首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new series of hydrolytically stable and water-soluble dihydroartemisinin derivatives with optically active side chains was prepared as potential antimalarial agents. This was an effort to prepare compounds with activity superior to that of artelinic acid and to examine the impact of the stereospecificity of the introduced alkyl side chain on biological properties. The ester derivatives (6a-d) possess superior in vitro activity to artemisinin, artemether, and arteether against two strains of Plasmodium falciparum (D-6 and W-2); however, conversion of the esters to their corresponding acids drastically reduces their antimalarial activity. None of the new acids possess in vitro antimalarial activity superior to that of artelinic acid. Although there appears to be limited stereospecificity for antimalarial activity among the acids (7a-d) tested, significant differences in antimalarial activity was seen among the esters.  相似文献   

2.
A series of dihydroartemisinin derivatives containing a sugar moiety was prepared in the search for analogues with good water solubility and high antimalarial activity. The preparation of the new compounds was achieved by treatment of dihydroartemisinin (2) with chlorotrimethylsilane in pyridine solution at -10 degrees C to give a nearly quantitative yield of 10-O-(trimethylsilyl)dihydroartemisinin (3), which was then condensed with 1-hydroxypolyacetylated sugars 5 to give dihydroartemisinin derivatives 7a-d. Deacetylation of intermediates 7 gave the desired sugar derivatives 8. The resulting derivatives, tested in vitro against Plasmodium falciparum, were found to be more effective against W-2 than D-6 clones and were not cross-resistant with existing antimalarials. Trimethylsilylated compound 3 is more effective than derivatives 7a-d, which possess activity comparable to or better than that of artemisinin itself. Deacetylated compounds 8a-d were substantially less active than 7 in both cell lines. In P. berghei-infected mice, 7a-c showed 5/5, 2/5, and 3/5 cures, respectively, at 320 mg/kg per day x 3, whereas 7d showed no activity at the same dosage. However, 7d did prolong the life span in 3/5 of the infected mice at 640 mg/kg per day x 3 dose level. Trimethylsilylated compound 3 was also the most effective among the compounds studied, with 5/5 cures at 80 mg/kg per day x 3. The deacetylated sugar derivatives 8a-d showed only slight in vivo antimalarial activity.  相似文献   

3.
A series of artemisinin (1) derivatives containing bromo and heterocyclic or aromatic amine functions was prepared in the search for analogues with good water solubility and high antimalarial activity. Treatment of dihydroartemisinin (2a) with boron trifluoride etherate at room temperature gave the key intermediate, 9,10-dehydrodihydroartemisinin (3), which, on reaction with bromine, gave the dibromide 4. The latter was condensed with amines in anhydrous CH2Cl2 at less than -10 degrees C to give the desired products in 25-55% yield. The new derivatives, tested in vitro against Plasmodium falciparum, were found to be more effective against W-2 than D-6 clones and were not cross-resistant with existing antimalarials. Compound 6b, 3-fluoroaniline derivative, was the most active of the series, with the IC50 less than or equal to 0.16 ng/mL, making it several fold more potent than 1. However, no significant in vivo antimalarial activity against Plasmodium berghei was observed in any of the new compounds tested.  相似文献   

4.
Ten novel, second-generation, fluorinated ether and ester analogues of the potent first-generation analogues artemether (4a) and arteether (4b) have been designed and synthesized. All of the compounds demonstrate high antimalarial potency in vitro against the chloroquine-sensitive HB3 and -resistant K1 strains of Plasmodium falciparum. The most potent derivative 8 was 15 times more potent than artemisinin (2) against the HB3 strain of P. falciparum. In vivo, versus Plasmodium berghei in the mouse, selected derivatives were generally less potent than dihydroartemisinin with ED(50) values of between 5 and 8 mg/kg. On the basis of the products obtained from the in vitro biomimetic Fe(II)-mediated decomposition of 8, the radical mediator of biological activity of this series may be different from that of the parent drug, artemisinin (2).  相似文献   

5.
Artesunic acid 5, the hemisuccinate derivative of dihydroartemisinin 2, is the only clinically useful water-soluble derivative of artemisinin 1. However, being a lactol ester, it is rapidly hydrolyzed back to dihydroartemisinin in aqueous alkaline solution, a reaction that seriously limits its utility. A new series of potentially more stable linker-based hemisuccinate derivatives 12a-i and 14a-c have been prepared. The process involved acid-catalyzed reaction of dihydroartemisinin with various diols and polyethylene glycols to give hydroxy-functionalized ethers 7a-i and 10a-c and their further derivatization to hemisuccinate esters 12a-i and 14a-c. Both the hydroxy-functionalized ethers 7a-i and 10a-c and their hemisuccinate derivatives 12a-i and 14a-c have been assessed for antimalarial activity against multidrug-resistant Plasmodium yoelii nigeriensis in Swiss mice. Several of these hemisuccinate derivatives have shown very promising activity. Hemisuccinate derivatives 12f and 12i, the two most active compounds of the series, provided 100% protection to malaria-infected mice at 24 mg/kg × 4 days and therefore are twice as potent as artesunic acid, which provides a similar level of protection at 48 mg/kg × 4 days.  相似文献   

6.
New, racemic, tricyclic trioxane alcohol 3 was designed and synthesized as a structurally simple analog of clinically useful, tetracyclic, antimalarial artemisinin. A series of 20 ester and ether derivatives of alcohol 3 were prepared easily, without destruction of the essential trioxane system. Chemical structure-antimalarial activity for each derivative was evaluated in vitro against chloroquine-resistant and chloroquine-sensitive Plasmodium falciparum parasites. Many of these derivatives were highly efficacious; carboxylate ester 9f, carbamate ester 10a, and sulfonate ester 12a had antimalarial potency similar to that of artemisinin, and carboxylate esters 9b and 9d, carbamate esters 10b and 10c, and phosphate esters 11a-c had antimalarial potency up to 7 times higher than that of artemisinin. Several of these most active analogs (e.g., carboxylate 9b and carbamates 10a and 10c) are stable crystalline solids, a feature of considerable practical value for any new drug candidate.  相似文献   

7.
Objectives The aim of this study was to synthesize a series of ethylene glycol ether derivatives of the antimalarial drug artemisinin, determine their values for selected physicochemical properties and evaluate their antimalarial activity in vitro against Plasmodium falciparum strains. Methods The ethers were synthesized in a one‐step process by coupling ethylene glycol moieties of various chain lengths to carbon C‐10 of artemisinin. The aqueous solubility and log D values were determined in phosphate buffered saline (pH 7.4). The derivatives were screened for antimalarial activity alongside artemether and chloroquine against chloroquine‐sensitive (D10) and moderately chloroquine‐resistant (Dd2) strains of P. falciparum. Key findings The aqueous solubility within each series increased as the ethylene glycol chain lengthened. The IC50 values revealed that all the derivatives were active against both D10 and Dd2 strains. All were less potent than artemether irrespective of the strain. However, they proved to be more potent than chloroquine against the resistant strain. Compound 8 , featuring three ethylene oxide units, was the most active of all the synthesized ethers. Conclusions The conjugation of dihydroartemisinin to ethylene glycol units of various chain lengths through etheral linkage led to water‐soluble derivatives. The strategy did not result in an increase of antimalarial activity compared with artemether. It is nevertheless a promising approach to further investigate and synthesize water‐soluble derivatives of artemisinin that may be more active than artemether by increasing the ethylene glycol chain length.  相似文献   

8.
This paper describes the synthesis and the in vitro antimalarial profile of two new imidazo[1,2-a]pyridine derivatives 4HCl and 13HCl, structurally proposed as mefloquine (1) analogues, by exploring bioisosterism and molecular simplification tools. The synthetic route employed to access the title compounds used, as starting material, the previously described ethyl 2-methylimidazo[1,2-aJpyridine-3-carboxylate derivative (5). These novel heterocyclic derivatives 4HCl and 13HCl presented modest antimalarial activity against the W-2 and D-6 clones of Plasmodium falciparum as well as inhibitors of in vitro heme polymerization compared to mefloquine.  相似文献   

9.
Mixed 1,2,4,5-tetraoxanes possessing simple spirocycloalkane and spirocholic acid-derived substituents were prepared and shown to have significantly higher in vitro antimalarial activity than bis-substituted tetraoxanes. Out of 41 synthesized tetraoxanes, 12 were in vitro more potent against Plasmodium falciparum chloroquine-resistant W2 clone than artemisinin, and the most potent one was 2.4 times as active as arteether. In addition, 9 compounds exhibit higher activity than chloroquine against P. falciparum chloroquine-susceptible D6 clone. Cytotoxicity was assessed for most active compounds against the Vero cell line, showing a cytotoxicity/antimalarial potency ratio of 1/(1400-9500). For the first time, tetraoxanes were screened against Mycobacterium tuberculosis with MICs as low as 4.73 microM against H37Rv strain. Mixed tetraoxanes were synthesized in a simple procedure from cholic acid methyl esters by direct coupling of steroidal gem-dihydroperoxide to simple ketones and further transformed into corresponding acids and amides.  相似文献   

10.
Artemisinin derivatives are highly effective and well-tolerated antimalarial drugs that now form the basis of antimalarial combination therapies recommended by the World Health Organization. Although not yet reported to be a problem in clinical use, neurotoxicity and embryotoxicity are displayed by the compound class in in vitro and in vivo experimental models, in particular by dihydroartemisinin, the main metabolite of all current clinical artemisinins. Embryotoxicity appears to be connected with defective angiogenesis and vasculogenesis in certain stages of embryo development. This may prevent the use of artemisinin derivatives in malaria during pregnancy, when both mother and fetus are at high risk of death. Artemisone is a novel 10-alkylamino derivative which is not metabolised to dihydroartemisinin. It was selected as a clinical drug candidate on the basis of its high efficacy against Plasmodium falciparum in vitro and its lack of detectable neurotoxicity in both in vitro and in vivo screens. Here we describe the results of a comparative study of the anti-angiogenic properties of both artemisone and dihydroartemisinin in different model systems. We evaluated the proliferation of human endothelial cells and their migration on a fibronectin matrix, the sprouting of new vessels from rat aorta sections grown in collagen and the production of pro-angiogenic cytokines such as vascular endothelial growth factor (VEGF) and interleukin-8 (CXCL-8). The data show that artemisone is significantly less anti-angiogenic than dihydroartemisinin in all the experimental models, suggesting that it will be safer to use than the current clinical artemisinins during pregnancy.  相似文献   

11.
Artesunate is a derivate of artemisinin, an antimalarial drug used for the treatment of malaria caused by Plasmodium falciparum and related parasites. Artesunate is hydrolyzed rapidly to dihydroartemisinin in vivo. It has been found that artemisinin and its derivatives may have neurotoxic effects. A method was developed to analyze human plasma samples for the contents of artesunate and dihydroartemisinin. The plasma samples are extracted with ethyl acetate, concentrated, and redissolved in water/acetonitrile. Analyses was performed with liquid chromatography-mass spectrometry using a binary gradient program with aquaeous formic acid and acetonitrile formic acid on a XTerra MS C18-column. The mass spectrometer was operated in the positive atmospheric pressure chemical ionization mode with single ion recording. The lower limits of detection were 10 and 25 ng/mL plasma for DHA and artesunate, respectively. The method was validated according to the guidelines for validation of bioanalytical methods.  相似文献   

12.
On the basis of earlier reported quantitative structure-activity relationship studies, a series of 9beta-16-(arylalkyl)-10-deoxoartemisinins were proposed for synthesis. Several of the new compounds 7 and 10-14 were synthesized employing the key synthetic intermediate 23. In a second approach, the natural product (+)-artemisinic acid was utilized as an acceptor for conjugate addition, and the resultant homologated acids were subjected to singlet oxygenation and acid treatment to provide artemisinin analogues. Under a new approach, we developed a one step reaction for the interconversion of artemisinin 1 into artemisitene 22 that did not employ selenium-based reagents and found that 2-arylethyliodides would undergo facile radical-induced conjugate addition to the exomethylene lactone of 22 in good yield. The lactone carbonyls were removed sequentially by diisobutylaluminum hydride reduction followed directly by a second reduction (BF(3)-etherate/Et(3)SiH) to afford the desired corresponding pyrans. Six additional halogen-substituted aromatic side chains were installed via 22 furnishing the bioassay candidates 15-20. The analogues were examined for in vitro antimalarial activity in the W-2 and D-6 clones of Plasmodium falciparum and were additionally tested in vivo in Plasmodium berghei- and/or Plasmodium yoelii-infected mice. Several of the compounds emerged as highly potent orally active candidates without obvious toxicity. Of these, two were chosen for pharmacokinetic evaluation, 14 and 17.  相似文献   

13.
Artemisinin derivatives such as artesunate, dihydroartemisinin and artemether are playing an increasing role in the treatment of drug-resistant malaria. They are the most potent antimalarials available, rapidly killing all asexual stages of the parasite Plasmodium falciparum. This review highlights the recent developments in the area of improved second-generation semi-synthetic artemisinin derivatives and fully synthetic antimalarial endoperoxide drugs. In pursuit of synthetic analogues of the artemisinins, one of the major challenges for chemists in this area has been the non-trivial development of techniques for the introduction of the peroxide bridge into candidate drugs. Although chemical research has enabled chemists to incorporate the endoperoxide 'warhead' into synthetic analogues of artemisinin, significant drawbacks with many candidates have included comparatively poor antimalarial activity, non-stereoselective syntheses and chemical approaches that are not readily amenable to scale up. However, very recent progress with synthetic 1,2,4-trioxolanes provides a new benchmark for future medicinal chemistry efforts in this area.  相似文献   

14.
(+)-Deoxoartelinic acid (13), a new hydrolytically stable, water-soluble, and potent non-acetal-type antimalarial drug candidate, was successfully prepared from artemisinic acid by using sulfur ylide and photooxygenative cyclization in seven steps. This compound showed superior in vitro antimalarial activity against the chloroquine-resistant K1 strain of Plasmodium falciparum and higher suppression (98.7%) than arteether in vivo against Plasmodium chabaudi infected mice. (+)-Deoxoartelinic acid also showed remarkable stability with a half-life of 258.66 h, 23 times more stable than clinically useful arteether in simulated stomach acid, and improved solubility, 4 times more soluble than artemisinin in water.  相似文献   

15.
Artemisinin derivatives such as artesunate, dihydroartemisinin and artemether are playing an increasing role in the treatment of drug-resistant malaria. They are the most potent antimalarials available, rapidly killing all asexual stages of the parasite Plasmodium falciparum. This review highlights the recent developments in the area of improved second-generation semi-synthetic artemisinin derivatives and fully synthetic antimalarial endoperoxide drugs. In pursuit of synthetic analogues of the artemisinins, one of the major challenges for chemists in this area has been the non-trivial development of techniques for the introduction of the peroxide bridge into candidate drugs. Although chemical research has enabled chemists to incorporate the endoperoxide ‘warhead’ into synthetic analogues of artemisinin, significant drawbacks with many candidates have included comparatively poor antimalarial activity, non-stereoselective syntheses and chemical approaches that are not readily amenable to scale up. However, very recent progress with synthetic 1,2,4-trioxolanes provides a new benchmark for future medicinal chemistry efforts in this area.  相似文献   

16.
Hemin-catalyzed decomposition of artemisinin (qinghaosu).   总被引:7,自引:0,他引:7  
Artemisinin (qinghaosu) and its derivatives represent an important new class of antimalarial drugs. Previous work suggests that the antimalarial activity of artemisinin may be mediated by a reaction with intraparasitic hemin. Using cyclic voltammetry, artemisinin and dihydroartemisinin were irreversibly reduced at approximately -1 V. In the presence of concentrations of hemin as low as 50 nM, the reduction took place at much lower potentials (-0.435 to -0.460 V). Both reductions took place after adsorption onto the electrode surface. The shift of the reduction potential to more positive values is indicative of a catalytic process similar to that seen with hydrogen peroxide. The catalytic decomposition of artemisinin may play a role in the antimalarial activity of artemisinin.  相似文献   

17.
(+)-Deoxoartemisinin (2), a new and more active antimalarial agent, was successfully prepared from artemisinin in one step using NaBH4 and BF3.Et2O in THF. (-)-Deoxodeoxyartemisinin (5), a potential metabolite of deoxoartemisinin, was also prepared either from 2 or from artemisinic acid. 2 shows 8-fold increased antimalarial activity in vitro against chloroquine-resistant malaria as compared to artemisinin (1). Compound 2 possesses superior in vivo antimalarial activity to 1.  相似文献   

18.
The study aim was to assess the inductive properties of artemisinin antimalarials using mephenytoin as a probe for CYP2B6 and CYP2C19 enzymatic activity. The population pharmacokinetics of S-mephenytoin and its metabolites S-nirvanol and S-4'-hydroxymephenytoin, including enzyme turn-over models for induction, were described by nonlinear mixed effects modeling. Rich data (8-16 samples/occasion/subject) were collected from 14 healthy volunteers who received mephenytoin before and during ten days of artemisinin administration. Sparse data (3 samples/occasion/subject) were collected from 74 healthy volunteers who received mephenytoin before, during and after five days administration of artemisinin, dihydroartemisinin, arteether, artemether or artesunate. The production rate of CYP2B6 was increased 79.7% by artemisinin, 61.5% by arteether, 76.1% by artemether, 19.9% by dihydroartemisinin and 16.9% by artesunate. The production rate of CYP2C19 increased 51.2% by artemisinin, 14.8% by arteether and 24.9% by artemether. In conclusion, all studied artemisinin derivatives induced CYP2B6. CYP2C19 induction by arteether and artemether as well as CYP2B6 and CYP2C19 induction by artemisinin was confirmed. The inductive capacity is different among the artemisinin drugs, which is of importance when selecting drugs to be used in antimalarial combination therapy such that the potential for drug-drug interactions is minimized.  相似文献   

19.
In an attempt to separate the antimalarial activity of tafenoquine (3) from its hemolytic side effects in glucose-6-phosphate dehydrogenase (G6PD) deficiency patients, a series of 5-aryl-8-aminoquinoline derivatives was prepared and assessed for antimalarial activities. The new compounds were found metabolically stable in human and mouse microsomal preparations, with t(1/2) > 60 min, and were equal to or more potent than primaquine (2) and 3 against Plasmodium falciparum cell growth. The new agents were more active against the chloroquine (CQ) resistant clone than to the CQ-sensitive clone. Analogues with electron donating groups showed better activity than those with electron withdrawing substituents. Compounds 4bc, 4bd, and 4be showed comparable therapeutic index (TI) to that of 2 and 3, with TI ranging from 5 to 8 based on IC(50) data. The new compounds showed no significant causal prophylactic activity in mice infected with Plasmodium berghei sporozoites, but are substantially less toxic than 2 and 3 in mouse tests.  相似文献   

20.
Artemisinin, the first and last naturally occurring 1, 2, 4-trioxane originated from Artemisia annua, L. and its derivatives are a potent class of antimalarial drugs. The clinical efficacy of these drugs is characterized by an almost immediate onset and rapid reduction of parasitemia, and it is high in such areas as well where multidrug-resistance is rampant. Furthermore, artemisinin and many of its analog possess not only antiparasitic effect against Plasmodium falciparum, Schistosoma japonicum and Clonorchis sinensi but also immuno-modulation effects, and antitumor activities. This review covers the chemistry of artemisinin including synthesis of acetal-, non acetal-type C-12 analogs, C-11- and C-13 derivatives from artemisitene, ring-contracted derivatives, dimers, and trimers. Modes of biological action of artemisinin - derived analogs are also reviewed. The main objective of this article is to review the literatures of recent progress taken place in chemistry, mode of biological actions of artemisinin, and its derivatives as antimalarial and antitumor agents during the last three years (1999-2001).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号