首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
2.
The organization of the outer plexi-form layer (OPL) of the pigeon retina is described by electron microscopy and Golgi impregnation. Six types of photoreceptor, four types of horizontal cell, eight types of bipolar cell, and an interplexiform cell type were found by Golgi impregnation. The OPL was tri-stratified due to the endings of the photoreceptors at three different levels. This stratification was reflected in the laminar arrangement of the dendrites of the horizontal and bipolar cells. Electron microscopy showed that the synaptic endings of the photoreceptors made ribbon synapses, both triads and dyads, and basal junctions with the process of second-order neurons. Horizontal cells formed conventional chemical synapses, while horizontal cell axon terminals were extensively linked by gap junctions.  相似文献   

3.
Horizontal cells form gap junctions with each other in mammalian retina, and lacZ reporter analyses have recently indicated that these cells express the Cx57 gene, which codes for the corresponding gap junctional protein. Using anti-connexin57 antibodies, we detected connexin57 protein in immunoblots of mouse retina, and found punctate immunolabeling of this connexin co-distributed with calbindin-positive horizontal cells in the retinal outer plexiform layer. Double immunofluorescence labeling was conducted to determine the spatial relationships of connexin36, connexin57, the gap junction-associated protein zonula occludens-1 and the photoreceptor ribbon synapse-associated protein bassoon in the outer plexiform layer. Connexin36 was substantially co-localized with zonula occludens-1 in the outer plexiform layer, and both of these proteins were frequently located in close spatial proximity to bassoon-positive ribbon synapses. Connexin57 was often found adjacent to, but not overlapping with, connexin36-positive and zonula occludens-1-positive puncta, and was also located adjacent to bassoon-positive ribbon synapses at rod spherules, and intermingled with such synapses at cone pedicles. These results suggest zonula occludens-1 interaction with connexin36 but not with Cx57 in the outer plexiform layer, and an absence of connexin57/connexin36 heterotypic gap junctional coupling in mouse retina. Further, an arrangement of synaptic contacts within rod spherules is suggested whereby gap junctions between horizontal cell terminals containing connexin57 occur in very close proximity to ribbon synapses formed by rod photoreceptors, as well as in close proximity to Cx36-containing gap junctions between rods and cones.  相似文献   

4.
The ultrastructure of the myoneural junctions in the body wall muscles has been studied in Branchiobdella pentodonta Whit. A single junctional type has been found. Within the terminal axon there are two types of vesicles, which differ in number, size and electron opacity. The junctional gap contains the basement membrane. The post-junctional membrane displays concave patches on which slender projections arising from the outer lamina of the sarcolemma extend into the junctional gap. These concave patches overlie a cytoplasmic lamina made up of electron dense material.  相似文献   

5.
The eye lens is constantly subjected to oxidative stress from radiation and other sources. The lens has several mechanisms to protect its components from oxidative stress and to maintain its redox state, including enzymatic pathways and high concentrations of ascorbate and reduced glutathione. With aging, accumulation of oxidized lens components and decreased efficiency of repair mechanisms can contribute to the development of lens opacities or cataracts. Maintenance of transparency and homeostasis of the avascular lens depend on an extensive network of gap junctions. Communication through gap junction channels allows intercellular passage of molecules (up to 1 kDa) including antioxidants. Lens gap junctions and their constituent proteins, connexins (Cx43, Cx46, and Cx50), are also subject to the effects of oxidative stress. These observations suggest that oxidative stress-induced damage to connexins (and consequent altered intercellular communication) may contribute to cataract formation.  相似文献   

6.
Human mesenchymal stem cells (hMSCs) are a multipotent cell population with the potential to be a cellular repair or delivery system provided that they communicate with target cells such as cardiac myocytes via gap junctions. Immunostaining revealed typical punctate staining for Cx43 and Cx40 along regions of intimate cell-to-cell contact between hMSCs. The staining patterns for Cx45 rather were typified by granular cytoplasmic staining. hMSCs exhibited cell-to-cell coupling to each other, to HeLa cells transfected with Cx40, Cx43 and Cx45 and to acutely isolated canine ventricular myocytes. The junctional currents ( I j) recorded between hMSC pairs exhibited quasi-symmetrical and asymmetrical voltage ( V j) dependence. I j records from hMSC–HeLaCx43 and hMSC–HeLaCx40 cell pairs also showed symmetrical and asymmetrical V j dependence, while hMSC–HeLaCx45 pairs always produced asymmetrical I j with pronounced V j gating when the Cx45 side was negative. Symmetrical I j suggests that the dominant functional channel is homotypic, while the asymmetrical I j suggests the activity of another channel type (heterotypic, heteromeric or both). The hMSCs exhibited a spectrum of single channels with transition conductances ( γ j) of 30–80pS. The macroscopic I j obtained from hMSC–cardiac myocyte cell pairs exhibited asymmetrical V j dependence, while single channel events revealed γ j of the size range 40–100pS. hMSC coupling via gap junctions to other cell types provides the basis for considering them as a therapeutic repair or cellular delivery system to syncytia such as the myocardium.  相似文献   

7.
Using ultrastructural features as a natural tracer we identified a commissural interneuron in the tench (Tinca tinca L.) spinal cord with the following characteristics: (1) the unipolar cell soma is located 100-150 micron dorsal from the central canal, the frequency of its occurrence being one cell on each side per spinal cord segment; (2) the first node of Ranvier of its axon is connected to a presynaptic branch of the ipsilateral Mauthner axon via gap junctions; (3) its postsynaptic targets are contralateral moto- and interneurons; (4) its terminal boutons contain f-type vesicles and form Gray-type-2 synapses abut on the initial segment or node of Ranvier of these target neurons distal to the input site of monosynaptic excitatory links from the contralateral Mauthner axon. Thus, it appears that this segmental interneuron may provide the structural basis for the well-known mutual crossed inhibition within the spinal circuit of Mauthner axons.  相似文献   

8.
Spermine blocks connexin40 (Cx40) gap junctions, and two cytoplasmic amino-terminal domain glutamate residues are essential for this inhibitory activity. To further examine the molecular basis for block, we mutated a portion of a basic amino acid (HKH) motif on the Cx40 amino-terminal domain. Replacement of the Cx40 H15 + K16 residues with the Q15 + A16 sequence native to spermine-insensitive connexin43 (Cx43) gap junctions increased the equilibrium dissociation constant ( K d) and reduced the maximum inhibition by spermine. The corresponding electrical distance (δ) approximation was decreased by about 50%. The transjunctional voltage ( V j)-dependent gating of homotypic Cx40 H15Q + K16A mutant gap junctions was also significantly reduced. The minimum normalized steady-state junctional conductance ( G min) increased from 0.17 to 0.72, with an increase in the half-inactivation voltage from 48 to 60 mV. However, the unitary junctional conductance (γj; 160 pS) was only slightly altered, and the relative cation/anion conductance and permeability ratios were unchanged from wild-type Cx40 gap junction channels. The relative K+/Cl permeability ( P K/ P Cl) ratio increased from six to ten when [KCl] was reduced to 25% of normal. These data suggest that the HKH motif at positions 15–17 is important to the conformational structure of the putative voltage sensor and spermine receptor of Cx40, without causing significant alteration of the electrostatic surface charge potentials that contribute to the ion selectivity of this gap junction channel.  相似文献   

9.
Recent evidence suggests that electrotonic coupling is an important mechanism for neuronal synchronisation in the mammalian cortex and hippocampus. Various types of network oscillations have been shown to depend on, or be sharpened by, gap junctions between inhibitory interneurones or excitatory projection cells. Here we made use of a targeted disruption of the gene coding for Cx36, a recently discovered neuronal gap junction subunit, to analyse its role in hippocampal network behaviour. Mice lacking Cx36 are viable and lack obvious morphological or behavioural abnormalities. Stimulation of afferent and efferent fibre pathways in hippocampal slices revealed a largely normal function of the synaptic circuitry, including tetanically evoked network oscillations. Spontaneous sharp waves and ripple (∼200 Hz) oscillations, however, occurred less frequently in slices from Cx36 -/- mice, and ripples were slightly slower than in littermate controls. Moreover, epileptiform discharges elicited by 4-aminopyridine were attenuated in slices from Cx36 -/- mice. Our findings indicate that Cx36 plays a role in the generation of certain forms of network synchronisation in the hippocampus, namely sharp wave-ripple complexes and hypersynchronous epileptiform discharges.  相似文献   

10.
There is suggestive evidence that pyramidal cell axons in neocortex may be coupled by gap junctions into an "axonal plexus" capable of generating very fast oscillations (VFOs) with frequencies exceeding 80 Hz. It is not obvious, however, how a pyramidal cell in such a network could control its output when action potentials are free to propagate from the axons of other pyramidal cells into its own axon. We address this problem by means of simulations based on three-dimensional reconstructions of pyramidal cells from rat somatosensory cortex. We show that somatic depolarization enables propagation via gap junctions into the initial segment and main axon, while somatic hyperpolarization disables it. We show further that somatic voltage cannot effectively control action potential propagation through gap junctions on minor collaterals; action potentials may therefore propagate freely from such collaterals regardless of somatic voltage. In previous work, VFOs are all but abolished during the hyperpolarization phase of slow oscillations induced by anesthesia in vivo. This finding constrains the density of gap junctions on collaterals in our model and suggests that axonal sprouting due to cortical lesions may result in abnormally high gap junction density on collaterals, leading in turn to excessive VFO activity and hence to epilepsy via kindling.  相似文献   

11.
The ultrastructure of the myoneural junctions in the body wall muscles has been studied in Branchiobdella pentodonta Whit. A single junctional type has been found. Within the terminal axon there are two types of vesicles, which differ in number, size and electron opacity. The junctional gap contains the basement membrane. The post-junctional membrane displays concave patches on which slender projections arising from the outer lamina of the sarcolemma extend into the junctional gap. These concave patches overlie a cytoplasmic lamina made up of electron dense material.  相似文献   

12.
13.
Previously, dispersion of repolarization (DOR) has been extensively linked to the development of arrhythmias and sudden cardiac death. The electrical heterogeneities that cause DOR between transmural myocyte layers have been reported in a wide variety of animals and humans. The underlying causes of transmural electrical heterogeneities are in part due to heterogeneous functional expression of proteins responsible for ion handling. Recently, we found that electrophysiologic heterogeneities between subepicardial and midmyocardial cells can form a substrate for reentrant ventricular arrhythmias. However, cell-to-cell coupling through gap junctions is expected to attenuate transmural heterogeneities between cell types spanning the ventricular wall. In this article we review a hypothesis that regional uncoupling resulting from expression patterns of gap junctions across the ventricular wall underlies DOR, and DOR can be amplified under disease conditions which remodel gap junctions. We find the principle gap junction protein, connexin43 (Cx43), is selectively reduced in the subepicardium (by 24%) compared to deeper layers of normal canine left ventricle. Additionally, the greatest DOR occurs within the subepicardial-midmyocardial interface, precisely where Cx43 expression is reduced. The present data suggests that ion channel and gap junction heterogeneities act in conjunction to form and maintain transmural DOR. Importantly, both ion channel and gap junction remodeling occurs during many disease states such as heart failure. Importantly, in the absence of ion channel remodeling, pharmacological uncoupling increases transmural DOR, particularly within the epicardial-midmyocardial interface, to values observed in heart failure. Therefore, these data suggest that heterogeneous Cx43 expression produces functionally significant electrophysiologic heterogeneities across the ventricular wall and may be a mechanism for promoting DOR which underlie arrhythmias in heart failure.  相似文献   

14.
The auditory apparatus of the inner ear does not show turnover of sensory hair cells (HCs) in adult mammals; in contrast, there are many observations supporting low-level turnover of vestibular HCs within the balance organs of mammalian inner ears. This low-level renewal of vestibular HCs exists during normal conditions and it is further enhanced after trauma-induced loss of these HCs. The main process for renewal of HCs within mammalian vestibular epithelia is a conversion/transdifferentiation of existing supporting cells (SCs) into replacement HCs.In earlier studies using long-term organ cultures of postnatal rat macula utriculi, HC loss induced by gentamicin resulted in an initial substantial decline in HC density followed by a significant increase in the proportion of HCs to SCs indicating the production of replacement HCs. In the present study, using the same model of ototoxic damage to study renewal of vestibular HCs, we focus on the ultrastructural characteristics of SCs undergoing transdifferentiation into new HCs. Our objective was to search for morphological signs of SC plasticity during this process. In the utricular epithelia, we observed immature HCs, which appear to be SCs transdifferentiating into HCs. These bridge SCs have unique morphological features characterized by formation of foot processes, basal accumulation of mitochondria, and an increased amount of connections with nearby SCs. No gap junctions were observed on these transitional cells. The tight junction seals were morphologically intact in both control and gentamicin-exposed explants. Anat Rec, 303:506–515, 2020. © 2019 The Authors. The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.  相似文献   

15.
Locus coeruleus neurons are strongly coupled during early postnatal development, and it has been proposed that these neurons are linked by extraordinarily abundant gap junctions consisting of connexin32 (Cx32) and connexin26 (Cx26), and that those same connexins abundantly link neurons to astrocytes. Based on the controversial nature of those claims, immunofluorescence imaging and freeze-fracture replica immunogold labeling were used to re-investigate the abundance and connexin composition of neuronal and glial gap junctions in developing and adult rat and mouse locus coeruleus. In early postnatal development, connexin36 (Cx36) and connexin43 (Cx43) immunofluorescent puncta were densely distributed in the locus coeruleus, whereas Cx32 and Cx26 were not detected. By freeze-fracture replica immunogold labeling, Cx36 was found in ultrastructurally-defined neuronal gap junctions, whereas Cx32 and Cx26 were not detected in neurons and only rarely detected in glia. In 28-day postnatal (adult) rat locus coeruleus, immunofluorescence labeling for Cx26 was always co-localized with the glial gap junction marker Cx43; Cx32 was associated with the oligodendrocyte marker 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase); and Cx36 was never co-localized with Cx26, Cx32 or Cx43. Ultrastructurally, Cx36 was localized to gap junctions between neurons, whereas Cx32 was detected only in oligodendrocyte gap junctions; and Cx26 was found only rarely in astrocyte junctions but abundantly in pia mater. Thus, in developing and adult locus coeruleus, neuronal gap junctions contain Cx36 but do not contain detectable Cx32 or Cx26, suggesting that the locus coeruleus has the same cell-type specificity of connexin expression as observed ultrastructurally in other regions of the CNS. Moreover, in both developing and adult locus coeruleus, no evidence was found for gap junctions or connexins linking neurons with astrocytes or oligodendrocytes, indicating that neurons in this nucleus are not linked to the pan-glial syncytium by Cx32- or Cx26-containing gap junctions or by abundant free connexons composed of those connexins.  相似文献   

16.
Diversity and molecular anatomy of gap junctions   总被引:6,自引:0,他引:6  
In animal tissues, most cells are connected via intercellular cytoplasmic channels called gap junctions. Various electron microscopy techniques have made a crucial contribution to our understanding of the function and structure of gap junction channels. Tracer studies and freeze-fracture replica observations indicate that the connexon, the unit gap junction channel, is a pair of hemichannels apposed in the narrow intercellular gap between neighboring cell membranes. Recent advances in cellular biology have shown that connexon hemichannels are composed of hexamers of connexin proteins. Purification of the gap junction membrane and cDNA cloning analysis indicate the diversity of the connexin protein family, which contains more than 18 members, and their tissue- and cell type-specific distributions. Defects in some connexin genes may cause various hereditary diseases, such as X-linked Charcot-Marie-Tooth disease (Cx32), nonsyndromic autosomal deafness (Cx26), and cataract (Cx50). Analysis of gene knockout mice indicates that certain types of connexin play important roles in differentiation and development at crucial times in specific tissues and cell types.  相似文献   

17.
Summary Four different types of axon terminals form symmetric synapses with the cell bodies and initial axon segments of pyramidal cells in layer II/III of rat visual cortex. One type belongs to chandelier cells, and the other three kinds of terminals have origins that have not been established yet. These latter are referred to as large, medium-sized and dense terminals. The purpose of the present study was to examine the synaptic junctions formed by all four types of terminal. The synapses formed by the chandelier cell terminals are readily recognized in thin sections because of the characteristic features of both the terminals and the initial axon segments, which are the neuronal elements postsynaptic to them. In en face views of these axo-axonal synapses the junctions can be seen to have presynaptic dense projections that form a grid in which they are triagonally spaced, and have an average centre-to-centre spacing of 84 nm. As an ensemble the projections form the presynaptic grid, which usually has an oval or round outline, but may be notched on one side where projections are absent. The synaptic junctions of the large, medium-sized and dense terminals were examined by making reconstructions of the terminals from serial thin sections. It was found that at the interfaces between the axon terminals and the cell bodies of pyramidal cells, several separate synaptic junctions may be present, in addition to a number of puncta adhaerentia. Thus, there may be as many as five separate synaptic junctions and as few as one. It was also found that while the proportion of the area of the synaptic interface occupied by synaptic junctions was between 12% and 26% for dense terminals, for medium sized terminals it was 10–15%, and for the one large terminal reconstructed it was only 8%. Thus, there can be multiple synaptic junctions between each of these types of axon terminals and a pyramidal cell, and because many of the terminals forming symmetric junctions are boutons en passant, a number of vesicle release sites exist between the presynaptic axon and its postsynaptic partner. The axon terminals forming symmetric synapses in the cerebral cortex are assumed to be inhibitory, and consequently it is suggested that this arrangement of multiple release sites is designed to ensure that stimulation of the presynaptic axon results in an effective level of hyperpolarization of the postsynaptic neuron.  相似文献   

18.
Gap junctions between glial cells in mammalian CNS are known to contain several connexins (Cx), including Cx26, Cx30 and Cx43 at astrocyte-to-astrocyte junctions, and Cx29 and Cx32 on the oligodendrocyte side of astrocyte-to-oligodendrocyte junctions. Recent reports indicating that oligodendrocytes also express Cx47 prompted the present studies of Cx47 localization and relationships to other glial connexins in mouse CNS. In view of the increasing number of connexins reported to interact directly with the scaffolding protein zonula occludens-1 (ZO-1), we investigated ZO-1 expression and Cx47/ZO-1 interaction capabilities in brain, spinal cord and Cx47-transfected HeLa cells. From counts of over 9000 oligodendrocytes labeled by immunofluorescence in various brain regions, virtually all of these cells were found to express Cx29, Cx32 and Cx47. Oligodendrocyte somata displayed robust Cx47-immunopositive puncta that were co-localized with punctate labeling for Cx32 and Cx43. By freeze-fracture replica immunogold labeling, Cx47 was abundant on the oligodendrocyte-side of oligodendrocyte/astrocyte gap junctions. By immunofluorescence, labeling for Cx47 along myelinated fibers was sparse in most brain regions, whereas Cx29 and Cx32 were previously found to be concentrated along these fibers. By immunogold labeling, Cx47 was found in numerous small gap junctions linking myelin to astrocytes, but not within deeper layers of myelin. Brain subcellular fractionation revealed a lack of Cx47 enrichment in myelin fractions, which nevertheless contained an enrichment of Cx32 and Cx29. Oligodendrocytes were immunopositive for ZO-1, and displayed almost total Cx47/ZO-1 co-localization. ZO-1 was found to co-immunoprecipitate with Cx47, and pull-down assays indicated binding of Cx47 to the second PDZ domain of ZO-1. Our results indicate widespread expression of Cx47 by oligodendrocytes, but with a distribution pattern in relative levels inverse to the abundance of Cx29 in myelin and paucity of Cx29 in oligodendrocyte somata. Further, our findings suggest a scaffolding and/or regulatory role of ZO-1 at the oligodendrocyte side of astrocyte-to-oligodendrocyte gap junctions.  相似文献   

19.
Combined confocal microscopy and freeze-fracture replica immunogold labeling (FRIL) were used to examine the connexin identity at electrical synapses in goldfish brain and rat retina, and to test for "co-localization" vs. "close proximity" of connexins to other functionally interacting proteins in synapses of goldfish and mouse brain and rat retina. In goldfish brain, confocal microscopy revealed immunofluorescence for connexin35 (Cx35) and NMDA-R1 (NR1) glutamate receptor protein in Mauthner Cell/Club Ending synapses. By FRIL double labeling, NR1 glutamate receptors were found in clusters of intramembrane particles in the postsynaptic membrane extraplasmic leaflets, and these distinctive postsynaptic densities were in close proximity (0.1-0.3 microm) to neuronal gap junctions labeled for Cx35, which is the fish ortholog of connexin36 (Cx36) found at neuronal gap junctions in mammals. Immunogold labeling for Cx36 in adult rat retina revealed abundant gap junctions, including several previously unrecognized morphological types. As in goldfish hindbrain, immunogold double labeling revealed NR1-containing postsynaptic densities localized near Cx36-labeled gap junction in rat inferior olive. Confocal immunofluorescence microscopy revealed widespread co-localization of Cx36 and ZO-1, particularly in the reticular thalamic nucleus and amygdala of mouse brain. By FRIL, ZO-1 immunoreactivity was co-localized with Cx36 at individual gap junction plaques in rat retinal neurons. As cytoplasmic accessory proteins, ZO-1 and possibly related members of the membrane-associated guanylate kinase (MAGUK) family represent scaffolding proteins that may bind to and regulate the activity of many neuronal gap junctions. These data document the power of combining immunofluorescence confocal microscopy with FRIL ultrastructural imaging and immunogold labeling to determine the relative proximities of proteins that are involved in short- vs. intermediate-range molecular interactions in the complex membrane appositions at synapses between neurons.  相似文献   

20.
Gap junctions were assayed during re-differentiation of adult rat cardiomyocytes in long-term culture to gain insight into the processes of remodeling. Double immunostaining allowed the localization of connexins Cx40, Cx43, and Cx45 between myocytes and demonstrated co-expression and co-localization in individual cells and gap junction plaques, respectively. Immunoblots showed differential time-dependent changes in connexin expression and phosphorylation. The total amount of connexins and the ratio of phosphorylated/non-phosphorylated isoforms gradually increased during the re-establishment of intercellular communication. Dual voltage-clamp studies showed the involvement of several types of gap junction channels. Multichannel currents yielded diverse spectra of g(j,inst)=f( V(j)) and g(j,ss)=f( V(j)) relationships ( g(j,inst): instantaneous gap junction conductance; g(j,ss): conductance at steady state; V(j): transjunctional voltage), indicative of homotypic and heterotypic channels. Single-channel currents revealed two prominent conductances reflecting gamma(j,main) and gamma(j,residual). The histograms of gamma(j,main) showed four discrete peaks (41-44, 59-61, 70-76, and 100-107 pS) attributable to a combination of Cx45-Cx45, Cx40-Cx45 and Cx43-Cx45 channels (1st peak), Cx43-Cx43 and Cx40-Cx43 channels (2nd peak), Cx43-Cx43 channels (3rd peak) and Cx40-Cx40 and Cx40-Cx43 channels (4th peak). However, the presence of heteromeric channels cannot be excluded. The data are consistent with an up-regulation of Cx45 and Cx43 during re-differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号