首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
2.
It has been shown that Notch signaling mediated by ligands of both Jagged and Delta families expands the hematopoietic stem cell compartment while blocking or delaying terminal myeloid differentiation. Here we show that Delta1- and Jagged1-expressing stromal cells have distinct effects on the clonogenic and differentiation capacities of human CD34(+) CD38(+) cells. Jagged1 increases the number of bipotent colony-forming unit-granulocyte macrophage (CFU-GM) and unipotent progenitors (CFU-granulocytes and CFU-macrophages), without quantitatively affecting terminal cell differentiation, whereas Delta1 reduces the number of CFU-GM and differentiated monocytic cells. Expression analysis of genes coding for Notch receptors, Notch targets, and Notch signaling modulators in supernatant CD34(+) cells arising upon contact with Jagged1 and Delta1 shows dynamic and differential gene expression profiles over time. At early time points, modest upregulation of Notch1, Notch3, and Hes1 was observed in Jagged1-CD34(+) cells, whereas those in contact with Delta1 strikingly upregulated Notch3 and Hes1. Later, myeloid progenitors with strong clonogenic potential emerging upon contact with Jagged1 upregulated Notch1 and Deltex and downregulated Notch signaling modulators, whereas T/NK progenitors originated by Delta1 strikingly upregulated Notch3 and Deltex and, to a lesser extent, Hes1, Lunatic Fringe, and Numb. Together, the data unravel previously unrecognized expression patterns of Notch signaling-related genes in CD34(+) CD38(+) cells as they develop in Jagged1- or Delta1-stromal cell environments, which appear to reflect sequential maturational stages of CD34(+) cells into distinct cell lineages.  相似文献   

3.
The Wnt and Notch signaling pathways have been independently shown to play a critical role in regulating hematopoietic cell fate decisions. We previously reported that induction of Notch signaling in human CD34(+)CD38(-) cord blood cells by culture with the Notch ligand Delta 1 resulted in more cells with T or natural killer (NK) lymphoid precursor phenotype. Here, we show that addition of Wnt3a to Delta 1 further increased the percentage of CD34(-)CD7(+) and CD34(-)CD7(+)cyCD3(+) cells with increased expression of CD3 epsilon and preT alpha. In contrast, culture with Wnt3a alone did not increase generation of CD34(-)CD7(+) precursors or expression of CD3 epsilon or preT alpha gene. Furthermore, Wnt3a increased the amount of activated Notch1, suggesting that Wnt modulates Notch signaling by affecting Notch protein levels. In contrast, addition of a Wnt signaling inhibitor to Delta 1 increased the percentage of CD56(+) NK cells. Overall, these results demonstrate that regulation of Notch signaling by the Wnt pathway plays a critical role in differentiation of precursors along the early T or NK differentiation pathways. Disclosure of potential conflicts of interest is found at the end of this article.  相似文献   

4.
In normal hematopoiesis, proliferation is tightly linked to differentiation in ways that involve cell-cell interaction with stromal elements in the bone marrow stem cell niche. Numerous in vitro and in vivo studies strongly support a role for Notch signaling in the regulation of stem cell renewal and hematopoiesis. Not surprisingly, mutations in the Notch gene have been linked to a number of types of malignancies. To better define the function of Notch in both normal and neoplastic hematopoiesis, a tetracycline-inducible system regulating expression of a ligand-independent, constitutively active form of Notch1 was introduced into murine E14Tg2a embryonic stem cells. During coculture, OP9 stromal cells induce the embryonic stem cells to differentiate first to hemangioblasts and subsequently to hematopoietic stem cells. Our studies indicate that activation of Notch signaling in flk+ hemangioblasts dramatically reduces their survival and proliferative capacity and lowers the levels of hematopoietic stem cell markers CD34 and c-Kit and the myeloid marker CD11b. Global gene expression profiling of day 8 hematopoietic progenitors in the absence and presence of activated Notch yield candidate genes required for normal hematopoietic differentiation, as well as putative downstream targets of oncogenic forms of Notch including the noncanonical Wnts Wnt4 and 5A. Disclosure of potential conflicts of interest is found at the end of this article.  相似文献   

5.
We investigated sequential cytokine addition on human hematopoietic stem cell (HSC) differentiation in murine fetal liver (FL), fetal spleen (FS) and bone marrow (BM) organ cultures (OC). Tissues were colonized with unpurified or FACS sorted CD34+CD38-CD10-CD19-CD3-CD8-CD4-(T- B-) cells from human cord blood (HUCB). CD19+ cell production and kinetics differed in each tissue. Fetal liver organ cultures (FLOC) inoculated with CD34+CD38-T-B- cells produced fewer CD19+ cells than fetal liver organ culture (FLOC) cultured with unpurified HUCB. CD19+ cell production was restored in the CD34+CD38-T-B- organ cultures by treating with SCF, LIF and IL-6 followed by IL-7 and removing all cytokines for the last 3 days of culture (a six-fold increase). FLOC also produced CD34+CD38-T-B- cells and monocyte-lineage CD33+CD14- cells, both of which increased after cytokine treatment. Re-colonization of secondary FLOC with CD34+CD38-T-B- cells generated in primary FLOC produced additional B-cells, monocytes and CD34+CD38- cells suggesting that the primary cells retained HSC activity. Expansion and differentiation of HSCs depended on the microenvironment of the recipient tissue as well as addition of cytokines in the appropriate order.  相似文献   

6.
Natural Killer (NK) cells are powerful effectors of cytotoxicity against “stressed” cells. They also produce cytokines and chemokines to activate the adaptive immune response. Understanding NK cell development and maturation may have implications for cancer therapy and for immunity against infections. We hypothesized that Notch signaling, critical for hematopoesis, would be involved in NK cell development. The role of constitutively activated Notch1 (ICN) on NK cell maturation was studied using human umbilical cord blood (UCB) progenitors cultured on a murine embryonic liver stroma cell line (EL08-1D2) and human cytokines. UCB CD34+/ICN+ sorted cells resulted in a population of CD7+ early lymphoid precursors and subsequent NK lineage commitment independent of stroma or IL-15. Early expression of L-selectin on ICN+ precursors suggested their homing competence. These precursors further committed to the NK lineage, and were capable of producing cytokines and chemokines such as interkeukin (IL)-13, granulocyte macrophage-colony stimulating factor (GM-CSF), tumor necrosis factor-alpha (TNF-α), yet poorly acquired NK inhibitory receptors and cytotoxic effector function. In the presence of stroma, ICN+ precursors also gave rise to a population of early T lineage committed cells characterized by expression of cytoplasmic CD3 γ, ε, and δ chains, RAG1/2, and production of IL-2, suggesting bona fide Th1 commitment. Importantly, signals from EL08-1D2 stroma were required for this development process. In conclusion, sustained Notch signaling can replace stroma in differentiation of a common CD7+ lymphoid precursor from UCB CD34+ progenitors and induce NK cell commitment. However, these NK cells are immature in their cytokine production profile, are hyporesponsive, and poorly acquire NK cell receptors involved in self-tolerance and effector function.  相似文献   

7.
Rhesus monkey embryonic stem (ES) cells undergo differentiation in vitro to generate hematopoietic progenitor cells. Our previous studies demonstrated a high degree of similarity in the expression of genes associated with hematopoietic differentiation, homing, and engraftment in CD34(+) and CD34(+)CD38(-) cells from rhesus monkey ES cells and from fresh or cultured bone marrow (BM). In the present study, we compared the expression patterns of cyclins, cyclin-dependent kinases (CDKs) and CDK inhibitors (CDIs) in these cells. The expression of genes for cyclins, CDKs, and CDIs was similar among the hematopoietic progenitor cells of different origins, with only minor differences. Differentially expressed genes were also analyzed in CD34(+) lineage-negative cells derived from mouse ES cells and from BM. No difference or totally divergent results were obtained with the latter system, suggesting that this variation may be species specific. We observed, however, that CD34(+) and CD34(+)CD38(-) cells derived from ES cells expressed embryonic epsilon and zeta as well as alpha, beta, and gamma globin genes, whereas no expression of embryonic globins could be detected in the cell preparations from BM. Moreover, erythroblast-enriched CD34(-) cells derived from 4- or 5-week ES cell differentiation cultures also expressed embryonic, fetal, and adult globin genes, with greater beta gene expression, but otherwise were identical to those of the more primitive CD34(+) cells derived from 2-week ES cultures. These latter observations may reflect the presence of heterogeneous cell populations within the cell fractions that were compared, or they may represent variability among ES-cell-derived hematopoietic stem cells.  相似文献   

8.
Members of the Notch family of transmembrane receptors are found on primitive hematopoietic precursors, and Notch ligand expression has been demonstrated on the surface of stromal cells, suggesting a role for Notch signaling in mammalian blood cell development. The current report examines the expression of Notch receptors and their ligands in murine hematopoietic tissues to determine: A) which blood cell lineages in the adult are influenced by Notch activity, and B) whether fetal hematopoiesis in the embryo involves the Notch pathway. In the adult mouse, a combination of flow cytometry, immunohistochemistry and Northern analysis was used to examine Notch receptor or ligand expression in bone marrow and spleen. In the embryo, Northern analysis and in situ hybridization were used to characterize Notch receptor and ligand expression in fetal liver on embryonic day 12 (E12) through E17, an active period encompassing both erythropoiesis and granulopoeisis. Flow cytometry demonstrated the presence of Notch1 and Notch2 receptors on bone marrow-derived myeloid cells but not on erythroid cells positive for the marker, Ter-119. In situ hybridization of E12 through E17 fetal liver demonstrated widespread expression of Jagged1 and Delta1 in a pattern similar to but less abundant than that of the erythropoietin receptor. Taken together with earlier functional results, the current expression data suggest a role for Notch activity in establishing definitive hematopoiesis in fetal liver, as well as a selective use of Notch signaling in adult erythropoiesis and granulopoiesis. Notch receptors in the adult are most likely utilized by early erythroid precursors and intermediate-stage granulocytes, but not by terminally differentiating cells of either subset.  相似文献   

9.
The cell surface receptor Notch1 is expressed on CD34+ hematopoietic precursors, whereas one of its ligands, Jagged1, is expressed on bone marrow stromal cells. To examine the role of Notch signaling in early hematopoiesis, human CD34+ cells were cultured in the presence or absence of exogenous cytokines on feeder layers that either did or did not express Jagged1. In the absence of recombinant growth factors, Jagged1 decreased myeloid colony formation by CD34+ cells, as well as 3H-thymidine incorporation and entry into S phase. In the presence of a strong cytokine signal to proliferate and mature, (interleukin 3 [IL-3] and IL-6, stem cell factor [SCF], and G-CSF), Jagged1 did not significantly alter either the fold expansion or the types of colonies formed by CD34+ cells. However, in the presence of SCF alone, Jagged1 increased erythroid colony formation twofold. These results demonstrate that Notch can modulate a growth factor signal, and that in the absence of growth factor stimulation, the Jagged1-Notch pathway preserves CD34+ cells in an immature state.  相似文献   

10.
The Notch signalling pathway regulates several aspects of cellular differentiation such as T lineage commitment and effector functions on peripheral T cells; however, there is limited information regarding Notch receptor expression on different T cell subsets and the putative role of the different receptors on T cell effector function. Here, we studied the protein expression of Notch receptors on murine T cells in vitro and in vivo and analysed the role of the Notch pathway in cytokine production by CD4+ and CD8+ T cells. We found that resting CD4+ and CD8+ T cells do not express Notch receptors, but they upregulate Notch 1 and Notch 2 shortly after in vitro and in vivo activation. Using a γ-secretase inhibitor, which blocks Notch signalling through all Notch receptors, we demonstrated that the Notch pathway regulates IL-10 production by CD4+ T cells and IFN-γ and IL-17 production by CD8+ T cells. These results suggest that Notch 1 and 2 are expressed by CD4+ and CD8+ T cells and represent the putative Notch receptors that regulate effector functions and cytokine production by these cells.  相似文献   

11.
12.
We portrayed the Notch system in embryonic stem cell (ESC)-derived embryoid bodies (EBs) differentiating under the standard protocols used to assess yolk sac (YS) hematopoiesis in vitro. Notch receptors and Notch ligands were detected in virtually all cells throughout EB development. Notch 1 and Notch 2, but not Notch 4, were visualized in the nucleus of EB cells, and all these receptors were also observed as patent cytoplasmic foci. Notch ligands (Delta-like 1 and 4, Jagged 1 and 2) were immunodetected mostly as cytoplasmic foci. Widespread Notch 1 activation was evident at days 2-4 of EB differentiation, the time window of hemangioblast generation in this in vitro system. EBs experienced major spatial remodeling beyond culture day 4, the time point coincident with the transition between primitive and multilineage waves of YS hematopoiesis in vitro. At day 6, where definitive YS hematopoiesis is established in EBs, these exhibit an immature densely packed cellular region (DCR) surrounded by a territory of mesodermal-like cells and an outer layer of endodermal cells. Immunolabeling of Notch receptors and ligands was usually higher in the DCR. Our results show that Notch system components are continuously and abundantly expressed in the multicellular environments arising in differentiating EBs. In such an active Notch system, receptors and ligands do not accumulate extensively at the cell surface but instead localize at cytoplasmic foci, an observation that fits current knowledge on endocytic modulation of Notch signaling. Our data thus suggest that Notch may function as a territorial modulator during early development, where it may eventually influence YS hematopoiesis.  相似文献   

13.
Catecholamines are important regulators of homeostasis, yet their functions in hematopoiesis are poorly understood. Here we report that immature human CD34+ cells dynamically expressed dopamine and beta2-adrenergic receptors, with higher expression in the primitive CD34+CD38(lo) population. The myeloid cytokines G-CSF and GM-CSF upregulated neuronal receptor expression on immature CD34+ cells. Treatment with neurotransmitters increased the motility, proliferation and colony formation of human progenitor cells, correlating with increased polarity, expression of the metalloproteinase MT1-MMP and activity of the metalloproteinase MMP-2. Treatment with catecholamines enhanced human CD34+ cell engraftment of NOD-SCID mice through Wnt signaling activation and increased cell mobilization and bone marrow Sca-1+c-Kit+Lin- cell numbers. Our results identify new functions for neurotransmitters and myeloid cytokines in the direct regulation of human and mouse progenitor cell migration and development.  相似文献   

14.
Delta-like-1 (Dlk1, also Pref-1), a transmembrane and secreted protein, is a member of the epidermal growth factor-like family, homologous to Notch/Delta/Serrate. We found that the expression of Dlk1 was up-regulated in CD34+ cells from patients with myelodysplastic syndrome (MDS) by analyzing the gene expression profiles determined by microarray. The expression levels of Dlk1 mRNA frequently observed higher in the bone marrow mononuclear cells of MDS patients was confirmed by real-time RT-PCR. Forced expression of Dlk1 in transfected K562 cells enhanced proliferation, affected apoptosis induced by As2O3, and also influenced cell cycle induced by 12-O-tetra decanoylphorbol-acetate (TPA). By using the same experimental system we found that forced expression of Dlk1 increased the mRNA levels of HES1. It also inhibited p38 phosphorylation in transfected K562 cells treated with TPA. These results warrant further investigation of the role of Dlk1 in abnormal hematopoiesis in MDS.  相似文献   

15.
Notch1 signaling promotes the maturation of CD4 and CD8 SP thymocytes   总被引:25,自引:0,他引:25  
  相似文献   

16.
CD45 is a hematopoietic lineage-restricted antigen that is expressed on all hematopoietic cells except for some mature cell types. Cells expressing CD45 and CD34 but lacking CD38 and lineage antigens (CD45+CD34+CD38-Lin- cells) are well-documented hematopoietic stem cells (HSCs), and CD45+CD34-CD38-Lin- cells are probably less mature HSCs. In myelodysplastic syndromes (MDS), the malignant transformation site is a matter of debate, and CD45+CD34+CD38-Lin- HSCs were recently reported to be clonal. In the study reported here, we detected CD45-CD34-CD38-Lin- cells in the peripheral blood and bone marrow of patients with MDS and isolated them by successive application of density centrifugation, magnetic cell sorting, and fluorescence-activated cell sorting. Fluorescence in situ hybridization showed that CD45-CD34-CD38-Lin- cells had the same chromosomal aberration as the myeloblasts. In addition to CD45- and CD34-, they lacked CD117 and CD133 expression. Generally, MDS cells have extremely reduced hematopoietic potential compared with normal hematopoietic cells, but we documented the following in some patients. Freshly isolated CD45-CD34-CD38-Lin- cells did not form any hematopoietic colonies but had long-term culture-initiating cell activity. When cocultured with stroma cells, CD45-CD34-CD38-Lin- cells showed only weak potential for proliferation and differentiation, yet they differentiated into CD34+ cells and then mature myeloid cells. This newly identified cell population represents the most immature immunophenotype so far identified in the hematopoietic lineage and is involved in the malignant clone in MDS.  相似文献   

17.
Tresperimus, an analogue of 15-deoxyspergualine (15-DSG), has been found, in rodents, to induce a potent state of tolerance after organ and bone marrow allografts. In a previous study, we have reported that tresperimus at the optimal concentration of 0.5 microgram/ml supports the clonogenic potential of human cord blood CD34+ cells. Dose dependent inhibition of clonogenesis was also observed with complete reversibility following drug withdrawal. In this study, we tested the effect of 0.5 microgram tresperimus/ml on ex vivo expansion of primitive human cord blood CD34+CD38- cells. Our findings revealed that the total number of expanded cells was decreased in the presence of tresperimus. However, the multipotential and erythroid colonies were significantly increased in the presence of tresperimus compared with control cultures done without the test drug. Progenitor cell morphology was comparable in both test and control cultures. The telomerase activity was consistently lower in tresperimus-treated hematopoietic progenitors than in control cultures. These results suggest that tresperimus preserves primitive CD34+CD38- cells in a state of high potentiality while limiting the total number of their differentiated progeny. Bearing in mind that the test drug supports the clonogenic potential of CD34+ cells, the overall findings emphasize the importance of assessing the effect of tresperimus on in vivo long-term hematopoiesis which could predict the potential clinical use of tresperimus in the prevention of graft-versus-host disease in recipients of allogeneic bone marrow.  相似文献   

18.
Bone marrow stromal cells provide a microenvironment for hematopoiesis. Adipocytes are the major stromal cell phenotype in bone marrow, but their function in hematopoiesis is poorly understood. In this study, we compared the hematopoietic-supporting capacity of adipocytes and their progenitor, mesenchymal stem cells (MSCs), by culturing human cord blood (CB) CD34+CD38- hematopoietic progenitor cells (HPCs) on a layer of adipocytes or MSCs. CB CD34+CD38- cells cultured on MSCs generated higher proportions of CD34+CD38- HPCs and colony-forming cells than those cultures on a layer of adipocytes, indicating an inferior hematopoietic support by adipocytes. However, CB CD34+CD38- HPCs cultured on MSCs and adipocytes were equally capable of reconstituting human hematopoiesis in non-obese diabetic/severe combined immunodeficient disease (NOD/SCID) mice. These findings show that differentiation of MSCs into adipocytes is accompanied by the loss of capacity to support mature HPCs, but not transplantable SCID-repopulating cells.  相似文献   

19.
20.
Expansion of hematopoietic stem cells could be used clinically to shorten the prolonged aplastic phase after umbilical cord blood (UCB) transplantation. In this report, we investigated rapid severe combined immunodeficient (SCID) repopulating activity (rSRA) 2 weeks after transplantation of CD34(+) UCB cells cultured with serum on MS5 stromal cells and in serum- and stroma-free cultures. Various subpopulations obtained after culture were studied for rSRA. CD34(+) expansion cultures resulted in vast expansion of CD45(+) and CD34(+) cells. Independent of the culture method, only the CD34(+)33(+)38(-) fraction of the cultured cells contained rSRA. Subsequently, we subfractionated the CD34(+)38(-) fraction using stem cell markers CD45RA and CD90. In vitro differentiation cultures showed CD34(+) expansion in both CD45RA(-) and CD90(+) cultures, whereas little increase in CD34(+) cells was observed in both CD45RA(+) and CD90(-) cultures. By four-color flow cytometry, we could demonstrate that CD34(+)38(-)45RA(-) and CD34(+)38(-)90(+) cell populations were largely overlapping. Both populations were able to reconstitute SCID/nonobese diabetic mice at 2 weeks, indicating that these cells contained rSRA activity. In contrast, CD34(+)38(-)45RA(+) or CD34(+)38(-)90(-) cells contributed only marginally to rSRA. Similar results were obtained when cells were injected intrafemorally, suggesting that the lack of reconstitution was not due to homing defects. In conclusion, we show that after in vitro expansion, rSRA is mediated by CD34(+)38(-)90(+)45RA(-) cells. All other cell fractions have limited reconstitutive potential, mainly because the cells have lost stem cell activity rather than because of homing defects. These findings can be used clinically to assess the rSRA of cultured stem cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号