首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary We have constructed a mutated infectious HIV variant lacking the signals for addition of three N-linked glycans situated in the V4, C4 and V5 regions of HIV gp120. When comparing mutated virus with wildtype virus we found essentially no differences in the phenotypic characteristics of the two viruses except for the expected electrophoretic mobility shift of radioimmuno-precipitated mutated gp120, resulting from the missing N-glycans. Thus, the infectivity titer and the capacity to induce syncytia were similar for the two viruses. The sensitivity of mutant and wildtype virus to a number of neutralizing agents was determined. As expected, the mutant virus was significantly less sensitive to neutralization by Con A, with affinity for the N-glycans eliminated. We found, however, that antibodies to the V3 loop and sCD4 neutralized wildtype virus as efficiently as mutant virus, whereas 2G12, a monoclonal antibody, binding to a discontinuous neutralization epitope, and GP13, binding to the CD4-binding domain, neutralized wildtype virus better than mutant virus. Altogether the data suggest that the three conserved N-linked glycans, despite their location in immediate association with the CD4-binding domain, which is an important neutralization epitope, are not essential for virus replication in cell culture and they are not engaged in shielding neutralization epitopes of gp120 from neutralizing antibodies. However, the glycans evidently influence the three-dimensional conformation of gp120, since their presence increases the availability of the neutralization epitope of 2G12.  相似文献   

2.
Summary It has been suggested that threonine or serine residues in the V3 loop of HIV-1 gp120 are glycosylated with the short-chain O-linked oligosaccharides Tn or sialosyl-Tn that function as epitopes for broadly neutralizing carbohydrate specific antibodies. In this study we examined whether mutation of such threonine or serine residues could decrease the sensitivity to infectivity inhibition by Tn or sialosyl-Tn specific antibodies. All potentially O-glycosylated threonine and serine residues in the V3 loop of cloned HIV-1BRU were mutagenized to alanine thus abrogating any O-glycosylation at these sites. Additionally, one of these T-A mutants (T308A) also abrogated the signal for N-glycosylation at N306 inside the V3-loop. The mutant clones were compared with the wild type virus as to sensitivity to neutralization with monoclonal and polyclonal antibodies specific for the tip of the V3 loop of BRU or for the O-linked oligosaccharides Tn or sialosyl-Tn. Deletion of the N-linked oligosaccharide at N306 increased the neutralization sensitivity to antibodies specific for the tip of the loop, which indicates that N-linked glycosylation modulates the accessibility to this immunodominant epitope. However, none of the mutants with deletions of O-glycosylation signals in the V3 loop displayed any decrease in sensitivity to anti-Tn or anti-sialosyl-Tn antibody. This indicates that these broadly specific neutralization epitopes are located outside the V3 loop of gp120.  相似文献   

3.
Here we report that N-glycans within the V1/V2 variable regions of the NL4-3 gp120 glycoprotein are indispensable to maintain viral functionality and are masking neutralizing epitopes. Fifteen variants of HIV-1 isolate NL4-3 with mutations of the six N-glycosylation sites g2–g7 within the V1 (g2–g4) and V2 loop (g5–g7) of gp120 were analyzed for viral infectivity and their sensitivity to neutralization. Presence of the N-glycans g4, g5, g6 and g7 was an important prerequisite to maintain viral infectivity, since virus mutants lacking these N-glycans were highly deficient in virus entry. Lack of g4 or g7 correlated to a reduction of infectivity to less than 3% of the infectivity observed for NL4-3 wild type. In contrast, mutants lacking N-glycans g2 and g3 showed a 50% increase in infectivity compared to NL4-3. Mutants lacking g2, g3, g5 and g6 with an infectivity of more than 10% of the NL4-3 wt virus were tested for neutralization and showed a high sensitivity against human serum antibody from HIV-1 infected individuals.  相似文献   

4.
The human immunodeficiency virus (HIV-1) exterior envelope glycoprotein, gp120, mediates receptor binding and is the major target for neutralizing antibodies. Primary HIV-1 isolates are characteristically more resistant to broadly neutralizing antibodies, although the structural basis for this resistance remains obscure. Most broadly neutralizing antibodies are directed against functionally conserved gp120 regions involved in binding to either the primary virus receptor, CD4, or the viral coreceptor molecules that normally function as chemokine receptors. These antibodies are known as CD4 binding site (CD4BS) and CD4-induced (CD4i) antibodies, respectively. Inspection of the gp120 crystal structure reveals that although the receptor-binding regions lack glycosylation, sugar moieties lie proximal to both receptor-binding sites on gp120 and thus in proximity to both the CD4BS and the CD4i epitopes. In this study, guided by the X-ray crystal structure of gp120, we deleted four N-linked glycosylation sites that flank the receptor-binding regions. We examined the effects of selected changes on the sensitivity of two prototypic HIV-1 primary isolates to neutralization by antibodies. Surprisingly, removal of a single N-linked glycosylation site at the base of the gp120 third variable region (V3 loop) increased the sensitivity of the primary viruses to neutralization by CD4BS antibodies. Envelope glycoprotein oligomers on the cell surface derived from the V3 glycan-deficient virus were better recognized by a CD4BS antibody and a V3 loop antibody than were the wild-type glycoproteins. Absence of all four glycosylation sites rendered a primary isolate sensitive to CD4i antibody-mediated neutralization. Thus, carbohydrates that flank receptor-binding regions on gp120 protect primary HIV-1 isolates from antibody-mediated neutralization.  相似文献   

5.
We have studied infectivity and neutralization of X4, R5, and R5X4 tropic HIV-1 mutants, which are lacking N-linked glycosylation sites for glycans g13, g14, g15, and g17 in the V3 loop region of gp120. X4-tropic NL4-3 mutants lacking combinations of g14/15 or g15/17 showed markedly higher infectivity in CXCR4-specific infection. The role of g15 in CCR5-specific infection was investigated using viruses with high (NL-918, R5-monotropic), medium (NL-991, R5-monotropic), and low (NL-952, R5X4-dualtropic) CCR5-specific infectivity. For NL-991, a reduction of infectivity on GHOST-CCR5 cells was observed for a mutant lacking g15. For NL-952 mutants all lacking g15, a complete loss of CCR5-specificity was observed and NL-952 was shifted from R5X4 to X4 tropism. For all mutants of NL4-3, NL-991, and NL-952, where the lack of g15 markedly influenced infectivity or coreceptor usage, neutralization was enhanced. In contrast, NL-918 mutants with or without g15 showed no difference in neutralization and no difference in GHOST-CCR5 infection rates. Thus, for viruses with a low or medium CCR5-specificity the role of g15 for changing CCR5-usage and sensitivity to neutralization was more significant than for viruses with high infection rates on GHOST-CCR5 cells. Our data demonstrate that V3 glycans play an important role in the usage of CXCR4 and CCR5. The lack of g15 was relevant for a more efficient use of CXCR4, whereas interaction with CCR5 was facilitated in the presence of g15. This study also demonstrates that glycan g15 is involved in blocking of neutralizing antibodies and shifting HIV tropism from R5X4 to X4.  相似文献   

6.
N-linked glycosylation at specific sites on human immunodeficiency virus (HIV)--1 gp120 envelope glycoprotein is believed to act as a glycan shield to protect the viral neutralizing epitopes. Various glycosylation sites have been shown to affect the sensitivity to antibody-mediated neutralization. These include sites on V1V2, C2, base of V3, V5 and C5. Among these, the sites around the base of V3 loop have been most consistently found to associate with neutralization sensitivity in subtype B viruses. In contrast, we found that N-linked glycosylation sites at the junction of V2--C2 and in the middle of C2 were responsible for the neutralization resistance in CRF01_A/E, whereas sites at the base of V3 loop and in V1 and V5 did not affect the neutralization phenotype.  相似文献   

7.
Huang X  Jin W  Hu K  Luo S  Du T  Griffin GE  Shattock RJ  Hu Q 《Virology》2012,423(1):97-106
Glycosylation plays important roles in gp120 structure and HIV-1 immune evasion. In the current study, we introduced deglycosylations into the 24 N-linked glycosylation sites of a R5 env MWS2 cloned from semen and systematically analyzed the impact on infectivity, antigenicity, immunogenicity and sensitivity to entry inhibitors. We found that mutants N156-T158A, N197-S199A, N262-S264A and N410-T412A conferred decreased infectivity and enhanced sensitivity to a series of antibodies and entry inhibitors. When mice were immunized with the DNA of wild-type or mutated gp160, gp140 or gp120; N156-T158A, N262-S264A and N410-T412A were more effective in inducing neutralizing activity against wild-type MWS2 as well as heterologous IIIB and CH811 Envs. In general, gp160 and gp140 induced higher neutralizing activity compared with gp120. Our study demonstrates for the first time that removal of individual glycan N156, N262 or N410 proximal to CD4-binding region impairs viral infectivity and results in enhanced capability to induce neutralizing activity.  相似文献   

8.
The envelope proteins of retroviruses are derived from a polypeptide precursor protein by cleavage adjacent to a cluster of basic amino acids. Site-specific mutagenesis was used to construct a mutant of the human immunodeficiency virus type 1 (HIV-1) in which the arginine residue at the carboxy-terminus of the gp120 was changed to a threonine residue. This single substitution was sufficient to abolish all detectable cleavage of the gp160 envelope precursor polypeptide as well as virus infectivity. The gp160 was produced in normal quantities from a biologically active clone of the mutant virus after transfection into cos-1 cells. The mutant gp160 contained N-linked oligosaccharide chains with mannose-rich cores similar to those of the gp160 produced by the wild-type clone. Immunofluorescence assays showed that gp160 was transported to the surface of transfected CD4+ HeLa cells. No envelope proteins of known size could be detected in the media of cells transfected with the mutant virus, suggesting that functional virions were not formed. Binding of the mutant gp160 to the CD4 receptor molecule was unimpaired. Despite this and the presence of gp160 on the cell surface, neither growth of mutant-transfected CD4+ HeLa cells nor cocultivation of transfected cos-1 cells with H9 cells resulted in significant syncytium formation. The data indicate that the carboxy-terminal arginine residue of HIV-1 gp120 is necessary for envelope protein cleavage and suggest cleavage is important in the virus life cycle in both functional virus release and membrane fusion.  相似文献   

9.
The mechanism by which HIV-1 mediates cell fusion and penetrates target cells, subsequent to receptor (CD4) binding, is not well understood. However, neutralizing antibodies, which recognize the principal neutralizing determinants of the gp120 envelope protein (the V3 loop region, residues 296 to 331), have been shown to effectively block cell fusion and virus infectivity independent of the initial gp120-CD4 binding. To investigate the role of the V3 loop in an HIV infection, a series of site-specific mutations were introduced into the HIV-1 envelope gene. Specifically, each residue (312 to 315) in the strongly conserved tetrapeptide sequence, GPGR, which is positioned in the center of the V3 loop domain was individually altered. The processing, transport, and CD4 binding properties of the mutant envelope proteins were comparable to those of the wild-type protein, however, none of the mutants were able to form syncytia in the HeLa-T4 assay. Molecular HIV-1 clones containing mutations altering the G312, G314, or R315 residues produced noninfectious virions, whereas a clone with a P313A mutation was found to be infectious. These results demonstrate that certain V3 loop mutations can be lethal and clearly indicate that this region of the HIV-1 gp120 protein is essential for virus infectivity.  相似文献   

10.
Dong XN  Wu Y  Ying J  Chen YH 《Immunology letters》2005,101(1):112-114
V3 loop on HIV-1 gp120 is tightly correlated with syncytium formation, coreceptor usage, virus infectivity and antibody neutralization. The antigenic tip GPGRAFY with its flanking sequence has a conserved secondary structure, and is the target of neutralizing antibodies. We analyzed its genetic variability in 30096 M-group isolates and 269 O-group isolates. Subtype-related restricted mutations were observed, which could help to identify subtypes.  相似文献   

11.
Tian H  Lan C  Chen YH 《Immunology letters》2002,83(3):231-233
Mutation in the V3 loop of HIV-1 gp120 could affect syncytium formation, virus infectivity and neutralization. To acquire more information of the V3 loop mutation, we analyzed amino acid sequences of the V3 loop of 24504 isolates from most HIV-1 clades (including A, B, C, D, E, F, G and H clades). The consensus sequence of the V3 loop of each subtype with the highest frequency emerging on each position is constituted and the conservation of each amino acid in this region is also calculated. Exploring the restricted mutation of the V3 region could help to understand mechanism of HIV entry and to develop new strategy against HIV-1.  相似文献   

12.
The elicitation of broadly neutralizing antibodies directed against the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins, gp120 and gp41, remains a major challenge. Attempts to utilize monomeric gp120 as an immunogen to elicit high titers of neutralizing antibodies have been disappointing. Envelope glycoprotein constructs that better reflect the trimeric structure of the functional envelope spike have exhibited improved immunogenicity compared with monomeric gp120. We have described soluble gp140 ectodomain constructs with a heterologous trimerization motif; these have previously been shown to elicit antibodies in mice that were able to neutralize a number of HIV-1 isolates, among them primary isolate viruses. Recently, solid-phase proteoliposomes retaining the envelope glycoproteins as trimeric spikes in a physiologic membrane setting have been described. Here, we compare the immunogenic properties of these two trimeric envelope glycoprotein formulations and monomeric gp120 in rabbits. Both trimeric envelope glycoprotein preparations generated neutralizing antibodies more effectively than gp120. In contrast to monomeric gp120, the trimeric envelope glycoproteins elicited neutralizing antibodies with some breadth of neutralization. Furthermore, repeated boosting with the soluble trimeric formulations resulted in an increase in potency that allowed neutralization of a subset of neutralization-resistant HIV-1 primary isolates. We demonstrate that the neutralization is concentration-dependent, is mediated by serum IgG and that the major portion of the neutralizing activity is not directed against the gp120 V3 loop. Thus, mimics of the trimeric envelope glycoprotein spike described here elicit HIV-1-neutralizing antibodies that could contribute to a protective immune response and provide platforms for further modifications to improve the efficiency of this process.  相似文献   

13.
The importance of the dependence on single amino acids in the V3 region of HIV-1 gp120 was evaluated for virus neutralization and antibody-dependent cellular cytotoxicity (ADCC). Synthetic overlapping 15-mer peptides and a set of omission peptides covering amino acids 301-317 were used. Sera from 29 HIV-1-infected individuals at different stages of disease were tested for neutralization, ADCC and specific IgG reactivity. Six HIV-1 neutralizing monoclonal antibodies (mAb) acted as controls. All mAb reacted with a region (amino acids 304-318) of gp120, previously shown to induce neutralizing antibodies. The amino acids essential for reactivity were identified to be within the sequence GPGR (amino acids 312-315). The importance of this region for occurrence of neutralizing antibodies in infected humans was investigated using the same set of peptides. Out of 29 individuals, 21 were found to have neutralizing antibodies in titres between 100 and 1000. Among the neutralization-positive sera, 17/21 (81%) reacted with amino acids 304-318, compared with only one of eight sera (13%) negative in neutralization. When any of the four amino acids G, P, G or R were deleted, the seroreactivity decreased considerably. The conserved sequence GPGR was therefore considered to be the most important for neutralization in this region in human sera as well. Thus, the conserved sequence GPGR in the V3 region of gp120 is critical for virus neutralization by human HIV-1-specific antibodies.  相似文献   

14.
Structure-guided approaches to HIV-1 vaccine design depend on knowledge of the presentation of neutralizing epitopes on gp120, such as the epitope for the broadly neutralizing mAb b12. Here, we characterized predicted three-dimensional structures of functionally diverse gp120 proteins in their b12-bound conformation, to better understand the gp120 determinants that expose or occlude the b12 epitope. Mapping the gp120-b12 binding interface identified amino acid polymorphisms within the C2, C3, C4 and V5 regions of gp120 associated with augmented b12 binding, and importantly, identified residues in the b12-exclusive binding domain of gp120 that are important for b12 neutralization resistance. Structural studies suggest that these b12 resistance variants promote reduced conformational flexibility in the b12 recognition site, which we show involves structural alterations within the gp120 CD4 binding loop and the V4 loop. Together, our studies provide new mechanistic insights into the gp120 determinants influencing sensitivity and resistance to HIV-1 neutralization by b12.  相似文献   

15.
Infection by the human immunodeficiency virus type 1 (HIV-1) is initiated through interaction of its exterior envelope glycoprotein gp120 with the CD4 receptor on target cells. To address the possible role of N-glycosylation of HIV-1 gp120 in binding CD4, we mutated different conserved N-glycosylation site Asn-residues in the vicinity of the putative CD4 binding site, as single mutations or in combinations. Authentic and mutant gp120 proteins were produced using the baculovirus expression system. All mutant proteins were produced and secreted at similar levels and could be immunoprecipitated with an HIV(+)-serum. Furthermore, all glycosylation mutants retained the full capacity to bind CD4 except for a triple mutant which showed reduced binding. Different gp120 mutant genes were then introduced in an infectious proviral DNA clone. Upon transfection of MT-2 cells, the authentic HIV-1 clone induced maximal virus production after 6 days. In the case of the triple glycosylation mutant, comparable virus production was first reached after a delay of about 12 days. Moreover, in contrast to native HIV, the mutant virus induced no typical multinucleated giant cells. These results suggest that the attached carbohydrates around the CD4-binding site of gp120, may contribute to the generation of this protein domain required for high affinity receptor interaction.  相似文献   

16.
Dey AK  David KB  Ray N  Ketas TJ  Klasse PJ  Doms RW  Moore JP 《Virology》2008,372(1):187-200
The native, functional HIV-1 envelope glycoprotein (Env) complex is a trimer of two non-covalently associated subunits: the gp120 surface glycoprotein and the gp41 transmembrane glycoprotein. However, various non-functional forms of Env are present on virus particles and HIV-1-infected cells, some of which probably arise as the native complex decays. The aberrant forms include gp120-gp41 monomers and oligomers, as well as gp41 subunits from which gp120 has dissociated. The presence of non-functional Env creates binding sites for antibodies that do not recognize native Env complexes and that are, therefore, non-neutralizing. Non-native Env forms (monomers, dimers, tetramers and aggregates) can also arise when soluble gp140 proteins, lacking the cytoplasmic and transmembrane domains of gp41, are expressed for vaccine studies. We recently identified five amino acids in the gp41 N-terminal region (I535, Q543, S553, K567 and R588) that promote gp140 trimerization. We have now studied their influence on the function and antigenic properties of JR-FL Env expressed on the surfaces of pseudoviruses and Env-transfected cells. The 5 substitutions in gp41 reduce the expression of non-trimeric gp160s, without affecting trimer levels. Pseudovirions bearing the mutant Env are fully infectious with similar kinetics of Env-mediated fusion. Various non-neutralizing antibodies bind less strongly to the Env mutant, but neutralizing antibody binding is unaffected. Hence the gp41 substitutions do not adversely affect Env structure, supporting their use for making new Env-based vaccines. The mutant Env might also help in studies intended to correlate antibody binding to virus neutralization. Of note is that the 5 residues are much more frequent, individually or collectively, in viruses from subtypes other than B.  相似文献   

17.
Several functions have been assigned to the extensive glycosylation of HIV-1 envelope glycoprotein gp120, especially immune escape mechanisms, but the intramolecular interactions between gp120 and its carbohydrate complement are not well understood. To analyse this phenomenon we established a new microwell deglycosylation assay for determining N-linked glycan accessibility after binding of gp120-specific agents. Orientation-specific exposition of gp120 in ELISA microplates was achieved by catching with either anti-C5 antibody D7324 or anti-V3 antibody NEA-9205. We found that soluble CD4 inhibited the deglycosylation of gp120 only when gp120 was caught by D7324 and not by NEA9205. In contrast, antibodies from HIV-infected individuals inhibited the deglycosylation best when gp120 was caught by NEA9205. These results demonstrated that both the CD4-binding site and the epitopes recognised by antibodies from HIV-infected individuals have N-glycans in the close vicinity. However, the difference in gp120 orientation indicates that antibodies in HIV-infected individuals, at least partly, bind to epitopes different from the CD4-binding site. Finally, we determined the structural class of the glycan of one V1 glycosylation site of prototype HIV-1 LAI gp120, which remained unsolved from previous studies, and found that it belonged to the complex type of glycans.  相似文献   

18.
The human immunodeficiency virus type 1 (HIV-1) envelope (Env) glycoprotein forms trimers that mediate interactions with the CD4 receptor and a co-receptor on the target cell surface, thereby triggering viral fusion with the cell membrane. Cleavage of Env into its surface, gp120, and transmembrane, gp41, moieties is necessary for activation of its fusogenicity. Here, we produced pseudoviruses with phenotypically mixed wild-type (Wt) and mutant, cleavage-incompetent Env in order to quantify the effects of incorporating uncleaved Env on virion infectivity, antigenicity and neutralization sensitivity. We modeled the relative infectivity of three such phenotypically mixed viral strains, JR-FL, HXBc2 and a derivative of the latter, 3.2P, as a function of the relative amount of Wt Env. The data were fit very closely (R(2) > 0.99) by models which assumed that only Wt homotrimers were functional, with different approximate thresholds of critical numbers of functional trimers per virion for the three strains. We also produced 3.2P pseudoviruses containing both a cleavage-competent Env that is defective for binding the neutralizing monoclonal antibody (NAb) 2G12, and a cleavage-incompetent Env that binds 2G12. The 2G12 NAb was not able to reduce the infectivity of these pseudoviruses detectably. Their neutralization by the CD4-binding site-directed agents CD4-IgG2 and NAb b12 was also unaffected by 2G12 binding to uncleaved Env. These results further strengthen the conclusion that only homotrimers consisting of cleaved Env are functional. They also imply that the function of a trimer is unaffected sterically by the binding of an antibody to an adjacent trimer.  相似文献   

19.
The crystal structure of the human immunodeficiency virus type 1 (HIV-1) neutralizing, murine Fab 83.1 in complex with an HIV-1 gp120 V3 peptide has been determined to 2.57 A resolution. The conformation of the V3 loop peptide in complex with Fab 83.1 is very similar to V3 conformations seen previously with two other neutralizing Fabs, 50.1 and 59.1. The repeated identification of this same V3 conformation in complex with three very different, neutralizing antibodies indicates that it is a highly preferred structure for V3 loops on some strains of the HIV-1 virus.  相似文献   

20.
Reynard F  Fatmi A  Verrier B  Bedin F 《Virology》2004,324(1):90-102
The human immunodeficiency virus type 1 (HIV-1) envelope protein (Env) has evolved to limit its overall immunogenicity by extensive glycosylation. Only a few studies dealing with glycosylation sites have taken into account available 3D data in a global approach. We compared primary env sequences from patients with acute HIV-1 infection. Conserved N-glycosylation sites were placed on the gp120-3D model. Based on vicinity, we defined glycosylation clusters. According to these clusters, we engineered plasmids encoding deglycosylated gp160 mutants. We also constructed mutants corresponding to nonclustered glycans or to the full deglycosylation of the V1 or V2 loop. After in vitro expression, mutants were tested for functionality. We also compared the inhibition of pseudotyped particles infection by human-neutralizing sera. Generally, clustered and nonclustered mutants were affected similarly. Silencing of more than one glycan had deleterious effects, independently of the type of sugar removed. However, some mutants were moderately affected by glycans removal suggesting a distinct role for these N-glycans. Additionally, compared to the wild-type pseudovirus, two of these mutants were neutralized at higher sera dilutions strengthening the importance of the location of specific N-glycans in limiting the neutralizing response. These results could guide the selection of env mutants with the fewest antigenic and functional alterations but with enhanced neutralization sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号