首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.

BACKGROUND AND PURPOSE

Glutamate excitotoxicity may be involved in ischaemic injury to the CNS and some neurodegenerative diseases, such as Alzheimer''s disease. Donepezil, an acetylcholinesterase (AChE) inhibitor, exerts neuroprotective effects. Here we demonstrated a novel mechanism underlying the neuroprotection induced by donepezil.

EXPERIMENTAL APPROACH

Cell damage in primary rat neuron cultures was quantified by lactate dehydrogenase release. Morphological changes associated with neuroprotective effects of nicotine and AChE inhibitors were assessed by immunostaining. Cell surface levels of the glutamate receptor sub-units, NR1 and NR2A, were analyzed using biotinylation. Immunoblot was used to measure protein levels of cleaved caspase-3, total NR1, total NR2A and phosphorylated NR1. Immunoprecipitation was used to measure association of NR1 with the post-synaptic protein, PSD-95. Intracellular Ca2+ concentrations were measured with fura 2-acetoxymethylester. Caspase 3-like activity was measured using enzyme substrate, 7-amino-4-methylcoumarin (AMC)-DEVD.

KEY RESULTS

Levels of NR1, a core subunit of the NMDA receptor, on the cell surface were significantly reduced by donepexzil. In addition, glutamate-mediated Ca2+ entry was significantly attenuated by donepezil. Methyllycaconitine, an inhibitor of α7 nicotinic acetylcholine receptors (nAChR), inhibited the donepezil-induced attenuation of glutamate-mediated Ca2+ entry. LY294002, a phosphatidyl inositol 3-kinase (PI3K) inhibitor, had no effect on attenuation of glutamate-mediated Ca2+ entry induced by donepezil.

CONCLUSIONS AND IMPLICATIONS

Decreased glutamate toxicity through down-regulation of NMDA receptors, following stimulation of α7 nAChRs, could be another mechanism underlying neuroprotection by donepezil, in addition to up-regulating the PI3K-Akt cascade or defensive system.  相似文献   

3.
Li Q  Luo T  Jiang X  Wang J 《Neuropharmacology》2012,62(1):474-484
The aim of the present study is to test a hypothesis that 5-HT(1A) and 5-HT(2C) receptors in the amygdala play an important role in the regulation of anxiety behaviors. We examined alterations in anxiety-like behaviors after manipulation of the expression of 5-HT(1A) and 5-HT(2C) receptors in the amygdala using recombinant adenovirus approaches. Recombinant adenoviruses containing a 5-HT(1A) promoter-controlled 5-HT(1A) antisense sequence or a 5-HT(2C) promoter-controlled 5-HT(2C) sense sequence were injected into the amygdala. Elevated plus-maze (EPM) and open field tests were conducted to determine anxiety-like behavior and locomotor activity. Reductions in the expression of 5-HT(1A) receptors in the amygdala significantly attenuated the time spent in the open arms of EPM and time spent in the center of an open field. Reduction in the percent of time spent in the open arms of EPM is negatively correlated with the density of 5-HT(1A) receptors in the central amygdala. On the other hand, increased expression of 5-HT(2C) receptors reduced the time spent in the open arms of EPM and time spent in the center of an open field. The reductions in the time spent and distance traveled in the open arms of EPM were correlated to the density of 5-HT(2C) receptors in the basolateral nucleus of amygdala. These data suggest that amygdaloid 5-HT(1A) receptors produce anxiolytic and 5-HT(2C) receptors produce anxiogenic effects. Together, the present results demonstrate the important role of the amygdaloid 5-HT(1A) and 5-HT(2C) receptors in the regulation of anxiety-like behaviors. This article is part of a Special Issue entitled 'Anxiety and Depression'.  相似文献   

4.
Immune stress has been proved involved in the process of neurodegenation such as Alzherimer's disease or multiple sclerosis.The neurotrophins play an important role in neuronal survival of many nerve system diseases and the relationship between immune stress and neurotrophins have been proved in several disease models but the fine mechanism still open.In the present experiment we reported that there were different response  相似文献   

5.
The existing pharmacophore models for 1 receptor ligands are summarized. A common feature of these models is a basic amino group surrounded by different hydrophobic structural elements. The development of novel spirocyclic σ1 receptor ligands (e.g. 3, 4) is based on these models. Enlargement of the distance between the basic amino group and the "Primary Hydrophobic Region " by attachment of the amino group at the cyclohexane ring (9, 10) did not lead to increased σ1 affinity. However, introduction of an additional aryl moiety (12, 17) resulted in very potent σ1 receptor ligands. The high affinity of these compounds is explained by interaction of the additional aryl moiety with a previously unrecognized hydrophobic pocket of the σ1 receptor protein. The promising σ1 affinity and selectivity of the spirocyclic piperidine 3 led to the fluorinated PET-tracers [18F]18 and [18F]19 with excellent σ1 receptor affinity, receptor selectivity, pharmacokinetic and neuroimaging properties.  相似文献   

6.
Introduction: Retinoid X receptor (RXR) agonists have a limited role in cancer therapy with bexarotene and alitretinoin as approved drugs but their use is limited by adverse effects. Several evidence from in vitro, in vivo, and small clinical studies points to various further potential applications of RXR ligands in neurodegenerative and inflammatory diseases.

Areas covered: The authors review known RXR ligand classes with their key structure–activity relationships and recent reports on pharmacological effects of RXR modulation. Based on these aspects, the authors evaluate recent patents claiming novel RXR ligands or their use.

Expert opinion: While the use of RXR modulators has been claimed in several novel and promising indications, little progress has been made in the development of innovative rexinoids with improved (subtype-)selectivity. Next-generation RXR modulators that selectively target the RXR subtypes for individual indications may be required to exhaustively exploit the therapeutic potential of RXRs.  相似文献   

7.
8.
The present study investigated the effects of acutely administered dihydroetorphine on mitogen-stimulated lymphocytes proliferation and lyrnphokine production in mice.These immune functions were significantly suppressed by dihydroetorphine at 24μg·kg~(-1) and 128μ·g-kg~(-1) in a dose-dependent fashion.This study further examined the involvement of μ-opioid receptors and  相似文献   

9.
Nicotinic α7 receptors have been shown in a variety of studies with animal models to play important roles in diverse components of cognitive function, including learning, memory and attention. Mice with α7 receptor knockouts show impairments in memory. Selective α7 agonists significantly improve learning, memory and attention. α7 receptors in limbic structures such as the hippocampus and amygdala have been demonstrated to play critical roles in memory. Blockade of α7 receptors in these areas cause memory impairments. In the brains of people with schizophrenia α7 receptors are impaired. This may be related to pronounced cognitive impairments seen with schizophrenia. There has been a major effort to develop α7 nicotinic agonists for helping to reverse cognitive impairment. These receptors are a promising target for development of therapeutic treatments for a variety of diseases of cognitive impairment including Alzheimer's disease, attention deficit hyperactivity disorder (ADHD) and schizophrenia.  相似文献   

10.

Rationale  

The synthesis and release of dynorphin are increased in the caudate/putamen (CPU) and nucleus accumbens (NAc) of nicotine-withdrawn mice, suggesting a role in the nicotine abstinence syndrome.  相似文献   

11.
Opioids are important endogenous ligands that exist in both invertebrates and vertebrates and signal by activation of opioid receptors to produce analgesia and reward or pleasure. The μ-opioid receptor is the best known of the opioid receptors and mediates the acute analgesic effects of opiates, while the δ-opioid receptor (DOR) has been less well studied and has been linked to effects that follow from chronic use of opiates such as stress, inflammation and anxiety. Recently, DORs have been shown to play an essential role in emotions and increasing evidence points to a role in learning actions and outcomes. The process of learning and memory in addiction has been proposed to involve strengthening of specific brain circuits when a drug is paired with a context or environment. The DOR is highly expressed in the hippocampus, amygdala, striatum and other basal ganglia structures known to participate in learning and memory. In this review, we will focus on the role of the DOR and its potential role in learning and memory underlying the development of addiction.

LINKED ARTICLES

This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2  相似文献   

12.
13.
Ischaemic heart disease (IHD) remains a major cause of morbidity/mortality globally, firmly established in Westernized or ‘developed’ countries and rising in prevalence in developing nations. Thus, cardioprotective therapies to limit myocardial damage with associated ischaemia–reperfusion (I–R), during infarction or surgical ischaemia, is a very important, although still elusive, clinical goal. The opioid receptor system, encompassing the δ (vas deferens), κ (ketocyclazocine) and μ (morphine) opioid receptors and their endogenous opioid ligands (endorphins, dynorphins, enkephalins), appears as a logical candidate for such exploitation. This regulatory system may orchestrate organism and organ responses to stress, induces mammalian hibernation and associated metabolic protection, triggers powerful adaptive stress resistance in response to ischaemia/hypoxia (preconditioning), and mediates cardiac benefit stemming from physical activity. In addition to direct myocardial actions, central opioid receptor signalling may also enhance the ability of the heart to withstand I–R injury. The δ- and κ-opioid receptors are strongly implicated in cardioprotection across models and species (including anti-infarct and anti-arrhythmic actions), with mixed evidence for μ opioid receptor-dependent protection in animal and human tissues. A small number of clinical trials have provided evidence of cardiac benefit from morphine or remifentanil in cardiopulmonary bypass or coronary angioplasty patients, although further trials of subtype-specific opioid receptor agonists are needed. The precise roles and utility of this GPCR family in healthy and diseased human myocardium, and in mediating central and peripheral survival responses, warrant further investigation, as do the putative negative influences of ageing, IHD co-morbidities, and relevant drugs on opioid receptor signalling and protective responses.  相似文献   

14.
BACKGROUND AND PURPOSE Muscarinic acetylcholine receptors (mAChRs) and β-adrenoceptors in the airways and lungs are clinically important in chronic obstructive pulmonary disease (COPD) and asthma. However, the quantitative and qualitative estimation of these receptors by radioligand binding approaches in human airways has not yet been reported because of tissue limitations. EXPERIMENTAL APPROACH The regional distribution and relative proportion of mAChR and β-adrenoceptor subtypes were evaluated in human bronchus and lung parenchyma by a tissue segment binding method with [(3)H]-N-methylscopolamine ([(3)H]-NMS) for mAChRs and [(3)H]-CGP-12,177 for β-adrenoceptors. Functional responses to carbachol and isoprenaline were also analysed in the bronchus. KEY RESULTS The M(3) subtype predominantly occurred in the bronchus, but the density decreased from the segmental to subsegmental bronchus, and was absent in lung parenchyma. On the other hand, the M(1) subtype occurred in the lung only, and the M(2) subtype was distributed ubiquitously in the bronchus and lungs. β(2)-adrenoceptors were increased along the airways, and their densities in the subsegmental bronchus and lung parenchyma were approximately twofold higher than those of mAChRs in the same region. β(1)-adrenoceptors were also detected in lung parenchyma but not in the bronchus. The muscarinic contractions and adrenoceptor relaxations in both bronchial regions were mediated through M(3)-mAChRs and β(2)-adrenoceptors, respectively. CONCLUSIONS AND IMPLICATIONS From the present radioligand binding approach with intact tissue segments, we constructed a distribution map of mAChRs and β-adrenoceptors in human bronchus and lung parenchyma for the first time, providing important evidence for future pharmacotherapy and new drug development for respiratory disorders.  相似文献   

15.
Growing evidence indicates that G protein-coupled receptors can form homo- and hetero-oligomers to diversify signal transduction. However, the molecular mechanisms and physiological significance of G protein-coupled receptor-oligomers are not fully understood. Both ADOR1 (adenosine A(1) receptor) and TBXA2R (thromboxane A(2) receptor α; TPα receptor), members of the G protein-coupled receptor family, act on astrocytes and renal mesangial cells, suggesting certain functional correlations. In this study, we explored the possibility that adenosine A(1) and TPα receptors form hetero-oligomers with novel pharmacological profiles. We showed that these receptors hetero-oligomerize by conducting coimmunoprecipitation and bioluminescence resonance energy transfer (BRET(2)) assays in adenosine A(1) receptor and TPα receptor-cotransfected HEK293T cells. Furthermore, coexpression of the receptors affected signal transduction including the accumulation of cyclic AMP and phosphorylation of extracellular signal-regulated kinase-1 and -2 was significantly increased by high and low concentrations of adenosine A(1) receptor agonist and TPα agonists, respectively. Our study provides evidence of hetero-oligomerization between adenosine A(1) and TPα receptors for the first time, and suggests that this oligomerization affects signal transduction responding to different concentrations of receptor agonists.  相似文献   

16.
Alzheimer's disease (AD) is the most common neurodegenerative disorder, and its pathogenesis is likely to be associated with multiple etiologies and mechanisms in which oxidative stress and deficits of neurotransmitter receptors may play important roles. It has been indicated that a high level of free radicals can influence the expressions of nicotinic receptors (nAChRs), muscarinic receptors (mAChRs), and N-methyl-D-aspartate (NMDA) receptors, exhibiting disturbances of cellular membrane by lipid peroxidation, damages of the protein receptors by protein oxidation, and possible modified gene expressions of these receptors by DNA oxidation. nAChRs have shown an antioxidative effect by a direct or an indirect pathway; mAChR stimulation may generate reactive oxygen species, which might be a physiological compensative reaction, or improve oxidative stress; and high stimulation to NMDA receptors can increase the sensitivity of oxidative stress of neurons. This review may provide complemental information for understanding the correlation between oxidative stress and changed cholinergic and glutaminergic receptors in AD processing, and for revealing the underlying molecular mechanisms of these factors in the multiple etiologies and pathophysiology of the disorder.  相似文献   

17.
We measured the functional agonist potencies of dopamine agonists including antiparkinson drugs, and functional antagonist potencies of antipsychotics at human dopamine D(2) and D(3) receptors. In vitro pharmacological assessment included inhibition of forskolin-stimulated cAMP accumulation and the reversal of dopamine-induced inhibition in clonal Chinese hamster ovary cells expressing low and high densities of human dopamine D(2L) and D(2S) receptors (hD(2L)-Low, hD(2L)-High, hD(2S)-Low and hD(2S)-High, respectively) and human dopamine D(3) Ser-9 and D(3) Gly-9 receptors (hD(3)-Ser-9 and hD(3)-Gly-9, respectively). Cabergoline, bromocriptine, pergolide, (±)-7-hydroxy-N,N-di-n-propyl-2-aminotetralin (7-OH-DPAT), talipexole, pramipexole, R-(+)-trans-3,4,4a,10b-tetrahydro-4-propyl-2H,5H-[1]benzopyrano[4,3-b]-1,4-oxazin-9-olhydrochloride (PD128907) and ropinirole behaved as dopamine D(2) and D(3) receptor full agonists and showed higher potencies in hD(2L)-High and hD(2S)-High compared to hD(2L)-Low and hD(2S)-Low. In hD(3)-Ser-9 and hD(3)-Gly-9 compared to hD(2L)-Low and hD(2S)-Low, dopamine, ropinirole, PD128907, and pramipexole potencies were clearly higher; talipexole and 7-OH-DPAT showed slightly higher potencies; pergolide showed slightly lower potency; and, cabergoline and bromocriptine potencies were lower. Aripiprazole acted as an antagonist in hD(2L)-Low; a low intrinsic activity partial agonist in hD(2S)-Low; a moderate partial agonist in hD(3)-Ser-9 and hD(3)-Gly-9; a robust partial agonist in hD(2L)-High; and a full agonist in hD(2S)-High. Amisulpride, sulpiride and perphenazine behaved as preferential antagonists; and chlorpromazine and asenapine behaved as modest preferential antagonists; whereas fluphenazine, haloperidol, and blonanserin behaved as non-preferential antagonists in hD(2S)-Low and hD(2S)-High compared to hD(3)-Ser-9 and hD(3)-Gly-9. These findings may help to elucidate the basis of therapeutic benefit observed with these drugs, with varying mechanisms of action, in the treatment of Parkinson's disease, depression and schizophrenia.  相似文献   

18.
19.
N-Monodesmethyl levomepromazine and levmepromazine sulfoxide have previously been found in higher plasma concentrations than the parent drug in patients who received oral doses of levomepromazine. In the present study levomepromazine, N-monodesmethyl levomepromazine and levomepromazine sulfoxide have been assayed for their binding affinity to rat striatal dopamine receptors and to -adrenergic receptors in rat cortex, and compared with the potency of chlorpromazine and some of its metabolites in the same systems. Levomepromazine sulfoxide was relatively inactive in the dopamine receptor binding test but much more active in the -adrenergic receptor binding test, where it had a binding affinity similar to 7-hydroxy chlorpromazine. Levomepromazine and N-monodesmethyl levomepromazine were active in both systems, having a slightly higher potency than chlorpromazine in the -adrenergic binding test, and a somewhat lower potency than chlorpromazine in the dopamine receptor binding test. The results indicate that N-monodesmethyl levomepromazine may significantly contribute to the antipsychotic effects of levomepromazine while the sulfoxide metabolite lacks neuroleptic potency, and that both metabolites may contribute to the autonomic side-effects of the drug.  相似文献   

20.
Recent progress has been made in the understanding of the anatomical distribution, composition, and physiological role of nicotinic acetylcholine receptors containing the α6 subunit. Extensive study by many researchers has indicated that a collection of α6-containing receptors representing a nicotinic sub-family is relevant in preclinical models of nicotine self-administration and locomotor activity. Due to a number of technical difficulties, the state of the art of in vitro model systems expressing α6-containing receptors has lagged behind the state of knowledge of native α6 nAChR subunit composition. Several techniques, such as the expression of chimeric and concatameric α6 subunit constructs in oocytes and mammalian cell lines have been employed to overcome these obstacles. There remains a need for other critical tools, such as selective small molecules and radioligands, to advance the field of research and to allow the discovery and development of potential therapeutics targeting α6-containing receptors for smoking cessation, Parkinson's disease and other disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号