首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Proteins may serve as ideal CD8(+) T cell immunogens for human immunodeficiency virus type 1 (HIV-1) if they can be delivered to and processed through the human leukocyte antigen class I pathway. This study shows that human blood monocyte-derived dendritic cells loaded with liposome-complexed HIV-1 proteins and matured with CD40 ligand can prime CD8(+) T cells to HIV-1 in vitro. Whole HIV-1 protein in liposome may be an effective immunogen for HIV-1 vaccine protocols.  相似文献   

2.
Functional and phenotypic characterization of virus-specific CD8 T cells against cytomegalovirus, Epstein-Barr virus, influenza (flu), and HIV-1 were performed on the basis of the ability of CD8 T cells to secrete IFN-gamma and IL-2, to proliferate, and to express CD45RA and CCR7. Two functional distinct populations of CD8 T cells were identified: (i) dual IFN-gamma/IL-2-secreting cells and (ii) single IFN-gamma-secreting cells. Virus-specific IFN-gamma/IL-2-secreting CD8 T cells were CD45RA-CCR7-, whereas single IFN-gamma CD8 T cells were either CD45RA-CCR7- or CD45RA+CCR7-. The proportion of virus-specific IFN-gamma/IL-2-secreting CD8 T cells correlated with that of proliferating CD8 T cells, and the loss of HIV-1-specific IL-2-secreting CD8 T cells was associated with that of HIV-1-specific CD8 T cell proliferation. Substantial proliferation of virus-specific CD8 T cells (including HIV-1-specific CD8 T cells) was also observed in CD4 T cell-depleted populations or after stimulation with MHC class I tetramer-peptide complexes. IL-2 was the factor responsible for the CD4-independent CD8 T cell proliferation. These results indicate that IFN-gamma/IL-2-secreting CD8 T cells may promote antigen-specific proliferation of CD8 T cells even in the absence of helper CD4 T cells.  相似文献   

3.
4.
Plasmacytoid dendritic cells (pDCs) contribute to innate antiviral immune responses by producing type I interferons (IFNs) upon exposure to enveloped viruses. However, their role in adaptive immune responses, such as the initiation of antiviral T-cell responses, is not known. In this study, we examined interactions between blood pDCs and influenza virus with special attention to the capacity of pDCs to activate influenza-specific T cells. pDCs were compared with CD11c(+) DCs, the most potent antigen-presenting cells (APCs), for their capacity to activate T-cell responses. We found that like CD11c(+) DCs, pDCs mature following exposure to influenza virus, express CCR7, and produce proinflammatory chemokines, but differ in that they produce type I IFN and are resistant to the cytopathic effect of the infection. After influenza virus exposure, both DC types exhibited an equivalent efficiency to expand anti-influenza virus cytotoxic T lymphocytes (CTLs) and T helper 1 (TH1) CD4(+) T cells. Our results pinpoint a new role of pDCs in the induction of antiviral T-cell responses and suggest that these DCs play a prominent role in the adaptive immune response against viruses.  相似文献   

5.
Induction of antigen-specific tolerance is critical for autoimmunity prevention and immune tolerance maintenance. In addition to their classical role as sentinels of the immune response, dendritic cells (DCs) play important roles in maintaining peripheral tolerance through the induction/activation of regulatory T (T(reg)) cells. The possibility of generating tolerogenic DCs opens new therapeutic perspectives in autoimmune/inflammatory diseases. Characterizing endogenous factors that contribute to the development of tolerogenic DCs is highly relevant. We here report that the immunosuppressive neuropeptide vasoactive intestinal peptide (VIP) induces the generation of human tolerogenic DCs with the capacity to generate CD4 and CD8 T(reg) cells from their respective naive subsets. The presence of VIP during the early stages of DC differentiation from blood monocytes generates a population of IL-10-producing DCs unable to fully mature after the effects of inflammatory stimuli. CD4 T(reg) cells generated with VIP-differentiated DCs resemble the previously described Tr1 cells in terms of phenotype and cytokine profile. CD8 T(reg) cells generated with tolerogenic VIP DCs have increased numbers of IL-10-producing CD8(+)CD28(-)-CTLA4(+) T cells. CD4 and CD8 T(reg) cells primarily suppress antigen-specific T(H)1-mediated responses. Therefore, the possibility of generating or expanding ex vivo tolerogenic DC(VIPs) opens new therapeutic perspectives for treating autoimmune diseases and graft-versus-host disease after allogeneic transplantation in humans.  相似文献   

6.
Steinbrink K  Graulich E  Kubsch S  Knop J  Enk AH 《Blood》2002,99(7):2468-2476
Interleukin-10 (IL-10)-treated dendritic cells (DCs) induce an alloantigen- or peptide-specific anergy in various CD4(+) and CD8(+) T-cell populations. In the present study, we analyzed whether these anergic T cells are able to regulate antigen-specific immunity. Coculture experiments revealed that alloantigen-specific anergic CD4(+) and CD8(+) T cells suppressed proliferation of syngeneic T cells in a dose-dependent manner. The same effect was observed when the hemagglutinin-specific CD4(+) T-cell clone HA1.7 or tyrosinase-specific CD8(+) T cells were cocultured with anergic T cells of the same specificity. Anergic T cells did not induce an antigen-independent bystander inhibition. Suppression was dependent on cell-to-cell contact between anergic and responder T cells, required activation by antigen-loaded DCs, and was not mediated by supernatants of anergic T cells. Furthermore, anergic T cells displayed an increased extracellular and intracellular expression of cytotoxic T-lymphocyte antigen (CTLA)-4 molecules, and blocking of the CTLA-4 pathway restored the T-cell proliferation up to 70%, indicating an important role of the CTLA-4 molecule in the suppressor activity of anergic T cells. Taken together, our experiments demonstrate that anergic T cells induced by IL-10-treated DCs are able to suppress activation and function of T cells in an antigen-specific manner. Induction of anergic T cells might be exploited therapeutically for suppression of cellular immune responses in allergic or autoimmune diseases with identified (auto) antigens.  相似文献   

7.
There is a strong link between virus specific CD8 T-cell function and the efficiency of regulatory CD4 helper T cells. Controlling viraemia in HIV-1-infected individuals requires the maintenance of strong CD4 and CD8 T-cell responses. These responses should be elicited by prophylactic vaccination and by postexposure immunotherapy. This review will examine the methods that are available for the detection and quantification of HIV-1 specific CD4 and CD8 T-cell responses. We will also discuss the methods that should be used to identify these responses in HIV-1-infected individuals, seropositive recipients of immunotherapy and seronegative vaccinees. Finally, we will give examples of how responses observed in vitro relate to those known to occur in vivo .  相似文献   

8.
Most people infected with HIV-1 cannot control viral replication despite the presence of virus-specific CD8+ T cells. It has been postulated that this inability is related to the failure of these cells to mature into fully differentiated effector cells. We tested this hypothesis by comparing the maturation phenotype of virus-specific CD8+ T cells in people who could control viral replication off anti-retroviral therapy with those who could not. In five patients with treated acute HIV-1-infection, structured treatment interruption (STI) induced control of viral replication was associated with expansion of virus-specific CD8+ T cells with a fully differentiated effector phenotype. These effector cells were also expanded in treatment-naive chronically infected individuals who spontaneously controlled viral replication, and augmented expression of perforin was noted in both settings. Our data show that full maturation of virus-specific CD8+ T cells is possible in the context of HIV-1-infection, and suggest that such maturation might be important in viral control.  相似文献   

9.
Human neutrophil elastase (HNE) and proteinase 3 (PRO3) are myeloid tissue-restricted serine proteases, aberrantly expressed by myeloid leukemia cells. PRO3 and HNE share the PR1 peptide sequence that induces HLA-A*0201-restricted cytotoxic T cells (CTLs) with antileukemia reactivity. We studied the entire HNE protein for its ability to induce CTLs. In an 18-hour culture, HNE-loaded monocytes stimulated significant intracellular interferon gamma (IFN-gamma) production by CD4+ and CD8+ T cells in 12 of 20 and 8 of 20 healthy individuals, respectively. Lymphocytes from 2 HNE responders were pulsed weekly for 4 weeks to generate HNE-specific CTLs. One of 2 HLA-A*0201-negative individuals inhibited the colony formation of HLA-identical chronic myelogenous leukemia progenitor cells (73% inhibition at 50:1 effector-target [E/T] ratio), indicating that peptides other than PR1 can induce leukemia-reactive CTLs. Repetitive stimulations with HNE in 2 of 5 HLA-A*0201+ individuals increased PR1 tetramer-positive CD8+ T-cell frequencies from 0.1% to 0.29% and 0.02% to 0.55%, respectively. These CTLs recognized PR1 peptide or killed HNE-loaded targets. These results indicate that exogenously processed HNE is a source of PR1 peptide as well as other peptide sequences capable of inducing leukemia-specific CD8+ and CD4+ T cells. HNE could, therefore, be used in an HLA-unrestricted manner to induce leukemia-reactive CTLs for adoptive immunotherapy.  相似文献   

10.
11.
It has been demonstrated that human immunodeficiency virus type 1 (HIV-1) replication persists in most infected individuals receiving highly active antiretroviral therapy (HAART). However, studies addressing the relationship between low levels of ongoing viral replication and immunologic parameters, such as the CD4+:CD8+ T cell ratio, in such individuals have been lacking. Here, a statistically significant inverse correlation is shown between the frequency of CD4+ T cells carrying HIV-1 proviral DNA and the CD4+:CD8+ T cell ratio in infected individuals receiving HAART and in whom plasma viremia had been suppressed below the limit of detection for prolonged periods of time. No correlation was found between the frequency of HIV-1-specific cytotoxic CD8+ T lymphocytes (CTLs) and the CD4+:CD8+ T cell ratios in those individuals. These data suggest that persistent, low-level, ongoing viral replication, although not sufficient to maintain HIV-1-specific CTL responses, may explain, in part, why normalization of the CD4+:CD8+ T cell ratio is not achieved in some infected individuals successfully treated with HAART.  相似文献   

12.
Schlienger K  Craighead N  Lee KP  Levine BL  June CH 《Blood》2000,96(10):3490-3498
Dendritic cells (DCs) have the unique ability to initiate an immune response in vivo by capturing antigens (Ags) in peripheral tissues and migrating to secondary lymphoid organs, where they sensitize naive CD4(+) T cells. To mimic this process in vitro, previous studies have shown that DCs directly isolated from peripheral blood can be used to elicit primary responses to neoantigens (neoAgs). In other studies, when monocyte-derived DCs have been utilized to sensitize total CD4(+) T cells in vitro, only secondary proliferation to neoAgs could be elicited. In the present study, the relative abilities of CD40 ligation, protein kinase C activation, and culture in tumor necrosis factor alpha (TNF-alpha) to induce functional and phenotypic maturation of human DCs from monocyte precursors were compared. Optimal TNF-alpha-induced maturation of DCs required a prolonged 4-day culture. It was then found that loading immature DCs with the neoAgs keyhole limpet hemocyanin or human immunodeficiency virus-1 p24 gag prior to TNF-alpha-induced maturation, rather than after maturation, was crucial to sensitize CD4(+) T cells to new Ags. This primary proliferation to neoAgs was initiated from the CD4(+) CD45RA(+) naive T-cell population. Finally, it was found that monocyte-derived DCs acquired the ability to secrete interleukin-12 p70, after contact with Ag-specific T cells. The ability to prime and expand Ag-specific CD4(+) T cells ex vivo to neoAgs in serum-free conditions has potential application for cellular vaccination and adoptive immunotherapy.  相似文献   

13.
14.
15.
Mouse spleens contain three populations of conventional (CD11c(high)) dendritic cells (DCs) that play distinct functions. The CD8(+) DC are unique in that they can present exogenous antigens on their MHC class I molecules, a process known as cross-presentation. It is unclear whether this special ability is because only the CD8(+) DC can capture the antigens used in cross-presentation assays, or because this is the only DC population that possesses specialized machinery for cross-presentation. To solve this important question we examined the splenic DC subsets for their ability to both present via MHC class II molecules and cross-present via MHC class I using four different forms of the model antigen ovalbumin (OVA). These forms include a cell-associated form, a soluble form, OVA expressed in bacteria, or OVA bound to latex beads. With the exception of bacterial antigen, which was poorly cross-presented by all DC, all antigenic forms were cross-presented much more efficiently by the CD8(+) DC. This pattern could not be attributed simply to a difference in antigen capture because all DC subsets presented the antigen via MHC class II. Indeed, direct assessments of endocytosis showed that CD8(+) and CD8(-) DC captured comparable amounts of soluble and bead-associated antigen, yet only the CD8(+) DC cross-presented these antigenic forms. Our results indicate that cross-presentation requires specialized machinery that is expressed by CD8(+) DC but largely absent from CD8(-) DC. This conclusion has important implications for the design of vaccination strategies based on antigen targeting to DC.  相似文献   

16.
Herath S  Kropf P  Müller I 《Parasite immunology》2003,25(11-12):559-567
Although the importance of CD8(+) T cells for vaccination and immunity to reinfection with Leishmania parasites is well established, their role in primary infections is disputed. In the present study we further characterized the role of CD8(+) T cells in primary L. major infections. We used two groups of L. major infected BALB/c mice: both groups were immunomanipulated to heal and in one group CD8(+) T cells were depleted throughout the course of infection. Our results show that the reversal of healing caused by the absence of CD8(+) T cells did not alter the proliferation of CD4(+) T cells, however, the frequency of CD4(+) T cells expressing IFN-gamma as well as the levels of this cytokine were clearly reduced. These lower levels of IFN-gamma correlated with a higher parasite load. Our results show that transient depletion of CD4(+) T cells allows the establishment of an equilibrium between CD4(+) and CD8(+) T cells and allows CD8(+) T cell activation and effector functions to develop. In addition, our results suggest that cross-talk between CD4(+) and CD8(+) T cells is crucial for the host defence against L. major.  相似文献   

17.
Here we investigate the effect of viremia and the influence of HAART on the frequency and quality of HIVspecfic T cells in an adolescent/young adult cohort. Measurements of viral loads and the magnitude and quality of antiviral cellular immune responses were performed on 14 HAART-naive and 8 treated HIV-1-infected adolescents. Cross-sectional correlations between viral load and cellular immune responses were determined and data were analyzed by viral load (<4000, 4000-40,000, and >40,000 copies/ml plasma) and patient treatment status. All 22 patients showed a broad IFN-gamma ELISPOT response that was proportional to viral load (r = 0.53, p = 0.02), recognizing an average of five to eight peptide pools throughout Gag, Pol, Env, Tat, Rev, and Nef. Intracellular cytokine staining was performed with pools of overlapping peptides corresponding to HIV Gag to distinguish CD8 response from CD4 response. Among untreated patients with increased viral load there was a constant IFN-gamma CD8 response but a declining IFN-gamma CD4 response. HIV-specific IL-2 production was consistently low in CD8 cells but inversely related to viral load in CD4 cells (r = -0.52, p = 0.02). In this crosssectional analysis, time on HAART was associated with an increased frequency of antiviral IFN-gamma- and IL-2-coproducing CD4 cells (r = 0.98, p <0.001), but not of antiviral CD8 cells. Our results suggest that T cells coproducing IL-2 and IFN-gamma are a better marker for immunological competence than T cells producing IFN-gamma alone. They also suggest that HAART may be associated with an improved capacity for IL-2 production by antiviral CD4 T cells in a time-dependent manner. Longitudinal studies are clearly necessary to assess the impact of HAART on these parameters.  相似文献   

18.
19.
20.
TLRs expressed on dendritic cells (DCs) differentially activate DCs when activated alone or in combination, inducing distinct cytokines and costimulatory molecules that influence T-cell responses. Defining the requirements of DCs to program T cells during priming to become memory rather than effector cells could enhance vaccine development. We used an in vitro system to assess the influence of DC maturation signals on priming naive human CD8+ T cells. Maturation of DCs with lipopolysaccharide (LPS; TLR4) concurrently with R848 (TLR7/8) induced a heterogeneous population of DCs that produced high levels of IL12 p70. Compared with DCs matured with LPS or R848 alone, the DC population matured with both adjuvants primed CD8+ T-cell responses containing an increased proportion of antigen-specific T cells retaining CD28 expression. Priming with a homogenous subpopulation of LPS/R848-matured DCs that were CD83(Hi)/CD80+/CD86+ reduced this CD28+ subpopulation and induced T cells with an effector cytokine signature, whereas priming with the less mature subpopulations of DCs resulted in minimal T-cell expansion. These results suggest that TLR4 and TLR7/8 signals together induce DCs with fully mature and less mature phenotypes that are both required to more efficiently prime CD8+ T cells with qualities associated with memory T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号