首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Neocortical cells integrate inputs from thousands of presynaptic neurons distributed along their dendritic arbors. Propagation of postsynaptic potentials to the soma is crucial in determining neuronal output. Using intracellular recordings in anesthetized and non-anesthetized, naturally awake and sleeping cats, we found evidence for generation of fast, all-or-none events recorded at the soma in about 20% of regular-spiking and intrinsically-bursting neurons. These events, termed fast prepotentials (FPPs), were suppressed by hyperpolarizing the neurons or by inhibiting synaptic transmission with perfusion of Ca2+-free artificial cerebrospinal fluid. FPPs could be evoked by activation of specific cortical inputs and allowed neurons to fire at more hyperpolarized levels of membrane potentials. Thus, FPPs represent a powerful mechanism to boost the output of neocortical neurons in response to given inputs. We further found evidence for modulation of FPPs generation across the waking-sleep cycle, indicating important changes in the integrative properties of neocortical neurons in different states of vigilance. We suggest that FPPs represent attenuated spikes generated in hot spots of the dendritic arbor and constitute a powerful mechanism to reinforce the functional connections between specific elements of the cortical networks.  相似文献   

3.
Strong evidence suggests that the macaque monkey perirhinal cortex is involved in both the initial formation as well as the long-term storage of associative memory. To examine the neurophysiological basis of associative memory formation in this area, we recorded neural activity in this region as monkeys learned new conditional-motor associations. We report that a population of perirhinal neurons signal newly learned associations by changing their firing rate correlated with the animal's behavioral learning curve. Individual perirhinal neurons signal learning of one or more associations concurrently and these neural changes could occur before, at the same time, or after behavioral learning was expressed. We also compared the associative learning signals in the perirhinal cortex to our previous findings in the hippocampus. We report global similarities in both the learning-related and task-related activity seen across these areas as well as clear differences in the within and across trial timing and relative proportion of different subtypes of learning-related signals. Taken together, these findings emphasize the important role of the perirhinal cortex in new associative learning and suggest that the perirhinal cortex together with the hippocampus contribute importantly to conditional-motor associative memory formation.  相似文献   

4.
This review summarizes the local circuit, interlaminar connections in adult mammalian neocortex. These were first demonstrated with anatomical techniques, which indicate some of the exquisite spatial precision present in the circuitry. Details, such as the class(es) of neurons targeted by some of these projections, have begun to be added in studies that combine paired/triple intracellular recordings with dye-filling of connected neurons. Clear patterns are emerging from these studies, with 'forward' projections from layer 4 to 3 and from 3 to 5 targeting both selected pyramidal cells and interneurons, while 'back' projections from layer 5 to 3 and from 3 to 4 target only interneurons. To place these data in a wider context, the major afferent inputs to and efferent outputs from each of the layers are discussed first.  相似文献   

5.
Dopamine (DA) simultaneously produces both excitation and inhibition in the human cortex. In order to shed light on the functional significance of these seemingly opposing effects, we administered the DA precursor levodopa (L-dopa) to healthy subjects in conjunction with 2 neuroplasticity-inducing motor cortex stimulation protocols. Transcranial direct current stimulation (tDCS) induces cortical excitability enhancement by anodal and depression by cathodal brain polarization, which is not restricted to specific subgroups of synapses. In contrast, paired associative stimulation (PAS) induces focal excitability enhancements of somatosensory and motor cortical neuronal synaptic connections. Here, we show that administering L-dopa turns the unspecific excitability enhancement caused by anodal tDCS into inhibition and prolongs the cathodal tDCS-induced excitability diminution. Conversely, it stabilizes the PAS-induced synapse-specific excitability increase. Most importantly, it prolongs all of these aftereffects by a factor of about 20. Hereby, DA focuses synapse-specific excitability-enhancing neuroplasticity in human cortical networks.  相似文献   

6.
7.
During encoding, the distributed neocortical representations of memory components are presumed to be associatively linked by the hippocampus. With time, a reorganization of brain areas supporting memory takes place, which can ultimately result in memories becoming independent of the hippocampus. While it is theorized that with time, the neocortical representations become linked by higher order neocortical association areas, this remains to be experimentally supported. In this study, 24 human participants encoded sets of face-location associations, which they retrieved 1 or 25 h later ("recent" and "remote" conditions, respectively), while their brain activity was recorded using whole-head magnetoencephalography. We investigated changes in the functional interactions between the neocortical representational areas emerging over time. To assess functional interactions, trial-by-trial high gamma (60-140 Hz) power correlations were calculated between the neocortical representational areas relevant to the encoded information, namely the fusiform face area (FFA) and posterior parietal cortex (PPC). With time, both the FFA and the PPC increased their functional interactions with the anterior temporal lobe (ATL). Given that the ATL is involved in semantic representation of paired associates, our results suggest that, already within 25 h after acquiring new memory associations, neocortical functional links are established via higher order semantic association areas.  相似文献   

8.
Distinct networks of gamma-aminobutyric acidergic interneurons connected by electrical synapses can promote different patterns of activity in the neocortex. Cannabinoids affect memory and cognition by powerfully modulating a subset of inhibitory synapses; however, very little is known about the synaptic properties of the cannabinoid receptor-expressing neurons (CB(1)-positive irregular spiking [CB(1)-IS]) in the neocortex. Using paired recordings in neocortical slices, we 1st report here that synapses of CB(1)-IS cells, but not synapses of fast-spiking (FS) cells, are suppressed by release of endocannabinoids from pyramidal neurons. CB(1)-IS synapses were characterized by a very high failure rate that contrasted with the high reliability of FS synapses. Furthermore, CB(1)-IS cells received excitatory inputs less frequently compared with FS cells and made significantly less frequent inhibitory contacts onto local pyramids. These distinct synaptic properties together with their characteristic irregular firing suggest that CB(1)-IS cells play different role in neocortical function than that of FS cells. Thus, whereas the synaptic properties of FS cells can allow them to impose high-frequency rhythmic oscillatory activity, those of CB(1)-IS cells may lead to disruption of fast rhythmic oscillations. Our results suggest that activity-dependent release of cannabinoids, by blocking CB(1)-IS synapses, may alter the role of inhibition in neocortical circuits.  相似文献   

9.
Herein we review the evidence that neocortical projection neurons and interneurons are derived from distinct regions within the telencephalon. While neocortical projection neurons are derived from the ventricular zone of the neocortex, neocortical interneurons appear to be derived from the germinal zone of the basal ganglia. These interneurons follow a tangential migratory pathway from the ganglionic eminences to the cortex. Interneurons of the olfactory bulb follow a distinct tangential migration from the basal ganglia. The Dlx homeobox genes, which are essential for basal ganglia differentiation, are also required for the development of neocortical and olfactory bulb interneurons. Furthermore, evidence is presented that retroviral-mediated expression of DLX2 in neocortical cells can induce GABAergic interneuron differentiation.  相似文献   

10.
This study was designed to examine whether corticocortical paired associative stimulation (cc-PAS) can modulate interhemispheric inhibition (IHI) in the human brain. Twelve healthy right-handed volunteers received 90 paired transcranial stimuli to the right and left primary motor hand area (M1(HAND)) at an interstimulus interval (ISI) of 8 ms. Left-to-right cc-PAS (first pulse given to left M1(HAND)) attenuated left-to-right IHI for one hour after cc-PAS. Left-to-right cc-PAS also increased corticospinal excitability in the conditioned right M1(HAND). These effects were not seen in an asymptomatic individual with callosal agenesis. Additional experiments showed no changes in left-to-right IHI or corticospinal excitability when left-to-right cc-PAS was given at an ISI of 1 ms or at multiple ISIs in random order. At the behavioral level, left-to-right cc-PAS speeded responses with the left but not right index finger during a simple reaction time task. Right-to-left cc-PAS (first pulse given to right M1(HAND)) reduced right-to-left IHI without increasing corticospinal excitability in left M1(HAND). These results provide a proof of principle that cc-PAS can induce associative plasticity in connections between the targeted cortical areas. The efficacy of cc-PAS to induce lasting changes in excitability depends on the exact timing of the stimulus pairs suggesting an underlying Hebbian mechanism.  相似文献   

11.
12.
The third vesicular glutamate transporter, VGLUT3, is distributed in cell bodies of neocortical neurons and axon terminals mainly in the superficial part of layer II/III of the cerebral cortex. We examined the chemical characteristics of VGLUT3-expressing neurons by immunohistochemistry in the rat neocortex. Since the vast majority of VGLUT3-immunoreactive neurons showed immunoreactivities for GABA, preprotachykinin B (PPTB) and cholecystokinin, VGLUT3-immunoreactive neocortical neurons were considered to constitute a subgroup of GABAergic interneurons. VGLUT3-immunoreactive axon terminals were immunopositive for either vesicular GABA transporter (VGAT) or serotonin. These results together with anterograde tracer injection and chemical lesion experiments in the dorsal and median raphe nuclei revealed that the neocortex contains at least two kinds of VGLUT3-laden axon terminals: one is serotonergic and derived from the raphe nuclei, and the other is GABAergic and intrinsic in the neocortex. Furthermore, many VGLUT3/VGAT-immunoreactive terminals formed axon baskets and made axosomatic symmetric synapses on neocortical neurons, most of which were immunoreactive for PPTB. VGLUT3-immunopositive axon baskets surrounded about a half of PPTB-positive and almost all VGLUT3-positive neurons. Thus, VGLUT3-expressing GABAergic interneurons form a chemically specific circuit within the PPTB-producing interneuron group and it is likely that glutamate is used within the chemically specific circuit.  相似文献   

13.
We provided recent experimental evidence that coincident unitary events sum slightly sublinearly when targeting closely located postsynaptic sites. Simultaneous activation of many co-aligned inputs might lead to more significant nonlinear interactions especially in compartments of relatively small diameter. The axon initial segment of pyramidal cells has a limited volume and it receives inputs only from a moderate number of axo-axonic interneurons. We recorded the interaction of unitary axo-axonic inputs targeting a layer 4 pyramidal cell and determined the exact number and position of synapses mediating the effects. Both axo-axonic cells established three synaptic release sites on the axon initial segment of the postsynaptic cell which received a total of 19 synapses. The summation of identified inhibitory postsynaptic potentials (IPSPs) was slightly sublinear (9.4%) and the time course of sublinearity was slower than that of the IPSPs. Repeating the experiment while holding the postsynaptic cell in voltage clamp mode showed linear summation of inhibitory postsynaptic currents (IPSCs), suggesting that a local decrease in driving force could contribute to the sublinear summation measured in voltage recordings. The results indicate that moderate sublinearity during the interaction of neighboring inputs might be preserved in cellular compartments of relatively small volume, even if a considerable portion of all afferents converging to the same domain is simultaneously active.  相似文献   

14.
The interactions between migrating interneurons and their environment that lead to stereotypic migration pathways remain largely undefined. We have used time-lapse imaging to record the migratory responses of labeled interneurons to different regions of the migratory pathway in organotypic slice cultures. We tested the hypothesis that the length of the migratory pathway is not equally permissive for interneuron migration, with separate zones of inhibition and attraction. Three different experimental approaches were used to address this issue, including explant cocultures, cortical overlay cultures, and rotation of cortical slices. The results clearly identify the lateral region to be an attractive substrate for interneuron entry at embryonic day 12.5, whereas the medial region at this stage contains a zone of inhibition. This property of the medial neocortex is temporally regulated with switching from inhibition to attraction within 24 h. We suggest that this temporal regulation may provide a mechanism for gating the entry of interneurons into the hippocampus while ensuring that cortical interneurons are properly confined within the neocortical wall. In this manner, interneurons arising from common precursors and sharing common migratory pathways are able to populate different pallial structures.  相似文献   

15.
16.
In the cerebral cortex, neurons can be classified into 2 broad morphological classes, referred to as pyramidal and nonpyramidal (stellate) cells, which correspond to functional classes of projection neurons and local circuit interneurons, respectively. In this study, we demonstrate that specific morphological, immunohistochemical, and physiological features, that allow class distinction of neurons in situ, are retained in acutely isolated neocortical neurons. Furthermore, voltage-clamp analysis with patch-clamp techniques indicate the differences in functional properties in adult neurons, reflect cell-specific, developmental changes in the density and type of specific classes of Na+, K+ and Ca2+ channels expressed. The differences in channel properties contribute to the different input-output relations of neocortical neurons, which enable inhibitory neurons to follow excitatory inputs faithfully and projection neurons to have more integrative roles.  相似文献   

17.
We present a comprehensive analysis of the cortical connections of the insular and adjacent cortical areas in the domestic cat by using microinjections of wheat-germ agglutinin conjugated to horseradish peroxidase. We examined the identity and extent of the cortical fields connected to each area, the relative anatomical weights of the various connections, their laminar origin, and their paths across the cerebral commissures. Our main finding is that despite their relatively small size and close apposition, the connections of the insular and adjacent areas are far more widespread and more specific to each area than previously realized, suggesting that each area is involved in disparate aspects of cortical integration. The granular insular area is linked to a constellation of somatosensory, motor, premotor and prefrontal districts. The dysgranular insular area is chiefly associated with lateral prefrontal and premotor, lateral somatosensory and perirhinal cortices. The dorsal agranular insular area is connected with limbic neocortical fields, while the ventral agranular insular area is associated with an array of olfactory allocortical fields. The anterior sylvian area is associated with visual, auditory and multimodal areas, with the dorsolateral prefrontal cortex, and with perirhinal area 36. The parainsular area is linked to non-tonotopic auditory and ventromedial frontal areas. Trajectories followed by the callosal axons of each of the investigated areas are extremely divergent. As a whole, the picture of the insular region that emerges from this and a parallel study (Clascá et al., J Comp Neurol 384:456-482, 1997) is that of an extreme heterogeneity, both in terms of histological architecture and neural connections. Comparison with earlier published reports on primates suggests that most, but not all, of the areas we investigated in cats may have an direct counterpart within the insula of Old World monkeys.  相似文献   

18.
One approach to defining mechanisms essential to neocortical development is to analyze the phenotype of novel spontaneous mutations that dramatically affect the generation and differentiation of different neocortical neurons. Previously we have shown that there is a large decrease in the total number of cortical neurons in the flathead mutant rat, and in this paper we show that the flathead (fh/fh) mutation causes an even larger decrease in the number of interneurons. The decrease in relative interneuron number is different in different cortical lamina and for different interneuron subtypes. Specifically, the percentage of GABA and calretinin- positive cells in upper layers of somatosensory cortex is not appreciably decreased in homozygous mutants, while other interneuron subtypes in somatosensory cortex and all GABA-positive interneuron types in entorhinal cortex are decreased. In addition, the soma and dendritic arbors of interneurons in flathead are greatly hypertrophied, while those of pyramidal neurons are not. Furthermore, we found that at embryonic day 14, flathead mutants display high levels of cell death throughout both the neocortical and ganglionic eminence (GE) proliferative zones with a larger increase in cell death in the GE than in the neocortical VZ. In addition, we provide evidence that there is widespread cytokinesis failure resulting in binucleate pyramidal cells and interneurons, and the number of binucleate interneurons is greater than the number of binucleate pyramidal neurons. Together, these results demonstrate that the fh mutation causes dramatic alterations in interneuron development, and suggest that the flathead mutation causes differential cytokinesis failure and cell death in different types of neocortical progenitors.  相似文献   

19.
Endocannabinoids are emerging as potent modulators of neuronal activity throughout the brain, and activation of the type-1 cannabinoid receptor (CB1R) reduces sensory-evoked cortical responses in vivo, presumably by decreasing excitatory transmission. In the neocortex, CB1R is differentially expressed across neocortical laminae, with highest levels of expression in layers 2/3 and 5. Although we have shown that cannabinoid signaling in layer 2/3 of somatosensory cortex targets both gamma-aminobutyric acid (GABA) and glutamate release, the predominant effect is a net increase in pyramidal neuron (PN) activity due to disinhibition. The role of endocannabinoid signaling in layer 5, the main output layer of the neocortex, remains unknown. We found that inducing activity in layer 5 PNs resulted in endocannabinoid-mediated depolarization-induced suppression of excitation (DSE), whereas the majority of inhibitory inputs were cannabinoid insensitive. Furthermore, in contrast to layer 2/3, the net effect of elevations in action potential firing of layer 5 PNs was an endocannabinoid-mediated decrease in PN spike probability. Interestingly, excitatory synaptic currents in layer 5 evoked by intralaminar stimulation were cannabinoid sensitive, whereas inputs evoked from layer 2/3 were insensitive, suggesting specificity of cannabinoid signaling across glutamatergic inputs. Thus, cannabinoids have differential effects on excitation and inhibition across cortical layers, and endocannabinoid signaling in layer 5 may serve to selectively decrease the efficacy of a subset of excitatory inputs.  相似文献   

20.
Homeostatic metaplasticity is important to maintain overall synaptic weight in neuronal networks. Previous work suggested that homeostatic metaplasticity in motor cortex is impaired in writer's cramp, the most common form of task-specific focal dystonia, when explored by the interactions between 2 successive plasticity inducing transcranial brain stimulation protocols (Quartarone Rizzo V, Bagnato S, Morgante F, Sant'angelo A, Romano M, Crupi D, Girlanda P, Rothwell JC, Siebner HR. 2005. Homeostatic-like plasticity of the primary motor hand area is impaired in focal hand dystonia. Brain. 128:1943-1950.). To which extent deficient homeostatic metaplasticity applies also to the behavioral level of practice-dependent plasticity is unknown. Here, we examined the interactions of 3 paired associative transcranial magnetic stimulation protocols (motor cortical excitability-enhancing paired associative stimulation (PAS)(25ms), excitability-depressing PAS(10ms), and control PAS(100ms)) with subsequent practice-dependent plasticity. Ten patients with writer's cramp and 10 healthy controls practiced rapid thumb abductions for 30 min. Practice-dependent plasticity was quantified by the increase in peak acceleration of the trained movement. The healthy controls but not the writer's cramp patients showed homeostatic suppression of practice-dependent plasticity after PAS(25ms) when compared with practice-dependent plasticity after PAS(10ms) and PAS(100ms). The lack of the PAS(25ms)-induced suppression of practice-dependent plasticity in writer's cramp correlated with clinical severity of the focal hand dystonia. Findings support the notion that deficient homeostatic metaplasticity of practice-dependent plasticity plays a significant role in the pathophysiology of writer's cramp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号