首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Identification of the 1p/19q allelic status in gliomas, primarily those with a major oligodendroglial component, has become an excellent molecular complement to tumor histology in order to identify those cases sensitive to chemotherapy. In addition to loss of heterozygosity (LOH), fluorescence in situ hybridization (FISH), or comparative genomic hybridization (CGH), multiplex ligation-dependent probe amplification (MLPA) has been shown to be an alternative methodology to identify deletions of those chromosome arms. We used MLPA to explore the 1p and 19q allelic constitution in a series of 76 gliomas: 41 tumors with a major oligodendroglial component, 34 glioblastomas, and one low-grade astrocytoma. We compared the MLPA findings of the oligodendroglial cases with those previously obtained using LOH in the same samples. Thirty-eight of 41 oligodendrogliomas displayed identical findings by both LOH and MLPA, and losses at either 1p and/or 19q were identified in 12 of 35 (34%) astrocytic tumors. These findings agree with data previously reported comparing MLPA versus FISH or CGH in gliomas and suggest that MLPA can be used in the identification of the 1p/19q allelic deletions on these brain neoplasms  相似文献   

2.
Caveolin-1 (cav-1) has been proposed as an immunohistochemical marker able to distinguish astroglial from oligodendroglial tumors. In addition, it has been suggested that the reduction of caveolin-1 expression in glioblastoma cells increases their proliferative and invasive potential. Accordingly, the present study investigates caveolin-1 immunoexpression and correlation with the 1p/19q status, histologic grade, proliferation index, epidermal growth factor receptor, and p53 expression in a series of 73 diffuse gliomas. A membranous and cytoplasmic immunolabeling for caveolin-1 was detected in neoplastic cells of 60% of cases. No significant differences in terms of caveolin-1 expression were observed between astrocytomas, oligodendrogliomas, and oligoastrocytomas. In addition, caveolin-1 expression was not correlated with 1p/19q status in oligodendrogliomas and mixed oligoastrocytomas. Caveolin-1 was expressed in most high-grade (World Health Organization III and IV) gliomas. Low caveolin-1 expression correlated with a higher Ki-67 labeling index and the absence of p53 overexpression in glioblastomas, and it was significantly associated with epidermal growth factor receptor overexpression in anaplastic astrocytomas. In conclusion, the present study indicates that caveolin-1 is not useful as diagnostic marker to differentiate grade II astrocytomas from oligodendrogliomas.  相似文献   

3.
It has been demonstrated that a small percentage (approximately 15%) of glioblastomas (GBM) presents an oligodendroglial component with a variable frequency of chromosome 1p and 19q deletions, the genetic alteration related to chemotherapy response and longer survival in oligodendrogliomas. There is a growing interest in investigating 1p and 19q losses in hybrid gliomas and their impact on prognosis. A series of 88 GBMs was investigated regarding 1p and/or 19q losses, 24 with oligodendroglioma-like areas, using quantitative microsatellite analysis and/or fluorescent in situ hybridization. When present, the oligodendroglial and astrocytic components were independently investigated. Clinical data, histology, and 1p/19q status were correlated. Tumors with oligodendroglial components showed three cases each of 1p or 19q loss and one with combined 1p/19q loss. No difference in 1p or 19q status was observed between the oligodendroglial and astrocytic components. Conventional GBM demonstrated isolated 1p loss in four cases and 19q loss in five. No association was seen between 1p/19q status and histology. Deletions at 1p and/or 19q were infrequent in GBMs with oligodendroglial components. Despite the hybrid phenotype, the pattern of genetic changes at 1p and 19q was not different from that usually observed in conventional GBMs, nor did it show any correlation with survival.  相似文献   

4.
Because of the absence of specific marker, the histological classification of gliomas remain controversial. Identifying the genetic alterations involved in gliomas makes it possible to define specific molecular pathway of tumoral progression and to define markers of prognostic and diagnostic relevance. For example, p53 mutations are frequent in low grade astrocytoma, anaplastic astrocytoma and secondary glioblastoma suggesting that it takes place at an early stage of development of astrocytic tumors, whereas inactivation of PTEN arises mainly in glioblastomas and EGFR amplification is preferentially associated with "de novo" glioblastoma. Loss of chromosomes 1p and 19q characterizes oligodendroglial tumors. However the putative tumor suppressor genes located on 1p and 19q and specifically inactivated are not known yet. Emerging technologies, like microarrays and microdissection, will allow to refine molecular data and provide a molecular classification of gliomas mechanism involved in the repair of the respiratory epithelium.  相似文献   

5.
Overexpression of EGFR secondary to EGFR gene amplification is a common feature in primary malignant gliomas. To correctly assess EGFR protein and gene level as possible prognostic and predictive markers in gliomas, straightforward assays, which can be used routinely in the pathology laboratory to evaluate EGFR status, becomes critical. EGFR gene amplification and chromosome 7 aneuploidy was detected in 34 formalin-fixed, paraffin-embedded benign and malignant gliomas by chromogenic in situ hybridization (CISH) using digoxigenin-labeled EGFR and biotin-labeled chromosome 7 centromeric probes. The results were evaluated by bright-field microscopy under a 40x objective lens. EGFR protein level was detected by immunohistochemistry (IHC) using monoclonal antibody 31G7. Five cases, 3 astrocytoma grade III (33%) and 2 glioblastoma multiforme (GBM) (33%), had EGFR amplification displayed as diaminobenzidine-stained multiple dots suggesting the pattern of double-minute chromosomes. Chromosome 7 polysomy was found in 68% gliomas, 100% GBM, 67% astrocytoma grade III, 42% astrocytoma grade II, 50% astrocytoma grade I, 100% ependymoma, and the 1 case of mixed glioma III. High expression of EGFR protein was present in 62% gliomas and displayed membrane and cytoplasmic staining. All tumors with EGFR gene amplification showed EGFR high expression. High expression of EGFR without gene amplification was observed in all grades of gliomas. Simultaneous detection of EGFR gene copies or chromosome 7 centromere signals along with tissue morphology allows us to compare CISH results easily with IHC results. Our results show that CISH is an objective, practical, and accurate assay to screen for EGFR gene status in gliomas.  相似文献   

6.
The differential diagnosis between oligodendrogliomas and other gliomas remains a critical issue. The aim of this study is to verify the diagnostic value of Olig-2, Nogo-A, and synaptophysin and their role in identifying 1p19q codeletion. A total of 168 cases of brain tumors were studied: 24 oligodendrogliomas, 23 anaplastic oligodendrogliomas, 2 oligoastrocytomas, 2 anaplastic oligoastrocytomas, 30 glioblastoma multiforme, 2 diffuse astrocytomas, 4 anaplastic astrocytomas, 10 pilocytic astrocytomas, 9 ependymomas, 12 anaplastic ependymomas, 10 central neurocytomas, 10 meningiomas, 10 choroid plexus papillomas, 10 dysembryoplastic neuroepithelial tumors, and 10 metastases. All cases were immunostained with Olig-2, Nogo-A, and synaptophysin. In 79 cases, the status of 1p/19q had already been assessed by fluorescence in situ hybridization. Thus, in selected cases, fluorescence in situ hybridization was repeated in areas with numerous Nogo-A-positive neoplastic cells. Nogo-A was positive in 18 (75%) of 24 oligodendrogliomas, 8 (80%) of 10 dysembryoplastic neuroepithelial tumors, 6 (20%) of 30 glioblastoma multiforme, and 2 (20%) of 10 pilocytic astrocytomas. Olig-2 stained 22 (91.6%) of 24 oligodendrogliomas and all dysembryoplastic neuroepithelial tumors but also 24 (80%) of 30 glioblastoma multiforme and 8 (80%) of 10 pilocytic astrocytomas. Finally, synaptophysin stained 13 (54.1%) of 24 oligodendrogliomas, 3 (10%) of 30 glioblastoma multiforme, 1 (10%) of 10 pilocytic astrocytomas, and all neurocytomas. Among the 79 tested cases, original fluorescence in situ hybridization showed 1p/19q codeletion in 12 (52.2%) of 23 oligodendrogliomas, 8 (38%) of 21 anaplastic oligodendrogliomas, and 1 (4%) of 25 glioblastoma multiforme. However, after carrying out the Nogo-A-driven fluorescence in situ hybridization, 1p/19q codeletion was observed in 8 additional cases. Nogo-A is more useful and specific than Olig-2 in differentiating oligodendrogliomas from other gliomas. Furthermore, using a Nogo-A-driven fluorescence in situ hybridization analysis, it is possible to identify a larger number of 1p19q codeletions in gliomas.  相似文献   

7.
A series of 13 oligodendrogliomas (WHO grade II) and 20 anaplastic oligodendrogliomas (WHO grade III) was studied for gene amplification and expression of the epidermal growth factor receptor gene (EGFR). EGFR gene amplification was found in only one case of anaplastic oligodendroglioma, which additionally showed a deletion/rearrangement at the 5' end of the gene. Northern blot analysis, however, revealed increases of EGFR mRNA expression relative to non-neoplastic control brain in 6 of 13 oligodendrogliomas and 10 of 18 anaplastic oligodendrogliomas. All cases with increased mRNA expression showed strong immunoreactivity for EGFR protein. Our findings thus indicate that increased expression of EGFR mRNA and protein is common in low-grade and high-grade oligodendroglial tumors and in the vast majority of cases is not caused by gene amplification.  相似文献   

8.
The actin-binding protein ezrin has been associated with motility and invasive behavior of malignant cells. To assess the presence of this protein in human glial cells of the brain and its potential role in benign and malignant glial tumors, we studied ezrin immunoreactivity (IR), proliferation (MIB-1-IR), and apoptosis (terminal dUTP nick-end labeling) in normal human brain tissues from 10 autopsies and tissues from 115 cases of human glial tumors including astro-cytomas, ependymomas, oligodendrogliomas, and glioblastomas. We found weak staining of peripheral processes in normal human brain astrocytes and in World Health Organization grade II benign astrocytomas. Staining was markedly increased in anaplastic astrocytomas (World Health Organization grade III) and clearly strongest in glioblastomas (World Health Organization grade IV). The increase of ezrin-IR correlated significantly with increasing malignancy of astrocytic tumors (P < 0.0001). Statistical analysis revealed a stronger association with increasing malignancy for ezrin-IR than for MIB-1-IR or terminal dUTP nick-end labeling staining. Ezrin-IR was absent in normal oligodendrocytes and in oligodendrogliomas, but pronounced in normal ependymal cells and ependymomas. Ezrin-IR seems to be specific for astrocytes and ependymal glia in the normal brain. Our results indicate that ezrin-IR may provide a useful tool for the distinction of oligodendrogliomas and astrocytomas and for the grading of astrocytic tumors.  相似文献   

9.
Zhao L‐l, Xu K‐l, Wang S‐w, Hu B‐l & Chen L‐r
(2012) Histopathology  61, 726–736 Pathological significance of epidermal growth factor receptor expression and amplification in human gliomas Aims: To investigate epidermal growth factor receptor (EGFR) expression and amplification in gliomas and to assess their association with survival. Methods and results: Immunohistochemistry and fluorescence in‐situ hybridization were performed to analyse EGFR status in 158 cases of primary glioma. Kaplan–Meier survival and Cox regression analyses were performed to analyse the prognosis of patients. Overexpression of EGFR and expression of EGFR variant III (EGFRvIII) were found in 102 cases (64.6%) and 47 cases (29.7%), respectively. Overexpression of EGFR was significantly correlated with World Health Organization (WHO) grade and Karnofsky performance score (KPS) (both P < 0.05). Expression of EGFRvIII was significantly correlated with WHO grade, gender, age, and KPS (all P < 0.05). EGFR amplification was found in 46 cases (29.1%), and was significantly correlated with WHO grade, age, KPS and EGFR overexpression (all P < 0.05). Cox multifactor analysis showed that EGFR amplification was an independent unfavourable prognostic factor for human gliomas at all ages, and EGFRvIII was an independent prognostic factor in patients older than 60 years. Conclusions: EGFR amplification and EGFRvIII expression were associated with an unfavourable prognosis for patients of all ages, and for those older than 60 years, respectively. The differing significance of EGFR status in young and old glioma patients and its impact on prognosis needs further study.  相似文献   

10.
Allelic losses on 19q are found in the majority of oligodendroglial tumors and approximately one-third of diffuse astrocytomas. However, the tumor suppressor genes (TSG) on 19q are still elusive. Using cDNA microarray expression profiling, EMP3 at 19q13.3 was among those genes showing the most pronounced expression differences. In line with this, other authors reported EMP3 as being epigenetically silenced in neuroblastomas and astrocytomas. To further investigate EMP3 as a TSG candidate on 19q13.3, we performed molecular analysis of this gene in 162 human gliomas. Mutation analysis did not reveal EMP3 alteration in 132 gliomas. In oligodendroglial tumors, we found that aberrant methylation in the 5'-region of EMP3 was significantly associated with reduced mRNA expression and LOH 19q. In astrocytomas, EMP3 hypermethylation was also paralleled by reduced expression but was independent of the 19q status. EMP3 hypermethylation was detected in more than 80% of diffuse, anaplastic astrocytomas and secondary glioblastomas. Primary glioblastomas, however, mostly lacked EMP3 hypermethylation and frequently overexpressed EMP3. Our data corroborate that oligodendroglial and astrocytic gliomas often show EMP3 hypermethylation and aberrant expression. Furthermore, our findings suggest that primary and secondary glioblastomas are not only characterized by distinct genetic profiles but also differ in their epigenetic aberrations.  相似文献   

11.
The use of molecular markers in the diagnostics of gliomas aids histopathological diagnosis and allows their further classification into clinically significant subgroups. The aim of this study was to characterize the methylation pattern of the O(6) -methylguanine-DNA methyltransferase (MGMT) promoter, gene copy number aberrations, and isocitrate dehydrogenase I (IDH1) mutation in gliomas. We studied 51 gliomas (15 oligodendrogliomas, 18 oligoastrocytomas, 3 astrocytomas, and 15 glioblastomas) by pyrosequencing, array comparative genome hybridization (CGH), and immunohistochemistry. MGMT hypermethylation was observed in 100% of oligoastrocytomas, 93% of oligodendrogliomas, and 47% of glioblastomas. The most frequently altered chromosomal regions were deletions of 1p31.1/21.1-22.2 and 19q13.3qter in oligodendroglial tumors, and losses of 9p21.3, 10q25.3qter, and 10q26.13-26.2 in glioblastomas. Deletions on 9p and 10q, and gain of 7p were associated with the unmethylated MGMT phenotype, whereas deletion of 19q and oligodendroglial morphology was associated with MGMT hypermethylation. IDH1 mutation showed positive correlation with MGMT hypermethylation and loss of 1p/19q. Our results suggest that MGMT promoter methylation, analyzed by pyrosequencing, is a frequent event in oligodendroglial tumors, and it correlates with IDH1 mutation and 19q loss in gliomas. Pyrosequencing proved a good method for assessing the degree of MGMT methylation in formalin-fixed paraffin-embedded glioma samples. However, further studies are needed to confirm a clinically relevant cut-off point for MGMT methylation in gliomas.  相似文献   

12.
Oligodendroglial neoplasms are a subgroup of gliomas with distinctive morphological characteristics. In the present study we have evaluated a series of these tumors to define their molecular profiles and to determine whether there is a relationship between molecular genetic parameters and histological pattern in this tumor type. Loss of heterozygosity (LOH) for 1p and 19q was seen in 17/23 (74%) well-differentiated oligodendrogliomas, in 18/23 (83%) anaplastic oligodendrogliomas, and in 3/8 (38%) oligoastrocytomas grades II and III. LOH for 17p and/or mutations of the TP53 gene occurred in 14 of these 55 tumors. Only one of the 14 cases with 17p LOH/TP53 gene mutation also had LOH for 1p and 19q, and significant astrocytic elements were seen histologically in the majority of these 14 tumors. LOH for 9p and/or deletion of the CDKN2A gene occurred in 15 of these 55 tumors, and 11 of these cases were among the 24 (42%) anaplastic oligodendrogliomas. Comparative genomic hybridization (CGH) identified the majority of cases with 1p and 19q loss and, in addition, showed frequent loss of chromosomes 4, 14, 15, and 18. These findings demonstrate that oligodendroglial neoplasms usually have loss of 1p and 19q whereas astrocytomas of the progressive type frequently contain mutations of the TP53 gene, and that 9p loss and CDKN2A deletions are associated with progression from well-differentiated to anaplastic oligodendrogliomas.  相似文献   

13.
YKL-40 is a secreted chitinase-like molecule whose expression is associated with glioma grade. Expression is higher in astrocytomas than oligodendrogliomas and has been reported to predict shorter survival and radiation resistance in glioblastomas (GBMs). Whether YKL-40 is directly produced by glioma cells or other admixed nonneo-plastic cells, and whether it correlates with 1p/19q status or other hallmark molecular abnormalities, are unclear. A rank-order list of YKL-40 expression was determined immunohistochemically in 79 untreated high-grade adult glio-mas, including 28 anaplastic oligodendrogliomas (AOs) and 51 GBMs. Relative YKL-40 expression was compared with glioma class, key molecular alterations, and immunohistochemical markers via a series of Spearman rank correlations. YKL-40 mRNA in situ hybridization with colocalization assessment via confocal microscopy was also performed. YKL-40 mRNA was abundant in glioma cells as well as reactive astrocytes, but was low in admixed neurons and macrophages. YKL-40 expression was higher in GBMs than AOs (P < 0.0001) and among GBMs, YKL-40 expression was lower in tumors with either EGFR amplification (P = 0.005) or elevated EGFR expression (P = 0.001). Among AOs, no difference in YKL-40 expression was seen in tumors with 1p19q codeletion (P = 0.3), but loss of heterozygos-ity in 10q23 correlated with increased YKL-40 expression (P = 0.03). These data suggest that YKL-40 is predominantly expressed by neoplastic glial cells and is related to certain key molecular alterations.  相似文献   

14.
Amplification of the gene for epidermal growth factor receptor (EGFR) is a common finding in malignant gliomas. We found that 18 of 29 grade 3 and grade 4 gliomas had EGFR amplification when assayed using fluorescence in situ hybridization. The amplification pattern suggests that the amplicon is contained within double minute chromosomes in most cases. EGFR copy number can differ by 20-fold in amplified cells within a single case. Polysomy 7 occurs frequently in both EGFR-amplified and -unamplified cells. More than one-third of the cases had < or = 10 percent of cells with amplified EGFR, and it is likely that these cases would not have been identified by methods that do not examine DNA on a cell by cell basis.  相似文献   

15.
Gangliogliomas are generally benign neuroepithelial tumors composed of dysplastic neuronal and neoplastic glial elements. We screened 61 gangliogliomas [World Health Organization (WHO) grade I] for genomic alterations by chromosomal and array-based comparative genomic hybridization (CGH). Aberrations were detected in 66% of gangliogliomas (mean ± SEM = 2.5 ± 0.5 alterations/tumor). Frequent gains were on chromosomes 7 (21%), 5 (16%), 8 (13%), 12 (12%); frequent losses on 22q (16%), 9 (10%), 10 (8%). Recurrent partial imbalances comprised the minimal overlapping regions dim(10)(q25) and enh(12)(q13.3–q14.1). Unsupervised cluster analysis of genomic profiles detected two major subgroups (group I: complete gain of 7 and additional gains of 5, 8 or 12; group II: no major recurring imbalances, mainly losses). A comparison with low-grade gliomas (astrocytomas WHO grade II) showed chromosome 5 gain to be significantly more frequent in gangliogliomas. Interphase fluorescence in situ hybridization (FISH) identified the aberrations to be contained in a subpopulation of glial but not in neuronal cells. Two gangliogliomas and their anaplastic recurrences (WHO grade III) were analyzed. Losses of CDKN2A/B and DMBT1 or a gain/amplification of CDK4 found in the anaplastic tumors were already present in the respective gangliogliomas by array CGH and interphase FISH. In summary, genomic profiling in a large series of gangliogliomas could distinguish genetic subgroups even in this low-grade tumor.  相似文献   

16.

Object

Mutations of the gene encoding isocitrate dehydrogenase (IDH) have been shown in a significant proportion of diffuse gliomas. These mutations are specific to gliomas and their utility for diagnosis and prognostication of these tumors is being proclaimed. The present study was conducted with the aim of assessing frequency of IDH1 mutations in gliomas, their correlation with other molecular alterations along with a comprehensive review of available literature.

Methods

A total of 100 gliomas of various grades and subtypes from Indian patients were screened for assessing frequency of IDH1 mutations. The findings were correlated with TP53 mutations, 1p/19q deletion, EGFR amplification and PTEN deletion status. The detailed comprehensive review of literature was performed comparing all studies available till date.

Results

IDH1 mutations in codon 132 were observed in 46% cases. The frequency was 68.8% in grade II, 85.7% in grade III and 12.8% in GBMs. R132H mutation was most frequent (84.8%). Overall frequency of these mutations was relatively higher in oligodendroglial tumours as compared to astrocytic phenotype (66.7% versus 38.4%; p = 0.06). Primary GBMs showed IDH1 mutation in only 4.4% cases. In contrast, 66.7% of secondary GBMs harboured this alteration. Patients with IDH1 mutations were significantly younger as compared to those without mutation (p = 0.001). There was a significant correlation between IDH1 mutation and TP53 mutation (p = 0.004). Although IDH1 mutation showed a positive correlation with 1p/19q deletion, the association was not statistically significant (p = 0.653). There was no correlation with EGFR amplification or PTEN deletion.

Conclusion

IDH1 mutations are present in large proportion of Indian patients with diffuse astrocytic and oligodendroglial neoplasms similar to the reported literature form west. The frequency is lower in primary GBMs and as compared to secondary GBMs. Association with younger age and positive correlation with TP53 mutation and 1p/19q loss is observed. More importantly it is emerging as an independent prognostic marker. Hence the greatest challenge now is establishing a reliable user friendly test for incorporating this novel genetic alteration to routine clinical practice.  相似文献   

17.
Molecular genetic analysis of non-astrocytic gliomas   总被引:4,自引:0,他引:4  
Tong CY  Ng HK  Pang JC  Hui AB  Ko HC  Lee JC 《Histopathology》1999,34(4):370-371
AIMS: Oligodendroglial tumours follow genetic pathways different from but overlapping with those of astrocytic tumours. The aim of this study was to examine whether major genetic events such as loss of chromosome 10 and p53 mutation found in astrocytic gliomas are also involved in the development and anaplastic transformation of non-astrocytic gliomas and to correlate the findings with histopathological subtypes of these tumours. METHODS AND RESULTS: Sixty-one formalin-fixed, paraffin-embedded oligodendroglial and ependymal tumours (16 oligodendrogliomas, 12 anaplastic oligodendrogliomas, seven oligoastrocytomas, 24 ependymomas and two anaplastic ependymomas) were examined for allelic deletions on chromosome 10q23 and 10q25-26 regions, mutations of PTEN/MMAC1 and p53, MDM2 gene amplification and apoptosis. The frequencies of allelic deletions at marker D10S2491 (which mapped within PTEN/MMAC1) and between markers D10S209 and D10S587 (where DMBT1 was located) were found to be < 30% in both types of non-astrocytic gliomas. High frequency of allelic deletions was detected at marker D10S215 (80%) at the proximal 10q23 region in both oligodendroglial and ependymal tumours and between markers D10S216 (42%) and D10S169 (67%) at distal 10q25-26 region in oligodendroglial tumours. No mutations of PTEN/MMAC1 were found. p53 mutations were detected in three oligoastrocytomas and one ependymoma; three out of five mutations were found in exon 4. MDM2 gene amplification was found in one ependymoma harbouring wild-type p53. The apoptotic index was lower in p53-mutated tumours than in tumours with wild-type p53. CONCLUSION: The telomeric end of chromosome 10q could be involved in the development and anaplastic transformation of oligodendroglial tumours. Mutations of PTEN/MMAC1 and p53, amplification of the MDM2 gene and allelic loss on chromosome 10q do not play a major part in the pathogenesis or anaplastic transformation of oligodendrogliomas and ependymal tumours.  相似文献   

18.
Aims:  Oligodendroglial tumours with loss of heterozygosity on 1p (LOH1p) respond better to treatment than oligodendrogliomas without LOH. Previous reports have assigned a crucial role of glutamate metabolism to glioma growth and invasion. The aim was to study the protein expression of different glutamate transporters in relation to LOH1p in low-grade oligodendroglial tumours.
Methods and results:  Seventeen oligodendrogliomas World Health Organization (WHO) grade II, 16 oligoastrocytomas WHO grade II and seven astrocytomas WHO grade II were examined. Eleven oligodendrogliomas and five oligoastrocytomas exhibited LOH1p. Immunoreactivity scores (IRS) for glutamate transporters excitatory amino acid transporter (EAAT)-1, -2 and -3 as well as the active cystine/glutamate antiporter subunit xCT were semiquantitatively rated by percentage of positive cells and intensity of immunoreactivity. Reactivity for xCT was lower in tumours with LOH1p than in those without ( P  = 0.03, Mann–Whitney U -test). No association was found between LOH status and IRS for EAAT-1, -2 or -3. High xCT immunoreactivity was associated with high expression of EAAT-1, -2 or -3.
Conclusions:  Expression of xCT is significantly reduced in low-grade oligodendroglial tumours harbouring LOH1p. Further studies should investigate a potential beneficial effect by inhibiting xCT in low-grade gliomas.  相似文献   

19.
20.
The current World Health Organization classification recognizes three histological types of grade II low-grade diffuse glioma (diffuse astrocytoma, oligoastrocytoma, and oligodendroglioma). However, the diagnostic criteria, in particular for oligoastrocytoma, are highly subjective. The aim of our study was to establish genetic profiles for diffuse gliomas and to estimate their predictive impact. In this study, we screened 360 World Health Organization grade II gliomas for mutations in the IDH1, IDH2, and TP53 genes and for 1p/19q loss and correlated these with clinical outcome. Most tumors (86%) were characterized genetically by TP53 mutation plus IDH1/2 mutation (32%), 1p/19q loss plus IDH1/2 mutation (37%), or IDH1/2 mutation only (17%). TP53 mutations only or 1p/19q loss only was rare (2 and 3%, respectively). The median survival of patients with TP53 mutation ± IDH1/2 mutation was significantly shorter than that of patients with 1p/19q loss ± IDH1/2 mutation (51.8 months vs. 58.7 months, respectively; P = 0.0037). Multivariate analysis with adjustment for age and treatment confirmed these results (P = 0.0087) and also revealed that TP53 mutation is a significant prognostic marker for shorter survival (P = 0.0005) and 1p/19q loss for longer survival (P = 0.0002), while IDH1/2 mutations are not prognostic (P = 0.8737). The molecular classification on the basis of IDH1/2 mutation, TP53 mutation, and 1p/19q loss has power similar to histological classification and avoids the ambiguity inherent to the diagnosis of oligoastrocytoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号