首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Aim:

Hydrogen peroxide (H2O2) is produced during liver transplantation. Ischemia/reperfusion induces oxidation and causes intracellular Ca2+ overload, which harms liver cells. Our goal was to determine the precise mechanisms of these processes.

Methods:

Hepatocytes were extracted from rats. Intracellular Ca2+ concentrations ([Ca2+]i), inner mitochondrial membrane potentials and NAD(P)H levels were measured using fluorescence imaging. Phospholipase C (PLC) activity was detected using exogenous PIP2. ATP concentrations were measured using the luciferin-luciferase method. Patch-clamp recordings were performed to evaluate membrane currents.

Results:

H2O2 increased intracellular Ca2+ concentrations ([Ca2+]i) across two kinetic phases. A low concentration (400 μmol/L) of H2O2 induced a sustained elevation of [Ca2+]i that was reversed by removing extracellular Ca2+. H2O2 increased membrane currents consistent with intracellular ATP concentrations. The non-selective ATP-sensitive cation channel blocker amiloride inhibited H2O2-induced membrane current increases and [Ca2+]i elevation. A high concentration (1 mmol/L) of H2O2 induced an additional transient elevation of [Ca2+]i, which was abolished by the specific PLC blocker U73122 but was not eliminated by removal of extracellular Ca2+. PLC activity was increased by 1 mmol/L H2O2 but not by 400 μmol/L H2O2.

Conclusion:

H2O2 mobilizes Ca2+ through two distinct mechanisms. In one, 400 μmol/L H2O2-induced sustained [Ca2+]i elevation is mediated via a Ca2+ influx mechanism, under which H2O2 impairs mitochondrial function via oxidative stress, reduces intracellular ATP production, and in turn opens ATP-sensitive, non-specific cation channels, leading to Ca2+ influx. In contrast, 1 mmol/L H2O2-induced transient elevation of [Ca2+]i is mediated via activation of the PLC signaling pathway and subsequently, by mobilization of Ca2+ from intracellular Ca2+ stores.  相似文献   

2.
Group 1 metabotropic glutamate receptors (mGluRs) can positively affect postsynaptic neuronal excitability and epileptogenesis. The objective of the present study was to determine whether group 1 mGluRs might be involved in synaptically-induced intracellular free Ca2+ concentration ([Ca2+]i) spikes and neuronal cell death induced by 0.1 mM Mg2+ and 10 µM glycine in cultured rat hippocampal neurons from embryonic day 17 fetal Sprague–Dawley rats using imaging methods for Ca2+ and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays for cell survival. Reduction of extracellular Mg2+ concentration ([Mg2+]o) to 0.1 mM induced repetitive [Ca2+]i spikes within 30 sec at day 11.5. The mGluR5 antagonist 6-Methyl-2-(phenylethynyl) pyridine (MPEP) almost completely inhibited the [Ca2+]i spikes, but the mGluR1 antagonist LY367385 did not. The group 1 mGluRs agonist, 3,5-dihydroxyphenylglycine (DHPG), significantly increased the [Ca2+]i spikes. The phospholipase C inhibitor U73122 significantly inhibited the [Ca2+]i spikes in the absence or presence of DHPG. The IP3 receptor antagonist 2-aminoethoxydiphenyl borate or the ryanodine receptor antagonist 8-(diethylamino)octyl 3,4,5-trimethoxybenzoate also significantly inhibited the [Ca2+]i spikes in the absence or presence of DHPG. The TRPC channel inhibitors SKF96365 and flufenamic acid significantly inhibited the [Ca2+]i spikes in the absence or presence of DHPG. The mGluR5 antagonist MPEP significantly increased the neuronal cell survival, but mGluR1 antagonist LY367385 did not. These results suggest a possibility that mGluR5 is involved in synaptically-induced [Ca2+]i spikes and neuronal cell death in cultured rat hippocampal neurons by releasing Ca2+ from IP3 and ryanodine-sensitive intracellular stores and activating TRPC channels.  相似文献   

3.

Background and purpose

Changes in smooth muscle tone of the prostate gland are involved in aetiology of symptomatic prostatic hyperplasia, however the control mechanisms of prostatic smooth muscle are not well understood. Here, we have examined the role of internal Ca2+ compartments in regulating slow wave activity in the guinea pig prostate.

Experimental approach

Standard intracellular membrane potential recording techniques were used.

Key results

The majority (89%) of impaled cells displayed ‘slow wave’ activity. Cyclopiazonic acid (10 µmol·L−1) transiently depolarized (3–9 mV) the membrane potential of the prostatic stroma and transiently increased slow wave frequency. Thereafter, slow wave frequency slowly decreased over 20–30 min. Ryanodine transiently increased slow wave frequency, although after 30 min exposure slow wave frequency and time course returned to near control values. Caffeine (1 mmol·L−1) reduced slow wave frequency, accompanied by membrane depolarization of about 8 mV. Blockade of inositol trisphosphate receptor (IP3R)-mediated Ca2+ release with 2-aminoethoxy-diphenylborate (60 µmol·L−1) or Xestospongin C (3 µmol·L−1) or inhibiting phospholipase C and IP3 formation using U73122 (5 µmol·L−1) or neomycin (1 and 4 mmol·L−1) reduced slow wave frequency, amplitude and duration. The mitochondrial uncouplers, p-trifluoromethoxy carbonyl cyanide phenyl hydrazone (1–10 µmol·L−1), carbonyl cyanide m-chlorophenylhydrazone (1–3 µmol·L−1) or rotenone (10 µmol·L−1), depolarized the membrane (8–10 mV) before abolishing electrical activity.

Conclusion and implications

These results suggest that slow wave activity was dependent on the cyclical release of Ca2+ from IP3-controlled internal stores and mitochondria. This implies that intracellular compartments were essential in the initiation and/or maintenance of the regenerative contractile activity in the guinea pig prostate gland.  相似文献   

4.
The etiology of periodontal disease is multifactorial. Exogenous stimuli such as bacterial pathogens can interact with toll-like receptors to activate intracellular calcium signaling in gingival epithelium and other tissues. The triggering of calcium signaling induces the secretion of pro-inflammatory cytokines such as interleukin-8 as part of the inflammatory response; however, the exact mechanism of calcium signaling induced by bacterial toxins when gingival epithelial cells are exposed to pathogens is unclear. Here, we investigate calcium signaling induced by bacteria and expression of inflammatory cytokines in human gingival epithelial cells. We found that peptidoglycan, a constituent of gram-positive bacteria and an agonist of toll-like receptor 2, increases intracellular calcium in a concentration-dependent manner. Peptidoglycan-induced calcium signaling was abolished by treatment with blockers of phospholipase C (U73122), inositol 1,4,5-trisphosphate receptors, indicating the release of calcium from intracellular calcium stores. Peptidoglycan-mediated interleukin-8 expression was blocked by U73122 and 1,2-bis(2-aminophenoxy)ethane-N,N,N'',N''-tetraacetic acid tetrakis (acetoxymethyl ester). Moreover, interleukin-8 expression was induced by thapsigargin, a selective inhibitor of the sarco/endoplasmic reticulum calcium ATPase, when thapsigargin was treated alone or co-treated with peptidoglycan. These results suggest that the gram-positive bacterial toxin peptidoglycan induces calcium signaling via the phospholipase C/inositol 1,4,5-trisphosphate pathway, and that increased interleukin-8 expression is mediated by intracellular calcium levels in human gingival epithelial cells.  相似文献   

5.
  1. Bradykinin has multiple effects on differentiated NG108-15 neuroblastoma×glioma cells: it increases Ins(1,4,5)P3 production and intracellular Ca2+ concentration [Ca2+]i, evokes a Ca2+ activated K+ current (IK(Ca)) and inhibits M current (IM). We studied the effect of the aminosteroid U73122 and the antibiotic neomycin, both putative blockers of phospholipase C (PLC), on these four bradykinin effects.
  2. Preincubation with 1 or 5 μM U73122 for 15 min partly suppressed Ins(1,4,5)P3 generation and the increase in [Ca2+]i induced by 1 μM bradykinin. U73122 10 μM caused total and irreversible inhibition. The inactive analogue U73343 was without effect.
  3. Resting levels of Ins(1,4,5)P3 were not affected. However, resting [Ca2+]i was increased by 10 μM U73122, but not by U73343. Individual cells responded to 10 μM U73122 with a small increase in [Ca2+]i, followed in some cells by a large further rise.
  4. Pretreatment of whole-cell clamped cells with 1 μM U73122 for 30 min reduced the bradykinin-induced IK(Ca) to a fifth of its normal size. To suppress it totally, a 7–12 min pretreatment with 5 μM U73122 was required. Again, U73343 was without effect.
  5. U73122 and U73343 at concentrations of 5–10 μM irreversibly decreased the holding current (Ih) which at a holding potential of −30 or −20 mV mainly flows through open M channels. The decrease was often preceded by a transient increase.
  6. M current (IM) measured with 1 s pulses, was also decreased by 5–10 μM U73122 and U73343, but short applications of U73122 could cause a small increase. The bradykinin-induced inhibition of IM was not affected by U73122.
  7. Preincubation with 1 or 3 mM neomycin for 15 min did not affect Ins(1,4,5)P3 generation and the increase in [Ca2+]i induced by bradykinin. Pretreatment with 3 mM neomycin for about 20 min diminished the bradykinin-induced IK(Ca) to a fifth of its normal size.
  8. The four main conclusions drawn from the results are: (a) U73122 suppresses bradykinin-induced PLC activation and IK(Ca), but not IM inhibition. (b) This indicates that the transient outward current IK(Ca), but not the decrease of IM in response to bradykinin, is mediated by PLC. (c) U73122 itself inhibits IM and mobilizes Ca2+ from intracellular stores. (d) Externally applied neomycin is not an effective inhibitor of PLC-mediated signalling pathways in NG108-15 cells.
  相似文献   

6.
Summary The effects of 1-adrenoceptor stimulation by phenylephrine (PE) and -adrenoceptor stimulation by isoprenaline (ISO) on Ca2+ current (ICa) and free intracellular Ca2+ concentration ([Ca2+]i) were studied in isolated atrial myocytes from rat hearts. PE did not significantly affect the magnitude of ICa, whereas large increases of peak ICa were observed in response to ISO. In electrically driven cells, PE evoked a concentration-dependent, gradual increase in diastolic [Ca2+]i and, initially, an increase in the height of peak [Ca2+]i transients. When the diastolic [Ca2+]i was increased to a greater extent, the amplitude of [Ca2+]i transients was decreased. Simultaneous measurements of [Ca2+]i and membrane potential showed that the increase in diastolic [Ca2+]i was associated with a depolarization of the membrane, and the greater amplitude of [Ca2+]i transients with a prolongation of the action potential (AP). The PE-induced increase in diastolic [Ca2+]i was eliminated when the cells were voltage-clamped at the original resting membrane potential (RP); under these conditions, an increase in [Ca2+]i transients was observed in response to PE. ISO usually caused larger increases in the amplitude of [Ca2+]i transients with only minor changes in diastolic [Ca2+]i. These results suggest that PE and ISO increase the amplitude of [Ca2+]i transients in rat atrium in different ways. The increase in [Ca2+]i transients in response to -adrenoceptor stimulation is commonly thought to be mediated by a greater conductance of voltage-dependent Ca2+ channels causing a greater Ca2+ influx and a release of more Ca2+ from the sarcoplasmic reticulum during the AP. The increase in diastolic [Ca2+]i in response to PE is probably a consequence of the depolarization of the membrane, possibly involving the voltage-dependent Na+-Ca2+ exchange mechanism. The increase in the amplitude of the [Ca2+]i transients in response to PE may be ascribed both to the initial increase in diastolic [Ca2+]i and the prolongation of the AP. Send offprint requests to H. Nawrath at the above address  相似文献   

7.

Background and Purpose

Quercetin is a natural polyphenolic flavonoid that displays anti-diabetic properties in vivo. Its mechanism of action on insulin-secreting beta cells is poorly documented. In this work, we have analysed the effects of quercetin both on insulin secretion and on the intracellular calcium concentration ([Ca2+]i) in beta cells, in the absence of any co-stimulating factor.

Experimental Approach

Experiments were performed on both INS-1 cell line and rat isolated pancreatic islets. Insulin release was quantified by the homogeneous time-resolved fluorescence method. Variations in [Ca2+]i were measured using the ratiometric fluorescent Ca2+ indicator Fura-2. Ca2+ channel currents were recorded with the whole-cell patch-clamp technique.

Key Results

Quercetin concentration-dependently increased insulin secretion and elevated [Ca2+]i. These effects were not modified by the SERCA inhibitor thapsigargin (1 μmol·L−1), but were nearly abolished by the L-type Ca2+ channel antagonist nifedipine (1 μmol·L−1). Similar to the L-type Ca2+ channel agonist Bay K 8644, quercetin enhanced the L-type Ca2+ current by shifting its voltage-dependent activation towards negative potentials, leading to the increase in [Ca2+]i and insulin secretion. The effects of quercetin were not inhibited in the presence of a maximally active concentration of Bay K 8644 (1 μmol·L−1), with the two drugs having cumulative effects on [Ca2+]i.

Conclusions and Implications

Taken together, our results show that quercetin stimulates insulin secretion by increasing Ca2+ influx through an interaction with L-type Ca2+ channels at a site different from that of Bay K 8644. These data contribute to a better understanding of quercetin''s mechanism of action on insulin secretion.  相似文献   

8.
The layers of keratinocytes form an acid mantle on the surface of the skin. Herein, we investigated the effects of acidic pH on the membrane current and [Ca2+]c of human primary keratinocytes from foreskins and human keratinocyte cell line (HaCaT). Acidic extracellular pH (pHe≤ 5.5) activated outwardly rectifying Cl- current (ICl,pH) with slow kinetics of voltage-dependent activation. ICl,pH was potently inhibited by an anion channel blocker 4,4''-diisothiocyanostilbene-2,2''-disulphonic acid (DIDS, 73.5% inhibition at 1 µM). ICl,pH became more sensitive to pHe by raising temperature from 24℃ to 37℃. HaCaT cells also expressed Ca2+-activated Cl- current (ICl,Ca), and the amplitude of ICl,Ca was increased by relatively weak acidic pHe (7.0 and 6.8). Interestingly, the acidic pHe (5.0) also induced a sharp increase in the intracellular [Ca2+] (Δ[Ca2+]acid) of HaCaT cells. The Δ[Ca2+]acid was independent of extracellular Ca2+, and was abolished by the pretreatment with PLC inhibitor, U73122. In primary human keratinocytes, 5 out of 28 tested cells showed Δ[Ca2+]acid. In summary, we found ICl,pH and Δ[Ca2+]acid in human keratinocytes, and these ionic signals might have implication in pathophysiological responses and differentiation of epidermal keratinocytes.  相似文献   

9.
Summary The modes by which Endothelin-1 (ET) induces Ca2+-influx and the relative functional importance of the different sources of Ca2+ for ET-induced contraction were studied using fura 2-loaded and unloaded rat aortic strips. ET caused an increase in the cytosolic free Ca2+ level ([Ca2+]i) followed by a tonic contraction in Ca2+-containing solution, and produced a transient elevation of [Ca2+]i followed by a small sustained contraction in Ca2+-free medium. ET also stimulated 45Ca influx into La2+-inaccessible fraction significantly. With the same change of [Ca2+]i, ET caused a larger tension than that induced by high K. ET-induced contraction and [Ca2+]i elevation were not significantly inhibited by 0.1–0.3 M nicardipine which nearly abolished the contraction and [Ca+]i elevation produced by high K. During treatment of the strips with high K, addition of ET induced further increases in [Ca2+]i and muscle tension, and vice versa. In Ca2+-free medium, ET-induced contraction was influenced neither by ryanodine-treatment nor by high K-treatment, although the former attenuated and the latter potentiated the [Ca2+]i transient induced by ET. Further, the ET-induced sustained contraction under Ca2+-free conditions began to develop after the [Ca2+]i level returned to the baseline. Thus, it seems that the Ca2+ released from the ryanodine-sensitive and -insensitive Ca2+ stores by ET may provide only a minor or indirect contribution, if any, to the tension development. ET might cause a contraction mainly by stimulating Ca2+-influx through Ca2+ channel(s) other than voltage-dependent Ca2+ channels in character, and by increasing the sensitivity of the contractile filaments to Ca2+ or activating them Ca2+-independently.Visiting from Zun Yi Medical College, China Send offprint requests to I. Takayanagi at the above address  相似文献   

10.
The effect of the natural essential oil thymol on cytosolic Ca2+ concentrations ([Ca2+]i) and viability in human glioblastoma cells was examined. The Ca2+-sensitive fluorescent dye fura-2 was applied to measure [Ca2+]i. Thymol at concentrations of 400–1000 μM induced a [Ca2+]i rise in a concentration-dependent fashion. The response was decreased partially by removal of extracellular Ca2+. Thymol-induced Ca2+ signal was not altered by nifedipine, econazole, SK&F96365, and protein kinase C activator phorbol myristate acetate (PMA), but was inhibited by the protein kinase C inhibitor GF109203X. When extracellular Ca2+ was removed, incubation with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin or 2,5-di-tert-butylhydroquinone (BHQ) abolished thymol-induced [Ca2+]i rise. Incubation with thymol also abolished thapsigargin or BHQ-induced [Ca2+]i rise. Inhibition of phospholipase C with U73122 abolished thymol-induced [Ca2+]i rise. At concentrations of 200–800 μM, thymol killed cells in a concentration-dependent manner. This cytotoxic effect was not changed by chelating cytosolic Ca2+ with 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid/acetoxy methyl (BAPTA/AM). Annexin V/propidium iodide staining data suggest that thymol (200, 400 and 600 μM) induced apoptosis in a concentration-dependent manner. Collectively, in human glioblastoma cells, thymol induced a [Ca2+]i rise by inducing phospholipase C- and protein kinase C-dependent Ca2+ release from the endoplasmic reticulum and Ca2+ entry via non store-operated Ca2+ channels. Thymol induced cell death that may involve apoptosis.  相似文献   

11.

Aim:

To investigate the reverse mode function of Na+/Ca2+ exchangers NCX1.1 and NCX1.5 expressed in CHO cells as well as their modulations by PKC and PKA.

Methods:

CHO-K1 cells were transfected with pcDNA3.1 (+) plasmid carrying cDNA of rat cardiac NCX1.1 and brain NCX1.5. The expression of NCX1.1 and NCX1.5 was examined using Western blot analysis. The intracellular Ca2+ level ([Ca2+]i) was measured using Ca2+ imaging. Whole-cell NCX currents were recorded using patch-clamp technique. Reverse mode NCX activity was elicited by perfusion with Na+-free medium. Ca2+ paradox was induced by Ca2+-free EBSS medium, followed by Ca2+-containing solution (1.8 or 3.8 mmol/L CaCl2).

Results:

The protein levels of NCX1.1 and NCX1.5 expressed in CHO cells had no significant difference. The reverse modes of NCX1.1 and NCX1.5 in CHO cells exhibited a transient increase of [Ca2+]i, which was followed by a Ca2+ level plateau at higher external Ca2+ concentrations. In contrast, the wild type CHO cells showed a steady increase of [Ca2+]i at higher external Ca2+ concentrations. The PKC activator PMA (0.3-10 μmol/L) and PKA activator 8-Br-cAMP (10-100 μmol/L) significantly enhanced the reverse mode activity of NCX1.1 and NCX1.5 in CHO cells. NCX1.1 was 2.4-fold more sensitive to PKC activation than NCX1.5, whereas the sensitivity of the two NCX isoforms to PKA activation had no difference. Both PKC- and PKA-enhanced NCX reverse mode activities in CHO cells were suppressed by NCX inhibitor KB-R7943 (30 μmol/L).

Conclusion:

Both NCX1.1 and NCX1.5 are functional in regulating and maintaining stable [Ca2+]i in CHO cells and differentially regulated by PKA and PKC. The two NCX isoforms might be useful drug targets for heart and brain protection.  相似文献   

12.
This study was designed to clarify the mechanism of the inhibitory effect of forskolin on contraction, cytosolic Ca2+ level ([Ca2+]i), and Ca2+ sensitivity in guinea pig ileum. Forskolin (0.1 nM~10 µM) inhibited high K+ (25 mM and 40 mM)- or histamine (3 µM)-evoked contractions in a concentration-dependent manner. Histamine-evoked contractions were more sensitive to forskolin than high K+-evoked contractions. Spontaneous changes in [Ca2+]i and contractions were inhibited by forskolin (1 µM) without changing the resting [Ca2+]i. Forskoln (10 µM) inhibited muscle tension more strongly than [Ca2+]i stimulated by high K+, and thus shifted the [Ca2+]i-tension relationship to the lower-right. In histamine-stimulated contractions, forskolin (1 µM) inhibited both [Ca2+]i and muscle tension without changing the [Ca2+]i-tension relationship. In α-toxin-permeabilized tissues, forskolin (10 µM) inhibited the 0.3 µM Ca2+-evoked contractions in the presence of 0.1 mM GTP, but showed no effect on the Ca2+-tension relationship. We conclude that forskolin inhibits smooth muscle contractions by the following two mechanisms: a decrease in Ca2+ sensitivity of contractile elements in high K+-stimulated muscle and a decrease in [Ca2+]i in histamine-stimulated muscle.  相似文献   

13.
The effect of the carcinogen safrole on intracellular Ca2+ movement and cell proliferation has not been explored previously. The present study examined whether safrole could alter Ca2+ handling and growth in human oral cancer OC2 cells. Cytosolic free Ca2+ levels ([Ca2+]i) in populations of cells were measured using fura-2 as a fluorescent Ca2+ probe. Safrole at a concentration of 325 M started to increase [Ca2+]i in a concentration-dependent manner. The Ca2+ signal was reduced by 40% by removing extracellular Ca2+, and was decreased by 39% by nifedipine but not by verapamil or diltiazem. In Ca2+-free medium, after pretreatment with 650 M safrole, 1 M thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor) barely induced a [Ca2+]i rise; in contrast, addition of safrole after thapsigargin treatment induced a small [Ca2+]i rise. Neither inhibition of phospholipase C with 2 M U73122 nor modulation of protein kinase C activity affected safrole-induced Ca2+ release. Overnight incubation with 1 M safrole did not alter cell proliferation, but incubation with 10–1000 M safrole increased cell proliferation by 60±10%. This increase was not reversed by pre-chelating Ca2+ with 10 M of the Ca2+ chelator BAPTA. Collectively, the data suggest that in human oral cancer cells, safrole induced a [Ca2+]i rise by causing release of stored Ca2+ from the endoplasmic reticulum in a phospholipase C- and protein kinase C-independent fashion and by inducing Ca2+ influx via nifedipine-sensitive Ca2+ entry. Furthermore, safrole can enhance cell growth in a Ca2+-independent manner.  相似文献   

14.

Background and Purpose

N-arachidonoyl glycine (NAGly) is a lipoamino acid with vasorelaxant properties. We aimed to explore the mechanisms of NAGly''s action on unstimulated and agonist-stimulated endothelial cells.

Experimental Approach

The effects of NAGly on endothelial electrical signalling were studied in combination with vascular reactivity.

Key Results

In EA.hy926 cells, the sustained hyperpolarization to histamine was inhibited by the non-selective Na+/Ca2+ exchanger (NCX) inhibitor bepridil and by an inhibitor of reversed mode NCX, KB-R7943. In cells dialysed with Cs+-based Na+-containing solution, the outwardly rectifying current with typical characteristics of NCX was augmented following histamine exposure, further increased upon external Na+ withdrawal and inhibited by bepridil. NAGly (0.3–30 μM) suppressed NCX currents in a URB597- and guanosine 5′-O-(2-thiodiphosphate) (GDPβS)-insensitive manner, [Ca2+]i elevation evoked by Na+ removal and the hyperpolarization to histamine. In rat aorta, NAGly opposed the endothelial hyperpolarization and relaxation response to ACh. In unstimulated EA.hy926 cells, NAGly potentiated the whole-cell current attributable to large-conductance Ca2+-activated K+ (BKCa) channels in a GDPβS-insensitive, paxilline-sensitive manner and produced a sustained hyperpolarization. In cell-free inside-out patches, NAGly stimulated single BKCa channel activity.

Conclusion and Implications

Our data showed that NCX is a Ca2+ entry pathway in endothelial cells and that NAGly is a potent G-protein-independent modulator of endothelial electrical signalling and has a dual effect on endothelial electrical responses. In agonist pre-stimulated cells, NAGly opposes hyperpolarization and relaxation via inhibition of NCX-mediated Ca2+ entry, while in unstimulated cells, it promotes hyperpolarization via receptor-independent activation of BKCa channels.  相似文献   

15.
1-[6-[[17a-3-Methoxyestra-1,3,5(10)-trien17-yl]amino]hexyl]-1H-pyrrole-2,5-dione (U-73122) has been proven to be a useful tool in investigation of phospholipase C (PLC)-coupled signal transduction during cell activation. In the present studies, the inhibition by U-73122 of cytosolic free Ca2+ concentration ([Ca 2+]i) of neutrophils was investigated. U-73122 suppressed the [Ca2+]i elevation of neutrophils suspended in Ca2+-containing medium challenged by N-formyl-Met-Leu-Phe (fMLP), cyclopiazonic acid (CPA) and ionomycin. The concentrations of U-73122 required for inhibition of CPA- and ionomycin-induced changes with IC50 values 4.06 ± 0.27 µM and 4.04 ± 0.44 µM, respectively, is almost 10-times that required for inhibition of the fMLP-induced response (IC50 value 0.62 ± 0.04 µM) U-73122 also reduced the intracellular Ca2+ mobilization of neutrophils suspended in Ca 2+-free medium stimulated by fMLP and CPA, but not by ionomycin, with IC50 values 0.52 ± 0.02 µM and 6.82 ± 0.74 µM, respectively. 1-[6-[[17f3-Methoxyestra-1,3,5(10)-trien-l7-yl]amino]hexyl]2,5-pyrrolidinedione (U-73343), a close analog of U-73122 that does not inhibit PLC activity, suppressed the [Ca2+]i elevation of neutrophils challenged by fMLP in Ca2+-containing medium, but not in Ca2+-free medium, with IC50 value 22.30 ± 1.61 µM. In Mn2+-quench studies, U-73122 suppressed the Mn2+ influx in CPA-activated neutrophils (IC50 value was 7.16 ± 0.28 µM) as well as in resting neutrophils (IC50 value was 6.72 ± 0.30 M). U-73343 also suppressed the Mn2+ influx in resting neutrophils in a concentration-dependent manner. These results suggest that the inhibitory effect of U-73122 on [Ca2+]i of activated neutrophils is attributed partly to the suppression of Ca2+ release from the intracellular Ca2+ stores through PLC inhibition, and partly to the blockade, especially at higher concentrations, of Ca2+ entry from the extracellular space through PLC-independent processes.  相似文献   

16.
The effect of calmidazolium on cytosolic free Ca2+ concentrations ([Ca2+]i) and viability has not been explored in human hepatoma cells. This study examined whether calmidazolium altered [Ca2+]i and caused cell death in HA59T cells. [Ca2+]i and cell viability were measured using the fluorescent dyes fura-2 and WST-1, respectively. Calmidazolium at concentrations ≥1 μM increased [Ca2+]i in a concentration-dependent manner with an EC50 value of 1.5 μM. The Ca2+ signal was reduced partly by removing extracellular Ca2+. Calmidazolium induced Mn2+ quench of fura-2 fluorescence implicating Ca2+ influx. The Ca2+ influx was insensitive to L-type Ca2+ entry blockers, but was inhibited partly by enhancing or inhibiting protein kinase C activity. In Ca2+-free medium, after pretreatment with 1 μM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor), calmidazolium-induced [Ca2+]i rises were largely inhibited; and conversely, calmidazolium pretreatment totally suppressed thapsigargin-induced [Ca2+]i rises. Inhibition of phospholipase C with 2 μM U73122 did not change calmidazolium-induced [Ca2+]i rises. At concentrations between 1 and 15 μM, calmidazolium induced apoptosis-mediated cell death. Collectively, in HA59T hepatoma cells, calmidazolium induced [Ca2+]i rises by causing Ca2+ release from the endoplasmic reticulum in a phospholipase C-independent manner, and Ca2+ influx via protein kinase C-regulated Ca2+ entry pathway. Calmidazolium caused cytotoxicity via apoptosis.  相似文献   

17.
The effect of diallyl disulfide (DADS) on cytosolic Ca2+ concentrations ([Ca2+]i) and viability in PC3 human prostate cancer cells is unclear. This study explored whether DADS changed [Ca2+]i in PC3 cells by using fura-2. DADS at 50-1000 μM increased [Ca2+]i in a concentration-dependent manner. The signal was reduced by removing Ca2+. DADS-induced Ca2+ influx was not inhibited by nifedipine, econazole, SK&F96365, and protein kinase C modulators; but was inhibited by aristolochic acid. In Ca2+-free medium, pretreatment with the endoplasmic reticulum Ca2+ pump inhibitors thapsigargin or 2,5-di-tert-butylhydroquinone (BHQ) nearly abolished DADS-induced [Ca2+]i rise. Incubation with DADS inhibited thapsigargin or BHQ-induced [Ca2+]i rise. Inhibition of phospholipase C with U73122 did not alter DADS-induced [Ca2+]i rise. At 500-1000 μM, DADS killed cells in a concentration-dependent manner. The cytotoxic effect of DADS was partly reversed by prechelating cytosolic Ca2+ with 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA). Propidium iodide staining suggests that DADS (500 μM) induced apoptosis in a Ca2+-independent manner. Annexin V/PI staining further shows that 10 μM and 500 μM DADS both evoked apoptosis. DADS also increased reactive oxygen species (ROS) production. Collectively, in PC3 cells, DADS induced [Ca2+]i rise probably by causing phospholipase C-independent Ca2+ release from the endoplasmic reticulum and Ca2+ influx via phospholipase A2-sensitive channels. DADS induced Ca2+-dependent cell death, ROS production, and Ca2+-independent apoptosis.  相似文献   

18.
The calcium-activated K+ (BKCa) channel is one of the potassium-selective ion channels that are present in the nervous and vascular systems. Ca2+ is the main regulator of BKCa channel activation. The BKCa channel contains two high affinity Ca2+ binding sites, namely, regulators of K+ conductance, RCK1 and the Ca2+ bowl. Lysophosphatidic acid (LPA, 1-radyl-2-hydroxy-sn-glycero-3-phosphate) is one of the neurolipids. LPA affects diverse cellular functions on many cell types through G protein-coupled LPA receptor subtypes. The activation of LPA receptors induces transient elevation of intracellular Ca2+ levels through diverse G proteins such as Gαq/11, Gαi, Gα12/13, and Gαs and the related signal transduction pathway. In the present study, we examined LPA effects on BKCa channel activity expressed in Xenopus oocytes, which are known to endogenously express the LPA receptor. Treatment with LPA induced a large outward current in a reversible and concentration-dependent manner. However, repeated treatment with LPA induced a rapid desensitization, and the LPA receptor antagonist Ki16425 blocked LPA action. LPA-mediated BKCa channel activation was also attenuated by the PLC inhibitor U-73122, IP3 inhibitor 2-APB, Ca2+ chelator BAPTA, or PKC inhibitor calphostin. In addition, mutations in RCK1 and RCK2 also attenuated LPA-mediated BKCa channel activation. The present study indicates that LPA-mediated activation of the BKCa channel is achieved through the PLC, IP3, Ca2+, and PKC pathway and that LPA-mediated activation of the BKCa channel could be one of the biological effects of LPA in the nervous and vascular systems.  相似文献   

19.
In Madin-Darby canine kidney (MDCK) cells, the effect of maprotiline, an antidepressant, on intracellular Ca2+ concentration ([Ca2+]i) was measured using fura-2. Maprotiline (>2.5 µM) caused a rapid rise of [Ca2+]i in a concentration-dependent manner (EC50 200 µM). Maprotiline-induced [Ca2+]i rise was reduced by removal of extracellular Ca2+ or by addition of La3+, but was not altered by voltage-gated Ca2+-channel blockers. Maprotiline-induced Mn2+ influx-associated fura-2 fluorescence quench directly suggests that maprotiline caused Ca2+ influx. In Ca2+-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca2+-ATPase, caused a monophasic [Ca2+]i rise, after which the increasing effect of maprotiline on [Ca2+]i was nearly abolished; also, pretreatment with maprotiline reduced a portion of thapsigargin-induced [Ca2+]i rise. U73122, an inhibitor of phospholipase C, abolished [Ca2+]i rise induced by ATP (but not by maprotiline). Overnight incubation with 1–10 µM maprotiline enhanced cell viability, but 20–50 µM maprotiline decreased it. These findings suggest that maprotiline rapidly increases [Ca2+]i in renal tubular cells by stimulating both extracellular Ca2+ influx and intracellular Ca2+ release, and may modulate cell proliferation in a concentration-dependent manner.  相似文献   

20.

Background and Purpose

In suburothelial venules of rat bladder, pericytes (perivascular cells) develop spontaneous Ca2+ transients, which may drive the smooth muscle wall to generate spontaneous venular constrictions. We aimed to further explore the morphological and functional characteristics of pericytes in the mouse bladder.

Experimental Approach

The morphological features of pericytes were investigated by electron microscopy and fluorescence immunohistochemistry. Changes in diameters of suburothelial venules were measured using video microscopy, while intracellular Ca2+ dynamics were visualized using Fluo-4 fluorescence Ca2+ imaging.

Key Results

A network of α-smooth muscle actin immunoreactive pericytes surrounded venules in the mouse bladder suburothelium. Scanning electron microscopy revealed that this network of stellate-shaped pericytes covered the venules, while transmission electron microscopy demonstrated that the venular wall consisted of endothelium and adjacent pericytes, lacking an intermediate smooth muscle layer. Pericytes exhibited spontaneous Ca2+ transients, which were accompanied by phasic venular constrictions. Nicardipine (1 μM) disrupted the synchrony of spontaneous Ca2+ transients in pericytes and reduced their associated constrictions. Residual asynchronous Ca2+ transients were suppressed by cyclopiazonic acid (10 μM), 2-aminoethoxydiphenyl borate (10 μM), U-73122 (1 μM), oligomycin (1 μM) and SKF96365 (10 μM), but unaffected by ryanodine (100 μM) or YM-244769 (1 μM), suggesting that pericyte Ca2+ transients rely on Ca2+ release from the endoplasmic reticulum via the InsP3 receptor and also require Ca2+ influx through store-operated Ca2+ channels.

Conclusions and Implications

The pericytes in mouse bladder can generate spontaneous Ca2+ transients and contractions, and thus have a fundamental role in promoting spontaneous constrictions of suburothelial venules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号