首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, we examined the use of polyethyleneimine (PEI) as a non-viral gene carrier and lipofectamine(trade mark) 2000 as control for rat pheochromocytoma PC-12 cells. The complex formation of PEI and DNA or lipofectamine and DNA was characterized by gel electrophoresis and measurement of particle size and surface charge. A gradual increase in surface charge (from 0.7 to 43 mV) and a gradual decrease in particle size (from 900 to 130 nm) was observed in the PEI-DNA complex with higher PEI concentrations. The cytotoxicity of PC-12 cells for lipofectamine-DNA complex was similar to PEI-DNA complex at N:P charge ratios of 4 and 8. Transfection efficiency was 14% for lipofectamine and 15% for PEI. At low N:P ratio, DNA condenses poorly, so the particle size tends to be large and polydispersed, resulting in poor transfection efficiency. Meanwhile, a high N:P ratio results in high transfection efficiency and cytotoxicity. Transfected PC-12 cells showed the generation of neurites from transfected PC-12 cells in the presence of NGF, indicating the differentiation of PC-12 cells. NGF-differentiated PC-12 cells were transfected by PEI-DNA complex of N:P charge ratio 8. From real-time imaging for transfection, the enhanced green fluorescent protein (EGFP) started to localize in the nuclei of PC-12 cells at 5 h and localized in the cytoplasm from 15 h. Our study demonstrates that PEI or lipofectamine may be applied as an effective gene carrier for PC-12 cells.  相似文献   

2.
The use of tissue engineering to deliver genes to stem cells has been impeded by low transfection efficiency of the inserted gene and poor retention at the target site. Herein, we describe the use of non-viral gene transfer by cell-permeable peptide (CPP) to increase the transfection efficiency. The combination of this technique with the use of a controlled release concept using a poly (l-lactide) scaffold allowed for prolonged uptake in stem cells. High transfection efficiency was obtained using a human-derived arginine-rich peptide denoted as Hph-1 (YARVRRRGPRR). The formation of complex between pDNA and Hph-1 was monitored using gel retardation tests to measure size and zeta potential. Complex formation was further assessed using a DNase I protection assay. A sustained gene delivery system was developed using a fibrous 3-D scaffold coated with pDNA/Hph-1 complexes. Transfection efficiency and the mean fluorescence intensity of human adipose-derived stem cells (hASCs) on the sustained delivery scaffold were compared to those of cells transfected via bolus delivery. Plasmid DNA completely bound Hph-1 at a negative-to-positive (N/P) charge ratio of 10. After complex formation, Hph-1 appeared to effectively protect pDNA against DNase I attack and exhibited cytotoxicity markedly lower than that of the pDNA/PEI complex. Plasmid DNA/Hph-1 complexes were released from the scaffolds over 14 days and were successfully transfected hASCs seeded on the scaffolds. Flow cytometry revealed that the transfection efficiency in hASCs treated with pDNA/Hph-1 complex was approximately 5-fold higher than that in cells transfected using Lipofectamine. The sustained delivery system showed a significantly higher transfection efficiency and remained able to transfect cells for a longer period of time than bolus delivery. These results suggest that cell-scaffold-based tissue regeneration can be further improved by transduction concept using CPP and controlled release using polymeric scaffold.  相似文献   

3.
The purpose of this study was to evaluate the cytokine response induced by linear and branched polyethylenimine (PEI)/plasmid DNA (pDNA) complex (polyplex) in relation to the ratio of PEI nitrogen and DNA phosphate (N/P ratio) of the polyplex, dose of pDNA, and structure and molecular weight of PEI, which are important for transfection efficacy of PEI polyplex. As a control, a N-[1-(2, 3-dioleyloxy) propyl]-n,n,n-trimethylammonium chloride/cholesterol liposome/pDNA complex (lipoplex) was selected for its high transfection efficacy in vivo. The concentration of proinflammatory cytokines such as tumor necrosis factor (TNF)-alpha were much lower after the administration of polyplex than lipoplex irrespective of the N/P ratio, dose of pDNA, or structure and molecular weight of PEI, although these factors affected the transfection efficacy in vivo. We demonstrated that the amount of activated nuclear factor-kappaB, which contributes substantially to the production of cytokines, was comparable with the control (no treatment) level, and significantly less than that obtained with lipoplex. Although the production of proinflammatory cytokines (TNF-alpha, interferon-gamma, and interleukin-12) was reduced on the administration of the linear PEI polyplex, serum alanine aminotransferase levels were significantly enhanced by pDNA in a dose-dependent manner, suggesting that such hepatic damage is not induced by proinflammatory cytokines.  相似文献   

4.
Chitosan-graft-polyethylenimine as a gene carrier.   总被引:16,自引:0,他引:16  
Chitosans have been proposed as biocompatible alternative cationic polymers that are suitable for non-viral delivery. However, the transfection efficiency of chitosan-DNA nanoparticles is still very low. To improve transfection efficiency, we prepared chitosan-graft-polyethylenimine (CHI-g-PEI) copolymer by an imine reaction between periodate-oxidized chitosan and polyethylenimine (PEI). The molecular weight and composition of the CHI-g-PEI copolymer were characterized, using multi-angle laser scattering (GPC-MALS) and (1)H nuclear magnetic resonance ((1)H NMR), respectively. The copolymer was complexed with plasmid DNA (pDNA) in various copolymer/DNA (N/P) charge ratios, and the complex was characterized. CHI-g-PEI showed good DNA binding ability and high protection of DNA from nuclease attack. Also, with an increase in charge ratio, the sizes of the CHI-g-PEI/DNA complex showed a tendency to decrease, whereas the zeta potential of the complex showed an increase. The CHI-g-PEI copolymer had low cytotoxicity, compared to PEI 25K from cytotoxicity assays. At high N/P ratios, the CHI-g-PEI/DNA complex showed higher transfection efficiency than PEI 25K in HeLa, 293T and HepG2 cell lines. Our results indicate that the CHI-g-PEI copolymer has potential as a gene carrier in vitro.  相似文献   

5.
《Molecular therapy》2003,7(2):254-261
To optimize a receptor-mediated and cell-selective gene transfer with polyethyleneimine (PEI)-based vector, we synthesized three galactosylated PEIs (Gal-PEI) with different molecular weights (PEI1800, PEI10,000, and PEI70,000) and investigated their potential as a targetable vector to asialoglycoprotein receptor-positive cells. All PEI derivatives formed complexes with plasmid DNA (pDNA), whereas the particle size of the complex became smaller on increasing the molecular weight of PEI. Transfection efficiency in HepG2 cells with PEI was highest with PEI1800; efficiency was next highest with PEI10,000, although the cellular association was similar. After galactosylation, Gal19-PEI10,000/pDNA and Gal120-PEI70,000/pDNA showed considerable agglutination with a galactose-recognizing lectin, but Gal9-PEI1800 did not, suggesting that galactose units on the Gal9-PEI1800-pDNA complex are not sufficiently available for recognition. Gal19-PEI10,000-pDNA and Gal120-PEI70,000-pDNA complexes showed galactose-inhibitable transgene expression in HepG2 cells. Transfection efficiency was greatest with Gal19-PEI10,000/pDNA, a result that highlights the importance of obtaining a balance between the cytotoxicity and the transfection activity, both of which are found to be a function of the molecular weight of PEI. After intraportal injection, however, Gal153-PEI70,000/pDNA having a low N/P ratio was most effective, suggesting that additional variables, such as the size of the complex, are important for in vivo gene transfer to hepatocytes.  相似文献   

6.
For gene therapy, tissue targeting of gene delivery systems is required for the maximum efficiency. In this study, we constructed pRIP-IL4 in which the expression of interleukin-4 (IL-4) was driven by the rat insulin promoter. WSLP-pRIP-IL4 complex was characterized by pancreas beta-cell specific and glucose responsive expression of IL-4. pRIP-IL4 was completely retarded at a 6:1 or higher N/P (nitrogen atom of WSLP/phosphate of plasmid) ratio in 1% agarose gel. In addition, WSLP protected plasmid DNA from DNase I for more than 1 h. In cytotoxicity assay, WSLP showed less cytotoxicity than PEI (25000 Da) to mouse insulinoma (MIN6) cells. ELISA showed that pRIP-IL4 expressed much higher levels of IL-4 in MIN6 cells than in NIH3T3 cells. The expression level of IL-4 by pRIP-IL4 increased with increasing concentration of glucose. Also, IL-4 was expressed in a dose-dependent manner. This WSLP-pRIP-IL4 system will be useful in the development of a pancreas specific expression system for the prevention of diabetes without systemic side effects.  相似文献   

7.
Dexamethasone was conjugated to low molecular weight polyethylenimine (2 kDa, PEI2k). Dexamethasone conjugated PEI2k (PEI2k-Dexa) was evaluated as a combined delivery carrier of dexamethasone and plasmid DNA (pDNA) in an animal model of lipopolysaccharide (LPS) induced acute lung injury (ALI). In vitro transfection of L2 lung epithelial cells, PEI2k-Dexa exhibited higher transfection efficiency than PEI2k or a simple mixture of PEI2k and dexamethasone. In addition, the PEI2k-Dexa/pβ-Luc complexes reduced the levels of pro-inflammatory cytokines in LPS activated Raw 264.7 macrophage cells. The anti-inflammatory effect of PEI2k-Dexa was higher than that of controls. The PEI2k-Dexa/pβ-Luc complexes were administered to mice via intratracheal injection. PEI2k-Dexa had higher pDNA delivery efficiency than PEI2k in the lung and decreased TNF-α and IL-6 in the lung homogenates and bronchoalveolar lavage (BAL) fluid compared with the controls. Furthermore, total protein and immunoglobulin M (IgM) concentrations in BAL fluid were reduced by the PEI2k-Dexa/pβ-Luc complexes. The intratracheal injection of the PEI2k-Dexa/pcDNA-EGFP complexes in the ALI model showed higher EGFP expression compared with PEI2k. Hematoxylin and eosin (H&E) staining showed that PEI2k-Dexa reduced inflammatory reaction in the lung. Therefore, PEI2k-Dexa may be useful for combination gene and drug therapy for ALI.  相似文献   

8.
A novel gene transfer system was developed by using liposomes modified with cetylated polyethylenimine (PEI, MW 600). This polycation liposome, PCL, showed remarkable transfection efficiency as monitored by the expression of the GFP reporter gene. Most conventional cationic liposomes require phosphatidylethanolamine or cholesterol as a component, although PCLs did not. Egg yolk phosphatidylcholine- and dipalmitoylphosphatidylcholine-based PCL were as effective as dioleoylphosphatidylethanolamine-based PCLs for gene transfer. Concerning the cytotoxicity against COS-1 cells and hemolytic activity, the PCL was superior to conventional cationic liposome preparations. Furthermore, the transfection efficacy of PCLs was enhanced, instead of being diminished, in the presence of serum. Effective gene transfer was observed in all eight malignant and two normal cells line tested, as well as in COS-1 cells. We also examined the effect of the molecular weight of PEI on PCL-mediated gene transfer, and observed that PEI with a MW of 1800 Da was as effective as that with one of 600, but that PEI of 25,000 was far less effective. Finally, an in vivo study was done in which GFP was effectively expressed in mouse liver after injection of PCL via the portal vein. Thus, PCL represents a new system useful for transfection and gene therapy.  相似文献   

9.
10.
Polyethylenimine with acid-labile linkages as a biodegradable gene carrier.   总被引:7,自引:0,他引:7  
Polyethylenimine (PEI) is a gene carrier with high transfection efficiency. However, PEI has high cytotoxicity, which depends on its molecular weight. To reduce the cytotoxicity, degradable PEIs with acid-labile imine linkers were synthesized with low molecular weight PEI1.8K (1.8 kDa) and glutadialdehyde. The molecular weights of the synthesized acid-labile PEIs were 23.7 and 13 kDa, respectively. The half-life of the acid-labile PEI was 1.1 h at pH 4.5 and 118 h at pH 7.4, suggesting that the acid-labile PEI may be rapidly degraded into nontoxic low molecular weight PEI in acidic endosome. In a gel retardation assay, plasmid DNA (pDNA) was completely retarded at a 3:1 N/P (nitrogen of polymer/phosphate of DNA) ratio. The zeta potential of the polyplexes was in the range of 46.1 to 50.9 mV and the particle size was in the range of 131.8 to 164.6 nm. In vitro transfection assay showed that the transfection efficiency of the acid-labile PEIs was comparable to that of PEI25K. In toxicity assay, the acid-labile PEI was much less toxic than PEI25K, due to the degradation of acid-labile linkage. Therefore, the acid-labile PEIs may be useful for the development of a nontoxic polymeric gene carrier.  相似文献   

11.
The development of non-viral gene carrier systems becomes more urgent and important due to the major biosafety considerations involved with application of viral vector systems for clinical gene therapy. We recently developed a novel non-viral gene carrier system, termed TerplexDNA, which showed high gene transfer efficiency when compared to the lipofectamine gene delivery system both in HepG2 and A7R5 cell lines in vitro. In present studies, we demonstrated that the TerplexDNA gene carrier system specifically delivered the reporter genes (LacZ and Luciferase) and therapeutic gene (hrVEGF(165) cDNA) into bovine aortic artery wall cells (endothelial cells and smooth muscle cells) by receptor mediated endocytosis. We found that the transfection efficiency to these primary artery wall cells, when mediated by the TerplexDNA system, was dose-dependent, saturable and was significantly inhibited by excess free LDL. The transfection efficiency of the TerplexDNA gene carrier system was approximately 60-fold higher than that of the lipofectamine gene carrier system. The TerplexDNA gene carrier system is a useful and promising tool for artery wall gene transfer.  相似文献   

12.
Lee M  Rentz J  Bikram M  Han S  Bull DA  Kim SW 《Gene therapy》2003,10(18):1535-1542
Therapeutic angiogenesis with gene encoding vascular endothelial growth factor (VEGF) is a new potential treatment in cardiovascular disease. However, unregulated VEGF-mediated angiogenesis has the potential to promote tumor growth, accelerate diabetic proliferative retinopathy, and promote rupture of atherosclerotic plaque. To be safe and effective, gene therapy with VEGF must be regulated. To limit the risk of pathological angiogenesis, we developed a hypoxia-inducible VEGF gene therapy system using the erythropoietin (Epo) enhancer and water-soluble lipopolymer (WSLP). pEpo-SV-VEGF or pSV-VEGF-Epo was constructed by insertion of the Epo enhancer upstream of the Simian Virus 40 (SV40) promoter or downstream of the poly(A) signal of pSV-VEGF. In vitro transfection showed that pEpo-SV-VEGF, not pSV-VEGF-Epo, induced the VEGF expression in hypoxic cells. In addition, the VEGF protein, which was produced from the Epo-SV-VEGF-transfected and hypoxia-incubated cells, was able to enhance the proliferation of the endothelial cells. Injection of the pEpo-SV-VEGF/WSLP complex showed that the expression of VEGF was induced in ischemic myocardium, compared to normal myo-cardium. Therefore, with the localized induction of VEGF and the low cytotoxicity of WSLP, the pEpo-SV-VEGF/WSLP system may be helpful to eventually treat ischemic heart disease.  相似文献   

13.
The purpose of this study was to develop and test a non‐viral gene delivery system that can be employed to deliver genes of interest into a pre‐osteoblastic cell line. Human embryonic palatal mesenchymal (HEPM 1486) cells were transfected with vector‐plasmid DNA (pDNA) complexes. We explored calcium phosphate and polyethylenimine (PEI) as non‐viral vectors and compared their respective in vitro transfection efficacies. Plasmid DNA encoding luciferase protein (LUC) was complexed with PEI (with differing N:P ratios) and calcium phosphate (with differing Ca:P ratios), using established protocols. The complexes prepared were then characterized for size and surface charge, using a Malvern Zetasizer Nano‐ZS. The transfection efficiency and cytotoxicity of the prepared complexes were evaluated in HEPM cells. The PEI–pDNA complexes over the whole range of N:P ratios were found to be < 160 nm in size, while the calcium phosphate–pDNA complexes were relatively bigger. The PEI–pDNA complexes prepared at a N:P ratio of 10 were found to have maximum transfection efficiency at 4 h of treatment, with minimal cytotoxicity. The highest transfection efficiency obtained with calcium phosphate–pDNA complexes (Ca:P 200) was nearly 12‐fold lower than that obtained with PEI–pDNA complexes (N:P 10). Following this, transgene expression in the HEPM cells treated with complexes prepared at a N:P ratio of 10 was further examined, using pDNA coding for enhanced green fluorescent protein (EGFP‐N1) or therapeutically relevant platelet‐derived growth factor B (PDGF‐B). In conclusion, PEI was a more effective vector for delivering genes of interest to pre‐osteoblasts than calcium phosphate. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
We have assessed if high-frequency ultrasound (US) can enhance nonviral gene transfer to the mouse lung. Cationic lipid GL67/pDNA, polyethylenimine (PEI)/pDNA and naked plasmid DNA (pDNA) were delivered via intranasal instillation, mixed with Optison microbubbles, and the animals were then exposed to 1 MHz US. Addition of Optison alone significantly reduced the transfection efficiency of all three gene transfer agents. US exposure did not increase GL67/pDNA or PEI/pDNA gene transfer compared to Optison-treated animals. However, it increased naked pDNA transfection efficiency by approximately 15-fold compared to Optison-treated animals, suggesting that despite ultrasound being attenuated by air in the lung, sufficient energy penetrates the tissue to increase gene transfer. US-induced lung haemorrhage, assessed histologically, increased with prolonged US exposure. The left lung was more affected than the right and this was mirrored by a lesser increase in naked pDNA gene transfer, in the left lung. The positive effect of US was dependent on Optison, as in its absence US did not increase naked pDNA transfection efficiency. We have thus established proof of principle that US can increase nonviral gene transfer, in the air-filled murine lung.  相似文献   

15.
背景:有研究报道病毒载体运载 N-甲基-D 天冬氨酸受体1小干扰 RNA 可有效缓解大鼠炎性疼痛,但病毒载体存在安全隐患.目的:探讨水溶性脂质体运载 N-甲基-D 天冬氨酸受体1小干扰 RNA 在体内外沉默 N-甲基-D 天冬氨酸受体1的效应和治疗神经病理性痛的可行性.方法:将 PC12随机分为阴性转染组、对照转染组和水溶性脂质体转染组,分别以 N-甲基-D-天冬氨酸受体1小干扰 RNA、聚乙烯亚胺与 N-甲基-D-天冬氨酸受体1小干扰 RNA 的复合物及水溶性脂质体与 N-甲基-D-天冬氨酸受体1小干扰 RNA 的复合物转染 PC12细胞,检测各组 N-甲基-D-天冬氨酸受体1基因 mRNA 及蛋白水平表达的变化.将48只 SD 大鼠随机分为假手术组、模型组、聚乙烯亚胺组及水溶性脂质体组,后3组建立大鼠神经病理性疼痛模型,并分别鞘内注射生理盐水、聚乙烯亚胺与N-甲基-D-天冬氨酸受体1小干扰 RNA 的复合物和水溶性脂质体与 N-甲基-D-天冬氨酸受体1小干扰 RNA 的复合物;假手术组只暴露坐骨神经.结果与结论:水溶性脂质体转染组 N-甲基-D-天冬氨酸受体1的 mRNA 与蛋白表达水平明显低于其他两组(P 〈0.01).与假手术组比较,模型组、聚乙烯亚胺组及水溶性脂质体组 N-甲基-D-天冬氨酸受体1的 mRNA 和蛋白表达上调,累积疼痛评分升高(P 〈0.01);与模型组比较,水溶性脂质体转染组脊髓背角 N-甲基-D-天冬氨酸受体1 mRNA 与蛋白表达及累积疼痛评分下降(P 〈0.01),聚乙烯亚胺组上述指标无明显变化(P 〉0.05).表明在体内条件下水溶性脂质体可有效运载 N-甲基-D-天冬氨酸受体1小干扰 RNA,抑制 N-甲基-D-天冬氨酸受体1的过度表达,还可减轻大鼠神经病理性痛.  相似文献   

16.
We have assessed whether magnetic forces (magnetofection) can enhance non-viral gene transfer to the airways. TransMAG(PEI), a superparamagnetic particle was coupled to Lipofectamine 2000 or cationic lipid 67 (GL67)/plasmid DNA (pDNA) liposome complexes. In vitro transfection with these formulations resulted in approximately 300- and 30-fold increase in reporter gene expression, respectively, after exposure to a magnetic field, but only at suboptimal pDNA concentrations. Because GL67 has been formulated for in vivo use, we next assessed TransMAG(PEI) in the murine nasal epithelium in vivo, and compared this to naked pDNA. At the concentrations required for in vivo experiments, precipitation of magnetic complexes was seen. After extensive optimization, addition of non-precipitated magnetic particles resulted in approximately seven- and 90-fold decrease in gene expression for naked pDNA and GL67/pDNA liposome complexes, respectively, compared to non-magnetic particles. Thus, whereas exposure to a magnetic field improved in vitro transfection efficiency, translation to the in vivo setting remains difficult.  相似文献   

17.
An ideal gene carrier requires both safety and transfection efficiency. Polyethylenimine (PEI) is a well-known cationic polymer, which has high transfection efficiency owing to its buffering capacity. But it has been reported that PEI is cytotoxic in many cell lines and non-degradable. In this study, we synthesized degradable PEI-alt-poly(ethylene glycol) (PEG) copolymers using Michael-type addition reactions as a new gene carrier and characterized them. These copolymers were complexed with plasmid DNA and the resulting complexes were characterized by dynamic light scattering, gel retardation and atomic force microscopy to determine particle sizes, complex formation and complex shape, respectively. Cytotoxicity and transfection efficiency of the copolymers were also checked in cultured HeLa human cervix epithelial carcinoma cells, HepG2 human hepatoblastoma cell line and MG63 human osteosarcoma cells. PEG to PEI ratio in the copolymers was near 1 and the molecular weight of the copolymer ranged from around 8000 to 12,900. These copolymers degraded rapidly at 37 degrees C in 0.1 M phosphate buffered saline (PBS, pH 7.4). The complete copolymer/DNA complex was formed at an N/P ratio of 12, producing a complex resistant to DNase I. Particle sizes decreased with increasing N/P ratio and PEG molecular weight, exhibiting a minimum value of 75 nm at an N/P ratio of 45 with PEI-alt-PEG (700). Cytotoxicity study showed that copolymers exhibited no cytotoxic effects on cells even at high copolymer concentration. Also, transfection efficiency was influenced by PEG molecular weight and, in case of PEI-alt-PEG (258), the transfection efficiency was higher than that for PEI 25 K in HepG2 and MG63, whereas it was lower than that for PEI 25K in HeLa cells.  相似文献   

18.
We describe a primate model for the study of net cholesterol flux by splanchnic, portal, and hepatic regions concomitant with that of biliary lipid secretion in conscious healthy fed or fasting baboons with exteriorized but physiologically intact enterohepatic circulations. In five fasting baboons studied, we found evidence for low-density lipoprotein (LDL) cholesterol uptake by the liver of 1.0 mg/min, P less than 0.05. Conversely, splanchnic production of LDL cholesterol was found in the fed state (n = 5), amounting to 0.8 mg/min, P less than 0.05. Uptake or secretion of high-density lipoprotein (HDL) cholesterol by either the liver or the intestine could not be detected by transgradient analysis in our animals in either fed or fasting states. Very low-density lipoprotein secretion of 0.4 mg/min by the liver was also found in the fed state. Isotopic biliary cholesterol derived from labeled plasma HDL or LDL cholesterol reflected hepatic LDL cholesterol production in the fed state but LDL cholesterol uptake in the fasting state. Biliary cholesterol secretion amounted to 8.5% of net hepatic lipoprotein cholesterol flux in the fed state and 10% in the fasting state. We conclude that uptake of LDL cholesterol by the liver is appreciable and contributes to biliary sterol secretion in the fasting baboon. Uptake or secretion of HDL cholesterol was not detected in any metabolic beds by transgradient analysis, but in tracer studies appeared to be a major source of lipoprotein cholesterol transferred to bile in the fed state.  相似文献   

19.
The development of clinically beneficial myocardial gene therapy has been slowed by reliance on the use of viral carriers and non-physiologic, constitutive gene expression. To specifically address these issues, we have developed a non-viral gene carrier, water-soluble lipopolymer (WSLP), and an ischemia-inducible plasmid construct expressing vascular endothelial growth factor (VEGF), pRTP801-VEGF, to treat myocardial ischemia and infarction. Rabbits underwent ligation of the circumflex artery followed by injection of (a) an ischemia-inducible VEGF gene construct in a WSLP carrier; (b) a constitutively expressed, or unregulated, SV-VEGF gene construct in a WSLP carrier; (c) WSLP carrier alone; or (d) no injection therapy. Following 4 weeks treatment, ligation alone resulted in infarction of 48+/-7% of the left ventricle. With injection of WSLP carrier alone, 49+/-6% of the left ventricle was infarcted (P=NS). The constitutively expressed gene construct, SV-VEGF, reduced the infarct size to 32+/-7% of the left ventricle (P=0.007). The ischemia-inducible gene construct, RTP801-VEGF, further reduced the infarct size to 13+/-4% of the left ventricle (P<0.001). The use of a non-viral carrier to deliver an ischemia-inducible VEGF construct is effective in the treatment of acutely ischemic myocardium.  相似文献   

20.
Chitosan has potential as a biocompatible gene carrier. However, its gene transfection efficiency is low because of its slow endosomal escape rate. Histidine has buffering capacity in the pH range of endosomes/lysosomes. The structure of dendron consists of a central core with several chains radiating from it and many histidines could be conjugated on the surface, increasing the efficiency of histidine modification. The purpose of this study is to increase the gene transfection efficiency of chitosan by promoting its endosomal escape property. We developed fourth-generation lysine-histidine (KH) dendrons that can provide 8 histidines in one dendron molecule. Chitosan-dendron (Chi13k-D) was synthesized using 2-iminothiolane to form the linkage; this was confirmed by NMR and the ninhydrin test. The buffering range, as measured by pH titration, was broader in the Chi13k-D group than in chitosan. Enhanced endosomal escape of Chi13k-D/pDNA complexes was confirmed using fluorescence-labeled endosomes and pDNA. The intralysosomal pH of Chi13k-D/pDNA was also higher than that of chitosan/pDNA. The gene transfection efficiency of Chi13k-D/pDNA was higher than that of chitosan/pDNA in HEK293 cells. These results suggest that KH dendron modification could provide high buffering capacity, which would increase the gene transfection efficiency of chitosan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号