首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gastrin, cholecystokinin2 receptor (CCK2R), and cyclooxygenase-2 (COX-2) have been implicated in the carcinogenesis and progression of gastric cancer. Our study demonstrated that antagonist or siRNA against CCK2R blocked amidated gastrin (G17)-induced activation of STAT3 and Akt in gastric cancer cell lines. G17-increased COX-2 expression and cell proliferation were effectively blocked by CCK2R antagonist and inhibitors of JAK2 and PI3K. In addition, knockdown of STAT3 expression significantly attenuated G17-induced PI3K/Akt activation, COX-2 expression, and cell proliferation. These results suggest that CCK2R-mediated COX-2 up-regulation via JAK2/STAT3/PI3K/Akt pathway is involved in the proliferative effect of G17 on human gastric cancer cells.  相似文献   

2.
STAT3 and Akt signaling have been validated as potential molecular targets for treatment of cancers including melanoma. These small molecule inhibitors of STAT3 or Akt signaling are promising for developing anti-melanoma therapeutic agents. MLS-2438, a novel 7-bromoindirubin, a derivative of the natural product indirubin, was synthesized with a bromo-group at the 7-position on one indole ring and a hydrophilic group at the 3′-position on the other indole ring. We tested the anticancer activity of MLS-2438 and investigated its mechanism of action in human melanoma cell lines. Here, we show that MLS-2438 inhibits viability and induces apoptosis of human melanoma cells associated with inhibition of STAT3 and Akt signaling. Several pro-apoptotic Bcl-2 family proteins are involved in the MLS-2438 mediated apoptosis. MLS-2438 inhibits Src kinase activity in vitro and phosphorylation of JAK2, Src, STAT3 and Akt in cultured cancer cells. In contrast to the decreased phosphorylation levels of JAK2, Src, STAT3 and Akt, phosphorylation levels of the MAPK (Erk1/2) signaling protein were not reduced in cells treated with MLS-2438. These results demonstrate that MLS-2438, a novel natural product derivative, is a Src inhibitor and potentially regulates kinase activity of JAK2 and Akt in cancer cells. Importantly, MLS-2438 suppressed tumor growth with low toxicity in a mouse xenograft model of human melanoma. Our findings support further development of MLS-2438 as a potential small-molecule therapeutic agent that targets both STAT3 and Akt signaling in human melanoma cells.  相似文献   

3.
4.
Kuo ML  Chuang SE  Lin MT  Yang SY 《Oncogene》2001,20(6):677-685
Interleukin-6 (IL-6) is a pleitrophic cytokine that not only regulates growth and differentiation of many cell types, but also induces production of acute phase proteins (AAP) in hepatocytes. Our previous works have demonstrated that both PI 3-K/Akt and STAT3 pathways were concomitantly activated and cooperatively mediated the anti-apoptotic effect of IL-6. This investigation reports that IL-6 protected cells against apoptosis induced by a variety of agents including, TGF-beta, UV and retinoic acid (RA) in Hep3B cells, suggesting that IL-6 is a fundamental determinant of hepatic cell survival. Mcl-1, but not other Bcl-2 family members, was rapidly up-regulated by IL-6, with a peak (approximately 3-4-fold) appearing at 4 h. Transient transfection of cells with a mcl-1 antisense vector, resulting in a 50-60% reduction of the anti-apoptotic effect of IL-6, indicating that Mcl-1 is a downstream effector of IL-6. Which signaling pathway transduced by IL-6 responsible for the Mcl-1 up-regulation was further investigated. In Hep3B cells, the JAK/STAT3, ERK, and PI 3-K/Akt pathways were activated by IL-6 stimulation. Blocking JAK/STAT3 activation with a dominant-negative mutant STAT3F or a JAK inhibitor AG490 could not influence IL-6-mediated Mcl-1 up-regulation. Similarly, PD98059 treatment, a MEK specific inhibitor, also failed to inhibit Mcl-1 expression. However, the IL-6-induced Mcl-1 up-regulation was effectively attenuated in the presence of PI 3-K inhibitors, LY294002 and wortmannin. Expression of dominant-negative Akt, but not Etk, could abrogate the IL-6-induced increase of Mcl-1. In conclusion, our results suggest that the anti-apoptotic effect of IL-6 is mediated, at least in part, by Mcl-1 expression and that is mainly through the PI 3-K/ Akt-dependent pathway.  相似文献   

5.
包含Src同源2结构域的蛋白酪氨酸磷酸酶2(Src homology region 2-containing protein tyrosine phosphatase 2,SHP2)是目前唯一被证实具有促癌作用的细胞质蛋白酪氨酸磷酸酶,在多种恶性肿瘤中高表达。SHP2可以通过介导受体酪氨酸激酶(Receptor tyrosine kinase,RTK)下游的RAS/ERK、PI3K/Akt和JAK/STAT等信号通路促进肿瘤发生发展,影响肿瘤预后。同时,SHP2参与调控PD-1/PD-L1、CTLA-4、BLTA和TIGIT等免疫检查点信号通路,对于肿瘤微环境中各种免疫细胞都有重要的调节作用。靶向SHP2不仅可以通过抑制RTK下游信号通路,还可以通过改善免疫微环境治疗恶性肿瘤。因此,SHP2具有免疫与靶向双重治疗肿瘤的功能,作为抗肿瘤治疗的靶点展现出极高的潜能与价值。  相似文献   

6.
Liu H  Xu J  Zhou L  Yun X  Chen L  Wang S  Sun L  Wen Y  Gu J 《Cancer research》2011,71(24):7547-7557
Of the three envelope glycoproteins encoded by hepatitis B virus (HBV) that are collectively referred to as HBV surface antigen (HBsAg), the large HBsAg (LHBs) glycoprotein is expressed preferentially in HBV-associated hepatocellular carcinoma. LHBs can act as an oncogene in transgenic mice, but how it contributes functionally to hepatocarcinogenesis remains unclear. In this study, we determined the molecular and functional roles of LHBs during HBV-associated hepatocarcinogenesis. LHBs increased tumor formation of hepatoma cells. Moreover, expression of LHBs but not other HBV envelope glycoproteins specifically promoted proliferation of hepatoma and hepatic cells in vitro. Mechanistic investigations revealed that these effects were caused by activation of the Src/PI3K/Akt pathway through proximal stimulation of PKCα/Raf1 signaling by LHBs. Proliferation induced by stable LHBs expression was associated with increased G(1)-S cell-cycle progression and apoptosis resistance mediated by Src kinase activation, as established in hepatocellular carcinoma clinical specimens. Importantly, LHBs-induced cellular proliferation and tumor formation were reversed by administration of the Src inhibitor saracatinib. Together, our findings suggest that LHBs promotes tumorigenesis of hepatoma cells by triggering a PKCα/Raf1 to Src/PI3K/Akt signaling pathway, revealing novel insights into the underlying mechanisms of HBV-associated hepatocarcinogenesis.  相似文献   

7.
8.
Cytokine-dependent activation of distinct signaling pathways is a common scheme thought to be required for the subsequent programmation into cell proliferation and survival. The PI 3-kinase/Akt, Ras/MAP kinase, Ras/NFIL3 and JAK/STAT pathways have been shown to participate in cytokine mediated suppression of apoptosis in various cell types. However the relative importance of these signaling pathways seems to depend on the cellular context. In several cases, individual inhibition of each pathway is not sufficient to completely abrogate cytokine mediated cell survival suggesting that cooperation between these pathways is required. Here we showed that individual inhibition of STAT5, PI 3-kinase or MEK activities did not or weakly affected the IL-3 dependent survival of the bone marrow derived Ba/F3 cell line. However, the simultaneous inhibition of STAT5 and PI 3-kinase activities but not that of STAT5 and MEK reduced the IL-3 dependent survival of Ba/F3. Analysis of the expression of the Bcl-2 members indicated that phosphorylation of Bad and Bcl-x expression which are respectively regulated by the PI 3-kinase/Akt pathway and STAT5 probably explain this cooperation. Furthermore, we showed by co-immunoprecipitation studies and pull down experiments with fusion proteins encoding the GST-SH2 domains of p85 that STAT5 in its phosphorylated form interacts with the p85 subunit of the PI 3-kinase. These results indicate that the activations of STAT5 and the PI 3-kinase by IL-3 in Ba/F3 cells are tightly connected and cooperate to mediate IL-3-dependent suppression of apoptosis by modulating Bad phosphorylation and Bcl-x expression.  相似文献   

9.
10.
STAT3 is persistently activated and contributes to malignant progression in various cancers. Janus activated kinases (JAK) phosphorylate STAT3 in response to stimulation by cytokines or growth factors. The STAT3 signaling pathway has been validated as a promising target for development of anticancer therapeutics. Small-molecule inhibitors of JAK/STAT3 signaling represent potential molecular-targeted cancer therapeutic agents. In this study, we investigated the role of JAK/STAT3 signaling in 6-bromoindirubin-3'-oxime (6BIO)-mediated growth inhibition of human melanoma cells and assessed 6BIO as a potential anticancer drug candidate. We found that 6BIO is a pan-JAK inhibitor that induces apoptosis of human melanoma cells. 6BIO directly inhibited JAK-family kinase activity, both in vitro and in cancer cells. Apoptosis of human melanoma cells induced by 6BIO was associated with reduced phosphorylation of JAKs and STAT3 in both dose- and time-dependent manners. Consistent with inhibition of STAT3 signaling, expression of the antiapoptotic protein Mcl-1 was downregulated. In contrast to the decreased levels of phosphorylation of JAKs and STAT3, phosphorylation levels of the Akt and mitogen-activated protein kinase (MAPK) signaling proteins were not inhibited in cells treated with 6BIO. Importantly, 6BIO suppressed tumor growth in vivo with low toxicity in a mouse xenograft model of melanoma. Taken together, these results show that 6BIO is a novel pan-JAK inhibitor that can selectively inhibit STAT3 signaling and induces tumor cell apoptosis. Our findings support further development of 6BIO as a potential anticancer therapeutic agent that targets JAK/STAT3 signaling in tumor cells.  相似文献   

11.
目的:探究PTPRJ基因表达对前列腺癌DU145细胞黏附、迁移和侵袭的影响以及可能的调控机制。方法:实时荧光定量PCR、Western blot检测PTPRJ在前列腺肿瘤组织和细胞系中的表达;用携带PTPRJ特异shRNA的重组慢病毒(LV-shPTPRJ)感染沉默PTPRJ表达;MTT检测细胞黏附力,Transwell检测细胞迁移和侵袭;实时荧光定量PCR、Western blot检测信号通路分子mRNA和蛋白表达。结果:与正常前列腺组织和细胞相比,PTPRJ在前列腺肿瘤组织和PC-3、DU145细胞系中表达升高(P<0.05);与对照组相比,沉默PTPRJ后前列腺癌DU145细胞黏附、迁移和侵袭能力显著下降(P<0.01)、信号通路蛋白pY418Src、p-PI3K和p-Akt表达水平均显著降低(P<0.05);SC79激活PI3K/Akt可逆转PTPRJ下调对DU145细胞黏附和侵袭的影响;沉默PTPRJ下调裸鼠瘤体组织中pY418Src、p-PI3K和p-Akt表达(P<0.05)。结论:PTPRJ可能通过激活Src/PI3K/Akt信号通路来促进DU145细胞的黏附、迁移和侵袭,预示PTPRJ可能成为前列腺癌治疗的潜在靶点。  相似文献   

12.
13.
In order to block peritoneal metastasis of pancreatic cancer cells, we have attempted to block the signal transduction pathway involving hyaluronan (HA), Src, phosphoinositide 3-kinase (PI3K) and Akt. We examined the effects of Src, PI3K and Akt inhibitors on pancreatic cancer cell motility, invasion and metastasis. The pancreatic cancer cell line SW1990, known to cause peritoneal metastasis efficiently in nude mice, was used in this study. SW1990 cells were stimulated by HA to induce Akt phosphorylation. Then, the inhibitory effects of PI3K and Src kinase inhibitors were examined. Cell motility and cell migration assays were adopted to assess the cancer cell motility and its migration capability. We also examined the therapeutic efficacies of PI3K inhibitor wortmannin on peritoneal metastasis of SW1990 cells in the nude mouse model. Stimulation of SW1990 cells by HA markedly induced the Src-PI3K-Akt signaling, thus enhancing cancer cell motility and its migration. Significantly, we found that wortmannin could exert marked inhibition of the peritoneal metastasis of SW1990 in nude mice in vivo . These findings indicate that the PI3K-Akt signaling pathway plays an essential role in peritoneal metastasis and PI3K inhibitors such as wortmannin can be novel modalities to prevent peritoneal metastasis of invasive cancers such as pancreatic cancer. ( Cancer Sci 2009; 100: 770–777)  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号