human SN via GABA(A) receptors of different subunit configurations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号