首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 15 毫秒
1.
This paper provides a comparison of the three‐parameter exponentiated Weibull (EW) and generalized gamma (GG) distributions. The connection between these two different families is that the hazard functions of both have the four standard shapes (increasing, decreasing, bathtub, and arc shaped), and in fact, the shape of the hazard is the same for identical values of the three parameters. For a given EW distribution, we define a matching GG using simulation and also by matching the 5 th, 50 th, and 95 th percentiles. We compare EW and matching GG distributions graphically and using the Kullback–Leibler distance. We find that the survival functions for the EW and matching GG are graphically indistinguishable, and only the hazard functions can sometimes be seen to be slightly different. The Kullback–Leibler distances are very small and decrease with increasing sample size. We conclude that the similarity between the two distributions is striking, and therefore, the EW represents a convenient alternative to the GG with the identical richness of hazard behavior. More importantly, these results suggest that having the four basic hazard shapes may to some extent be an important structural characteristic of any family of distributions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
This paper proposes an estimation procedure for the semiparametric accelerated failure time frailty model that combines smoothing with an Expectation and Maximization‐like algorithm for estimating equations. The resulting algorithm permits simultaneous estimation of the regression parameter, the baseline cumulative hazard, and the parameter indexing a general frailty distribution. We develop novel moment‐based estimators for the frailty parameter, including a generalized method of moments estimator. Standard error estimates for all parameters are easily obtained using a randomly weighted bootstrap procedure. For the commonly used gamma frailty distribution, the proposed algorithm is very easy to implement using widely available numerical methods. Simulation results demonstrate that the algorithm performs very well in this setting. We re‐analyz several previously analyzed data sets for illustrative purposes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Traditional methods of sample size and power calculations in clinical trials with a time‐to‐event end point are based on the logrank test (and its variations), Cox proportional hazards (PH) assumption, or comparison of means of 2 exponential distributions. Of these, sample size calculation based on PH assumption is likely the most common and allows adjusting for the effect of one or more covariates. However, when designing a trial, there are situations when the assumption of PH may not be appropriate. Additionally, when it is known that there is a rapid decline in the survival curve for a control group, such as from previously conducted observational studies, a design based on the PH assumption may confer only a minor statistical improvement for the treatment group that is neither clinically nor practically meaningful. For such scenarios, a clinical trial design that focuses on improvement in patient longevity is proposed, based on the concept of proportional time using the generalized gamma ratio distribution. Simulations are conducted to evaluate the performance of the proportional time method and to identify the situations in which such a design will be beneficial as compared to the standard design using a PH assumption, piecewise exponential hazards assumption, and specific cases of a cure rate model. A practical example in which hemorrhagic stroke patients are randomized to 1 of 2 arms in a putative clinical trial demonstrates the usefulness of this approach by drastically reducing the number of patients needed for study enrollment.  相似文献   

4.
We develop flexible multiparameter regression (MPR) survival models for interval-censored survival data arising in longitudinal prospective studies and longitudinal randomised controlled clinical trials. A multiparameter Weibull regression survival model, which is wholly parametric, and has nonproportional hazards, is the main focus of the article. We describe the basic model, develop the interval-censored likelihood, and extend the model to include gamma frailty and a dispersion model. We evaluate the models by means of a simulation study and a detailed reanalysis of data from the Signal Tandmobiel study. The results demonstrate that the MPR model with frailty is computationally efficient and provides an excellent fit to the data.  相似文献   

5.
Survival models incorporating random effects to account for unmeasured heterogeneity are being increasingly used in biostatistical and applied research. Specifically, unmeasured covariates whose lack of inclusion in the model would lead to biased, inefficient results are commonly modeled by including a subject-specific (or cluster-specific) frailty term that follows a given distribution (eg, gamma or lognormal). Despite that, in the context of parametric frailty models, little is known about the impact of misspecifying the baseline hazard or the frailty distribution or both. Therefore, our aim is to quantify the impact of such misspecification in a wide variety of clinically plausible scenarios via Monte Carlo simulation, using open-source software readily available to applied researchers. We generate clustered survival data assuming various baseline hazard functions, including mixture distributions with turning points, and assess the impact of sample size, variance of the frailty, baseline hazard function, and frailty distribution. Models compared include standard parametric distributions and more flexible spline-based approaches; we also included semiparametric Cox models. The resulting bias can be clinically relevant. In conclusion, we highlight the importance of fitting models that are flexible enough and the importance of assessing model fit. We illustrate our conclusions with two applications using data on diabetic retinopathy and bladder cancer. Our results show the importance of assessing model fit with respect to the baseline hazard function and the distribution of the frailty: misspecifying the former leads to biased relative and absolute risk estimates, whereas misspecifying the latter affects absolute risk estimates and measures of heterogeneity.  相似文献   

6.
Longitudinal measurement of biomarkers is important in determining risk factors for binary endpoints such as infection or disease. However, biomarkers are subject to measurement error, and some are also subject to left‐censoring due to a lower limit of detection. Statistical methods to address these issues are few. We herein propose a generalized linear mixed model and estimate the model parameters using the Monte Carlo Newton‐Raphson (MCNR) method. Inferences regarding the parameters are made by applying Louis's method and the delta method. Simulation studies were conducted to compare the proposed MCNR method with existing methods including the maximum likelihood (ML) method and the ad hoc approach of replacing the left‐censored values with half of the detection limit (HDL). The results showed that the performance of the MCNR method is superior to ML and HDL with respect to the empirical standard error, as well as the coverage probability for the 95% confidence interval. The HDL method uses an incorrect imputation method, and the computation is constrained by the number of quadrature points; while the ML method also suffers from the constrain for the number of quadrature points, the MCNR method does not have this limitation and approximates the likelihood function better than the other methods. The improvement of the MCNR method is further illustrated with real‐world data from a longitudinal study of local cervicovaginal HIV viral load and its effects on oncogenic HPV detection in HIV‐positive women.  相似文献   

7.
8.
In the pharmacokinetic (PK) study under a 2x2 crossover design that involves both the test and reference drugs, we propose a mixed‐effects model for the drug concentration‐time profiles obtained from subjects who receive different drugs at different periods. In the proposed model, the drug concentrations repeatedly measured from the same subject at different time points are distributed according to a multivariate generalized gamma distribution, and the drug concentration‐time profiles are described by a compartmental PK model with between‐subject and within‐subject variations. We then suggest a bioequivalence test based on the estimated bioavailability parameters in the proposed mixed‐effects model. The results of a Monte Carlo study further show that the proposed model‐based bioequivalence test is not only better on maintaining its level but also more powerful for detecting the bioequivalence of the two drugs than the conventional bioequivalence test based on a non‐compartmental analysis or the one based on a mixed‐effects model with a normal error variable. The application of the proposed model and test is finally illustrated by using data sets in two PK studies. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
This paper presents a parametric method of fitting semi‐Markov models with piecewise‐constant hazards in the presence of left, right and interval censoring. We investigate transition intensities in a three‐state illness–death model with no recovery. We relax the Markov assumption by adjusting the intensity for the transition from state 2 (illness) to state 3 (death) for the time spent in state 2 through a time‐varying covariate. This involves the exact time of the transition from state 1 (healthy) to state 2. When the data are subject to left or interval censoring, this time is unknown. In the estimation of the likelihood, we take into account interval censoring by integrating out all possible times for the transition from state 1 to state 2. For left censoring, we use an Expectation–Maximisation inspired algorithm. A simulation study reflects the performance of the method. The proposed combination of statistical procedures provides great flexibility. We illustrate the method in an application by using data on stroke onset for the older population from the UK Medical Research Council Cognitive Function and Ageing Study. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号