首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The biochemical pathways involved in CD40 signaling have been extensively studied in B cells and B cell lines, and appear to be primarily initiated by recruitment of the tumor necrosis factor (TNF) receptor-associated factor (TRAF) signaling proteins to the CD40 cytoplasmic domain. Signaling pathways activated through CD40 in monocytes/macrophages have not been characterized as well as in B cells. Using human monocytes and the human monocytic cell line THP1, we examined signal transduction events induced by CD40 engagement with its ligand, CD154. In human monocytes, all TRAF mRNAs were expressed constitutively and CD40 ligation resulted in a strong up-regulation of TRAF1 mRNA. In THP1 cells, CD40 ligation induced expression of TRAF1 and TRAF5 mRNAs. Engagement of CD40 in both monocytes and THP1 cells led to the rapid and transient activation of the extracellular signal-regulated kinases (ERK) 1 and 2, and to low levels of JNK activation. No CD40-dependent activation of p38 mitogen-activated protein kinase (MAPK) was found. In CD154-stimulated monocytes and THP1 cells the upstream ERK1/2 activator, MAPK kinase (MEK) 1/2, and downstream substrate, c-Myc, were activated. By blocking activation of ERK1/2 with a MEK-specific inhibitor, PD98059, CD40-dependent secretion of the pro-inflammatory cytokines, TNF-alpha, IL-6 and IL-8, was demonstrated to be linked to the ERK1/2 pathway. The ERK1/2 pathway did not appear to be involved in up-regulating TRAF1 and TRAF5 mRNAs in THP1 cells. Collectively, these results suggest distinct differences between B cells and monocytic cells in CD40-dependent activation of MAPK pathways.  相似文献   

2.
There are multiple lines of evidence showing that oxidative stress and aberrant mitogenic signaling play an important role in the pathogenesis of Alzheimer disease. However, the chronological relationship between these and other events associated with disease pathogenesis is not known. Given the important role that mitogen-activated protein kinase (MAPK) pathways play in both mitogenic signaling (ERK) and cellular stress signaling (JNK/SAPK and p38), we investigated the chronological and spatial relationship between activated ERK, JNK/SAPK and p38 during disease progression. While all three kinases are activated in the same susceptible neurons in mild and severe cases (Braak stages III-VI), in non-demented cases with limited pathology (Braak stages I and II), both ERK and JNK/SAPK are activated but p38 is not. However, in non-demented cases lacking any sign of pathology (Braak stage 0), either ERK alone or JNK/SAPK alone can be activated. Taken together, these findings indicate that MAPK pathways are differentially activated during the course of Alzheimer disease and, by inference, suggest that both oxidative stress and abnormalities in mitotic signaling can independently serve to initiate, but both are necessary to propagate, disease pathogenesis. Therefore, we propose that both 'hits', oxidative stress and mitotic alterations, are necessary for the progression of Alzheimer disease.  相似文献   

3.
L ZHU  X YU  Y AKATSUKA  J A COOPER    C ANASETTI 《Immunology》1999,97(1):26-35
A member of the mitogen-activated protein (MAP) kinase family, Jun N-terminal kinase (JNK), has been implicated in regulating apoptosis in various cell types. We have investigated the requirement for another type of MAP kinase, extracellular signal-regulated protein kinase (ERK) in activation-induced cell death (AICD) of T cells. AICD is the process by which recently activated T cells undergo apoptosis when restimulated through the T-cell antigen receptor. Here we show that both JNK and ERK are activated rapidly upon T-cell receptor (TCR) ligation prior to the onset of AICD. A chemical inhibitor of ERK activation, PD 098059, inhibits ERK activation and apoptosis, while JNK activation is not inhibited. This suggests that JNK activation is not sufficient for apoptosis. TCR cross-linking induces expression of the apoptosis-inducing factor, Fas ligand (FasL), and its expression correlates with ERK activation. In addition, apoptosis induced by direct ligation of the Fas receptor by anti-Fas antibody is not associated with ERK activation and is not inhibited by PD 098059. These data suggest that ERK activation is an early event during T-cell apoptosis induced by antigen-receptor ligation, and is not involved in apoptosis per se but in the expression of FasL. MAP kinase family members may be similarly involved in inducing apoptosis signals in other cell types.  相似文献   

4.
The stress-activated protein kinases SAPK/JNK and p38/mHOG are activated by diverse classes of stress stimuli, many of which induce redox perturbations. We studied the effects of reactive quinones on stress signaling pathways. Menadione (2-methyl-1,4-naphthoquinone), which undergoes both one- and two-electron reduction, completely inhibited SAPK activity at high concentrations while activating SAPK at lower concentrations. Menadione activated p38/mHOG dose responsively. 2,3-Dimethyl-1,4-naphthoquinone (DMNQ), which preferentially undergoes two-electron reduction, had similar effects. In contrast, 1,4-naphthoquinone, which preferentially undergoes one-electron reduction, inhibited SAPK at high concentrations, but failed to activate SAPK at any concentration tested. In addition, this quinone activated p38 only at lower concentrations; high concentrations inhibited p38 activity. These activity profiles correlated with the activation state of the upstream kinase, indicating that the effects were mediated by an upstream step in the kinase pathway. The quinone reductase inhibitor dicoumarol blocked activation of SAPK by menadione and DMNQ, suggesting that two-electron reduction is important. Finally, addition of increasing amounts of hydrogen peroxide mimicked the effects of menadione and DMNQ, suggesting that hydrogen peroxide may be the relevant mediator. Differential activation of stress kinases by reactive quinones demonstrates that the cellular redox environment independently modulates these pathways.  相似文献   

5.
Ying H  Li Z  Yang L  Zhang J 《Immunobiology》2011,216(5):566-570
CD40 is essential for optimal B cell activation. It has been shown that CD40 stimulation can augment BCR-induced B cell responses, but the molecular mechanism(s) by which CD40 regulates BCR signaling is poorly understood. In this report, we attempted to characterize the signaling synergy between BCR- and CD40-mediated pathways during B cell activation. We found that spleen tyrosine kinase (Syk) is involved in CD40 signaling, and is synergistically activated in B cells in response to BCR/CD40 costimulation. CD40 stimulation alone also activates B cell linker (BLNK), Bruton tyrosine kinase (Btk), and Vav-2 downstream of Syk, and significantly enhances BCR-induced formation of complex consisting of, Vav-2, Btk, BLNK, and phospholipase C-gamma2 (PLC-γ2) leading to activation of extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase, Akt, and NF-κB required for optimal B cell activation. Therefore, our data suggest that CD40 can strengthen BCR-signaling pathway and quantitatively modify BCR signaling during B cell activation.  相似文献   

6.
The mitogen-activated protein kinases (MAPK), including stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), p38, and extracellular signal-related kinase (ERK), are believed to be important biomolecules in cell proliferation, survival, and apoptosis induced by extracellular stimuli. In Chinese hamster V79 cells exposed to hydrogen peroxide (H2O2), we recently demonstrated that SAPK/JNK was activated by tyrosine kinase and intracellular Ca2+ ([Ca2+]i). In this study, we report that [Ca2+]i release from intracellular stores is important in the activation of SAPK/JNK but not p38 and ERK. H2O2-induced elevation of [Ca2+]i was observed in Ca2+-free medium. Pretreatment with thapsigargin, a Ca2+-ATPase inhibition of endoplasmic reticulum (ER), did not influence H2O2-induced elevation of [Ca2+]i in the absence of external Ca2+. An intracellular Ca2+ chelator (BAPTA-AM) inhibited H2O2-induced phosphorylation of SAPK/JNK, but an extracellular Ca2+ chelator (EDTA) or a Ca2+ entry blocker (NiCl2) did not. Activation of p38 and ERK in V79 cells exposed to H2O2 was observed in the presence of these inhibitors. These results suggest that [Ca2+]i release from intracellular stores such as mitochondria or nuclei but not ER, occurred after H2O2 treatment and Ca2+-dependent tyrosine kinase-induced activation of SAPK/JNK, although [Ca2+]i was unnecessary for the H2O2-induced activation of p38 and ERK.  相似文献   

7.
MNNG对哺乳类细胞JNK/SAPK及p38MAPK作用及其信号源研究   总被引:2,自引:2,他引:2       下载免费PDF全文
目的:研究低浓度烷化剂N-甲基-N' -硝基-N-亚硝基胍(MNNG)对JNK/SAPK及p38 MAPK通路的作用及其信号源。方法: 分别测定完整Vero细胞和脱核Vero细胞的JNK/SAPK及p38 MAPK酶活性,并比较其结果。 结果:低浓度MNNG在完整Vero细胞和脱核Vero细胞中均抑制JNK/SAPK酶活性;在p38 MAPK通路中,完整Vero细胞表现酶活性升高,而脱核Vero细胞该激活作用消失。 结论: 低浓度MNNG抑制JNK/SAPK的作用不依赖于核内信号,而对p38 MAPK的激活作用依赖与于核内信号。  相似文献   

8.
H4/ICOS is a costimulatory molecule related to CD28. Its effects on early TCR signals have been analyzed in mouse CD4(+) Th2 cells, expressing H4/ICOS at higher levels than Th1 clones. Anti-H4/ICOS antibodies strongly enhanced CD3-mediated tyrosine phosphorylation of ZAP-70, zeta, or Vav, as well as extracellular signal-regulated kinase (ERK), Jun N-terminal kinase (JNK) and p38 MAP kinase activation in these cells. The association of phosphoinositide 3-kinase (PI-3K) to H4/ICOS was enhanced by H4/ICOS cross-linking, and PI-3K inhibitors inhibited ERK and JNK activation and IL-4/IL-10 secretion, but not p38 MAP kinase or ZAP-70 activation. H4/ICOS-mediated activation of JNK, but not ERK or p38, is partially dependent on the expression of CD4 by the cells, whereas H4/ICOS costimulation is partially independent on CD28 expression. Cytochalasin D, an inhibitor of actin polymerization, inhibited ZAP-70, MAP kinase activation, or IL-4/IL-10 secretion. Neither cyclosporin A nor inhibitors of PKC produced detectable inhibition of ZAP-70 phosphorylation or MAP kinase activation in these Th2 cells. Cyclosporin A strongly inhibited IL-4, but not IL-10 secretion. ERK or JNKinhibitors partially inhibited IL-4 and IL-10 secretion, while PKC or p38 inhibitors had no significant effects on IL-4 or IL-10 secretion. Taken together, our data show clear similarities of costimulation mechanisms between H4/ICOS and CD28 during the early steps of TCR activation.  相似文献   

9.
Severe injury primes the innate-immune system for increased Toll-like receptor 4 (TLR4)-induced proinflammatory cytokine production by macrophages. In this study, we examined changes in TLR4 signaling pathways in splenic macrophages from burn-injured or sham mice to determine the molecular mechanism(s) responsible for the increased TLR4 responsiveness. Using flow cytometry and specific antibodies, we first looked for injury-induced changes in the expression levels of several TLR-associated signaling molecules. We found similar levels of myeloid differentiation primary-response protein 88 (MyD88) and interleukin-1 receptor-associated kinase-M (IRAK-M) and somewhat lower levels of total p38, extracellular signal-regulated kinase (ERK), and stress-activated protein kinase (SAPK)/c-jun N-terminal kinase (JNK) mitogen-activated protein kinases (MAPKs) in burn compared with sham macrophages. However, with the use of antibodies specific for the phosphorylated (activated) forms of the three MAPKs, we found that macrophages from burn mice showed a twofold increase in purified lipopolysaccharide (LPS)-stimulated p38 activation as compared with cells from sham mice on days 1 and 7 post-injury, whereas ERK and SAPK/JNK activation was increased by burn injury only on day 1. Using the specific p38 inhibitor (SB203580), we confirmed that the increase in tumor necrosis factor alpha production by LPS-stimulated burn macrophages requires p38 activation. Although we demonstrated that injury increases macrophage TLR4 mRNA expression and intracellular expression of TLR4-myeloid differentiation protein-2 (MD-2) protein, macrophage cell-surface expression of TLR4-MD-2 was not changed by burn injury. Our results suggest that the injury-induced increase in TLR4 reactivity is mediated, at least in part, by enhanced activation of the p38 signaling pathway.  相似文献   

10.
Act1, a negative regulator in CD40- and BAFF-mediated B cell survival   总被引:3,自引:0,他引:3  
TNF receptor (TNFR) superfamily members, CD40, and BAFFR play critical roles in B cell survival and differentiation. Genetic deficiency in a novel adaptor molecule, Act1, for CD40 and BAFF results in a dramatic increase in peripheral B cells, which culminates in lymphadenopathy and splenomegaly, hypergammaglobulinemia, and autoantibodies. While the B cell-specific Act1 knockout mice displayed a similar phenotype with less severity, the pathology of the Act1-deficient mice was mostly blocked in CD40-Act1 and BAFF-Act1 double knockout mice. CD40- and BAFF-mediated survival is significantly increased in Act1-deficent B cells, with stronger IkappaB phosphorylation, processing of NF-kappaB2 (p100/p52), and activation of JNK, ERK, and p38 pathways, indicating that Act1 negatively regulates CD40- and BAFF-mediated signaling events. These findings demonstrate that Act1 plays an important role in the homeostasis of B cells by attenuating CD40 and BAFFR signaling.  相似文献   

11.
12.
BACKGROUND: Antigen receptor ligation induces apoptosis of B lymphocytes, but the molecular mechanisms underlying induction of apoptosis remain unclear, although the growing family of IL-1beta-converting enzyme cysteine proteases (caspases) are recognized to be major effectors of cellular death. OBJECTIVE: We sought to delineate and compare the rescue of B-cell apoptosis through CD40 ligand-CD40 interaction and cyclic adenosine monophosphate (cAMP)-dependent protein kinase A in human B cells. METHODS: By using tonsillar B cells and the B-lymphoblastoid cell line Ramos, rescue from B-cell apoptosis was compared, as were signaling pathways after activation of cells through CD40 and the adenosine A2 receptor. RESULTS: Both CD40 ligand-CD40 interaction and activation of intracellular cAMP rescue B cells from apoptosis after antigen receptor ligation. Although these pathways do not overlap, they converge by preventing the anti-IgM-induced activation of CPP32 (caspase 3), a member of the IL-1beta-converting enzyme protease family. CONCLUSION: These data indicate that the cAMP-protein kinase A-dependent and CD40-signaling pathways regulate B-cell survival and converge at a common point, the inhibition of antigen receptor-induced activation of caspases.  相似文献   

13.
14.
15.
16.
The CD40 molecule plays important roles in B cell activation, proliferation, and immunoglobulin (Ig) class switching. In Epstein-Barr virus (EBV)-transformed lymphoblastoid cell lines (LCL), CD40 mediates growth inhibition and EBV reactivation via the CD40 signaling pathways. CD40 cross-linking with a monoclonal antibody arrests cell growth in G1 and induces expression of p27kip1 cyclin-dependent kinase inhibitor. CD40 cross-linking also induces EBV reactivation, as detected by the induction of EBV-specific early antigen, immediate early BZLF1 RNA, and its protein product ZEBRA. These results support hypotheses that the proliferation of EBV-infected B cells in vivo can be inhibited by interactions with the CD40 ligand on activated helper T cells, and latent EBV is reactivated via the signaling pathways controlled by CD40 interactions.  相似文献   

17.
18.
Vav is expressed exclusively in hematopoietic cells and becomes phosphorylated on tyrosine in response to antigen receptor ligation. Although Vav can act as a Rac-specific guanine nucleotide exchange factor in vitro and as a c-Jun N-terminal kinase (JNK) activator in ectopic expression systems, its physiological functions in lymphocytes remain unclear. Indirect evidence suggests that Vav interacts with the Ras/ERK pathway in T cells. Here, we analyzed the effects of Vav on three known downstream targets of Ras, i. e. activation of ERK and NFAT, and up-regulation of the activation antigen CD69. The MEK inhibitor PD90859 inhibited Vav-induced activation of ERK, and Vav- or anti-CD3-induced activation of NFAT, suggesting that MEK and ERK are involved in Vav-mediated NFAT activation. Similarly to Ras, Vav cooperated with constitutively active calcineurin and with ERK to activate NFAT, and was capable of up-regulating CD69 expression in T cells. Moreover, these Vav-mediated functions were all inhibited by a dominant negative Ras mutant. Conversely, however, dominant negative Vav did not inhibit NFAT and ERK activation or CD69 expression induced by an active Ras mutant. These findings indicate that Ras functions as an important downstream target of Vav in signaling pathways that lead to NFAT and ERK activation, and to CD69 expression. Moreover, the finding that Vav- (or Ras-) induced CD69 expression was not inhibited by a dominant negative Rac mutant indicates that Vav mediates some Ras-dependent, but Rac-independent, functions in T cells.  相似文献   

19.
Multiple immune system actions have been ascribed to paclitaxel (taxol), a novel anticancer drug, including the capacity to induce macrophage antitumor cytotoxic molecule production. In the present studies, we demonstrated that paclitaxel produced a selective inhibition of lipopolysaccharide (LPS)-induced B cell proliferation. Similarly, in vitro polyclonal antibody-forming cell responses also were found to be inhibited by paclitaxel. Conversely, paclitaxel exhibited no inhibitory effects on concanavalin A (Con A)-induced T cell proliferation. To study the pathway leading to paclitaxel-induced immunosuppression, we analyzed Raf-1/ERK and JNK/p38 MAPK pathways, both of which have been reported to be involved in LPS signaling. Our results indicate that taxol treatment inhibits Raf-1 kinase activation while having no effect on ERK activation suggesting that ERK activation is distinct from upstream Raf-1 kinase in taxol-induced immunomodulation. Furthermore, paclitaxel pretreatment caused down-regulation of stress-activated MAPKs, JNK and p38 MAPK in lipopolysaccharide (LPS)-stimulated mouse splenic lymphocytes, demonstrating that spleen cells are induced to a state hyporesponsive to LPS stimulation by pre-exposing them to paclitaxel. Taken together, these results suggest that down-regulation of JNK/p38 MAP kinase may contribute to paclitaxel-induced immunosuppression in mouse splenic lymphocytes.  相似文献   

20.
CD40 plays critical roles in B cell proliferation and differentiation in response to T cell-dependent antigenic stimulation. It has been suggested that CD40-mediated biological activities are transduced by a CD40 receptor-associated factor, CRAF1 and probably by protein tyrosine kinase Lyn and its substrates, phospholipase Cγ (PLCγ) and phosphatidylinositol-3 kinase (PI-3 kinase). Here, we describe the novel finding that a mitogen-activated protein kinase (MAPK)/extracellular signal-regulated protein kinase (ERK) cascade is involved in CD40 signaling in mouse B cells. Analysis of ERK activities in the B cell lymphoma cell line WEHI 231, which shows an increase in DNA synthesis or arrest of the cell cycle by cross-linking of CD40 or surface IgM (sIgM) cross-linking, respectively, indicated that one of the ERK isoforms, ERK2, was preferentially and rapidly activated after CD40 cross-linking. The CD40-mediated ERK2 activation was comparable to that after sIgM stimulation, although the activity was reduced toward the basal level within several minutes after stimulation. In contrast, ERK1 and ERK2 were activated to a similar extent by sIgM cross-linking, and the activities remained stable for at least 10 min. Furthermore, similar features of differential activation of ERK isoforms were observed in normal resting B cells in CD40 and sIgM signaling. These results suggest divergent regulatory pathways for ERK1 and ERK2 activation, and they support the notion that CD40 signaling may utilize a limited set of elements in the ERK cascade. Co-stimulation of WEHI 231 cells with anti-CD40 mAb rescues the cells from anti-IgM-mediated apoptosis, whereas this co-stimulation resulted in activation of ERK isoforms comparable to that in sIgM stimulation, without a synergistic effect. This result indicates the dominance of ERK activation in sIgM signaling over that of CD40, and it suggests that ERK activation may not be linked to the biological effect that CD40 stimulation in this cell line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号