首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To perform dynamic cell co-culture on micropatterned areas, we have developed a new type of “on chip and in situ” micropatterning technique. The microchip is composed of a 200 μm thick PDMS (polydimethylsiloxane) chamber at the top of which are located 100 μm thick microstamps. The PDMS chamber is bonded to a glass slide. After sterilization and cell adhesion processes, a controlled force is applied on the top of the PDMS chamber. Mechanically, the microstamps come into contact of the cells. Due to the applied force, the cells located under the microstamps are crushed. Then, a microfluidic perfusion is applied to rinse the microchip and remove the detached cells. To demonstrate the potential of this technique, it was applied successfully to mouse fibroblasts (Swiss 3T3) and liver hepatocarcinoma (HepG2/C3a) cell lines. Micropatterned areas were arrays of octagons of 150, 300 and 500 μm mean diameter. The force was applied during 30 to 60s depending on the cell types. After cell crushing, when perfusion was applied, the cells could successfully grow over the patterned areas. Cultures were successfully performed during 72 h of perfusion. In addition, monolayers of HepG2/C3a were micropatterned and then co cultured with mouse fibroblasts. Numerical simulations have demonstrated that the presence of the microstamps at the top of the PDMS chamber create non uniform flow and shear stress applied on the cells. Once fabricated, the main advantage of this technique is the possibility to use the same microchip several times for cell micropatterning and microfluidic co-cultures. This protocol avoids complex and numerous microfabrication steps that are usually required for micropatterning and microfluidic cell culture in the same time.  相似文献   

2.
Atherosclerosis is triggered by chronic inflammation of arterial endothelial cells (ECs). Because atherosclerosis develops preferentially in regions where blood flow is disturbed and where ECs have a cuboidal morphology, the interplay between EC shape and mechanotransduction events is of primary interest. In this work we present a simple microfluidic device to study relationships between cell shape and EC response to fluid shear stress. Adhesive micropatterns are used to non-invasively control EC elongation and orientation at both the monolayer and single cell levels. The micropatterned substrate is coupled to a microfluidic chamber that allows precise control of the flow field, high-resolution live-cell imaging during flow experiments, and in situ immunostaining. Using micro particle image velocimetry, we show that cells within the chamber alter the local flow field so that the shear stress on the cell surface is significantly higher than the wall shear stress in regions containing no cells. In response to flow, we observe the formation of lamellipodia in the downstream portion of the EC and cell retraction in the upstream portion. We quantify flow-induced calcium mobilization at the single cell level for cells cultured on unpatterned surfaces or on adhesive lines oriented either parallel or orthogonal to the flow. Finally, we demonstrate flow-induced intracellular calcium waves and show that the direction of propagation of these waves is determined by cell polarization rather than by the flow direction. The combined versatility and simplicity of this microfluidic device renders it very useful for studying relationships between EC shape and mechanosensitivity.  相似文献   

3.
After oral intake of drugs, drugs go through the first pass metabolism in the gut and the liver, which greatly affects the final outcome of the drugs’ efficacy and side effects. The first pass metabolism is a complex process involving the gut and the liver tissue, with transport and reaction occurring simultaneously at various locations, which makes it difficult to be reproduced in vitro with conventional cell culture systems. In an effort to tackle this challenge, here we have developed a microfluidic gut-liver chip that can reproduce the dynamics of the first pass metabolism. The microfluidic chip consists of two separate layers for gut epithelial cells (Caco-2) and the liver cells (HepG2), and is designed so that drugs go through a sequential absorption in the gut chamber and metabolic reaction in the liver chamber. We fabricated the chip and showed that the two different cell lines can be successfully co-cultured on chip. When the two cells are cultured on chip, changes in the physiological function of Caco-2 and HepG2 cells were noted. The cytochrome P450 metabolic activity of both cells were significantly enhanced, and the absorptive property of Caco-2 cells on chip also changed in response to the presence of flow. Finally, first pass metabolism of a flavonoid, apigenin, was evaluated as a model compound, and co-culture of gut and liver cells on chip resulted in a metabolic profile that is closer to the reported profile than a monoculture of gut cells. This microfluidic gut-liver chip can potentially be a useful platform to study the complex first pass metabolism of drugs in vitro.  相似文献   

4.
目的建立体外应力培养系统,观察应力刺激对骨种子细胞成骨分化的影响。方法选择具有明确成骨分化潜能的间充质干细胞(MSCs)作为种子细胞,以脱细胞骨基质为支架材料,以流体切应力作为对种子细胞的体外应力刺激。建立一种骨种子细胞体外三维应力培养系统——流动腔灌流体系,并利用该系统对MSCs的碱性磷酸酶(ALP)活性和骨钙素产物的影响进行评价。结果该系统可以明显促进ALP活性和骨钙素产物的表达,而细胞计数无明显改变。结论本系统为骨组织工程研究提供了一种有效的体外培养模型。  相似文献   

5.
In order to study possible toxic side effects of potential drug compounds in vitro a reliable test system is needed. Predicting liver toxicity presents a major challenge of particular importance as liver cells grown in a cell culture suffer from a rapid loss of their liver specific functions. Therefore we are developing a new microfluidic test system for liver toxicity. This test system is based on an organ-like liver 3D co-culture of hepatocytes and endothelial cells. We devised a microfluidic chip featuring cell culture chambers with integrated electrodes for the assembly of liver sinusoids by dielectrophoresis. Fluid channels enable an organ-like perfusion with culture media and test compounds. Different chamber designs were studied and optimized with regard to dielectrophoretic force distribution, hydrodynamic flow profile, and cell trapping rate using numeric simulations. Based on simulation results a microchip was injection-moulded from COP. This chip allowed the assembly of viable hepatocytes and endothelial cells in a sinusoid-like fashion.  相似文献   

6.
Microfluidic cell adhesion assays have emerged as a means to increase throughput as well as reduce the amount of costly reagents. However as dimensions of the flow chamber are reduced and approach the diameter of a cell (Dc), theoretical models have predicted that mechanical stress, force, and torque on a cell will be amplified. We fabricated a series of microfluidic devices that have a constant width:height ratio (10:1) but with varying heights. The smallest microfluidic device (200 μm ×20 μm) requires perfusion rates as low as 40 nL/min to generate wall shear stresses of 0.5 dynes/cm2. When neutrophils were perfused through P-selectin coated chambers at equivalent wall shear stress, rolling velocities decreased by approximately 70 % as the ratio of cell diameter to chamber height (Dc/H) increased from 0.08 (H?=?100 μm) to 0.40 (H?=?20 μm). Three-dimensional numerical simulations of neutrophil rolling in channels of different heights showed a similar trend. Complementary studies with PSGL-1 coated microspheres and paraformaldehyde-fixed neutrophils suggested that changes in rolling velocity were related to cell deformability. Using interference reflection microscopy, we observed increases in neutrophil contact area with increasing chamber height (9–33 %) and increasing wall shear stress (28–56 %). Our results suggest that rolling velocity is dependent not only on wall shear stress but also on the shear stress gradient experienced by the rolling cell. These results point to the Dc/H ratio as an important design parameter of leukocyte microfluidic assays, and should be applicable to rolling assays that involve other cell types such as platelets or cancer cells.  相似文献   

7.
细胞迁移是指细胞朝着特定的化学浓度梯度发生定向迁移运动,其在胚胎发育、伤口愈合、肿瘤转移中发挥着至关重要的作用。当前研究手段大多通量低,难以综合考虑不同浓度梯度条件对细胞迁移行为的影响。针对上述问题,本文首先设计了一款四通道微流控芯片,其特征如下:借助层流和扩散机制在细胞迁移主通道中建立和维持浓度梯度;可在单一显微镜视野下同时观测四组细胞迁移现象;集成了宽度为20μm的细胞隔离带,可校准细胞初始位置,保证实验结果的准确性。随后,借助Comsol Multiphysics有限元分析软件完成了微流控芯片的仿真分析,证明了芯片上设计S型微通道和水平压力平衡通道有助于在细胞迁移主通道中形成稳定的浓度梯度。最后,采用不同浓度(0、0.2、0.5、1.0μmol·L-1)与糖尿病及其并发症密切相关的晚期糖基化终末产物(AGEs)孵育中性粒细胞,研究了其在100 nmol·L-1趋化因子fMLP浓度梯度环境中的迁移行为。结果表明,AGEs抑制了中性粒细胞的迁移能力,证明了四通道微流控芯片的可靠性和实用性。  相似文献   

8.
目的 设计微流控芯片分离全血中胎儿有核红细胞(fetal nucleated red blood cell, fNRBCs),实现有核红细胞的快速便捷获取。方法 利用有核细胞在血流作用下的边集效应以及细胞抗原抗体特异性黏附特点,设计微管流控芯片,分离全血中的fNRBCs。以脐血全血为例,通过免疫荧光计数,分析不同剪切率对fNRBCs富集效果的影响。结果 相较于简单静置黏附,增加剪切率可以增加直微管黏附有核红细胞的数量,细胞的富集效果随血流剪切率的增大先增大后减小。结论 利用直微管能够实现fNRBCs的全血快速有效捕获。研究结果 为无创产前诊断的发展以及胎儿细胞转移机制的探究提供实验参考。  相似文献   

9.
Neural network formation is a complex process involving axon outgrowth and guidance. Axon guidance is facilitated by structural and molecular cues from the surrounding microenvironment. Micro-fabrication techniques can be employed to produce microfluidic chips with a highly controlled microenvironment for neural cells enabling longitudinal studies of complex processes associated with network formation. In this work, we demonstrate a novel open microfluidic chip design that encompasses a freely variable number of nodes interconnected by axon-permissible tunnels, enabling structuring of multi-nodal neural networks in vitro. The chip employs a partially open design to allow high level of control and reproducibility of cell seeding, while reducing shear stress on the cells. We show that by culturing dorsal root ganglion cells (DRGs) in our microfluidic chip, we were able to structure a neural network in vitro. These neurons were compartmentalized within six nodes interconnected through axon growth tunnels. Furthermore, we demonstrate the additional benefit of open top design by establishing a 3D neural culture in matrigel and a neuronal aggregate 3D culture within the chips. In conclusion, our results demonstrate a novel microfluidic chip design applicable to structuring complex neural networks in vitro, thus providing a versatile, highly relevant platform for the study of neural network dynamics applicable to developmental and regenerative neuroscience.  相似文献   

10.
The design and use of a perfusion system, using a modified flow chamber for studies on cultured animal cells, is described. Rat thoracic aorta smooth muscle cells were isolated by an explant method and grown on Thermanox coverslips. These were introduced into the flow chamber. A flow rate of 25ml/min and a shear stress of 14.6 dynes/cm2 (12 dyne = 10 microN) (both within physiological limits) were maintained. Cells remained attached to the coverslips after 8h of perfusion with culture medium. The effect of exposing rat smooth muscle cells to the cardiovascular toxin, allylamine, is also described. The components of the system are routinely available, simple to clean, easy to assemble and sterilize. The incorporation of an in-line sensor that monitors pH, PO2, PCO2 and temperature ensures that the perfusion conditions remain within physiological limits. Automation means that minimal supervision is required. This system provides a potential mechanism in which cultured vascular cells may be perfused under controlled haemodynamic conditions, and their response to a cytotoxin may be evaluated.  相似文献   

11.
To study the effect of disturbed flow patterns on endothelial cells, the channels found within a modular tissue engineering construct were reproduced in a microfluidic chip and lined with endothelial cells whose resulting phenotype under flow was assessed using confocal microscopy. Modular tissue engineered constructs formed by the random packing of sub-millimetre, cylindrically shaped, endothelial cell-covered modules into a larger container creates interconnected channels that permit the flow of fluids such as blood. Due to the random packing, the flow path is tortuous and has the potential to create disturbed flow, resulting in an activated endothelium. At an average shear stress of 2.8 dyn cm 2, endothelial cells within channels of varying geometries showed higher amounts of activation, as evidenced by an increase in ICAM-1 and VCAM-1 levels with respect to static controls. VE-cadherin expression also increased, however, it appeared discontinuous around the perimeter of the cells. An increase in flow (15.6 dyn cm 2) was sufficient to reduce ICAM-1 and VCAM-1 expression to a level below that of static controls for many disturbed flow-prone channels that contained branches, curves, expansions and contractions. VE-cadherin expression was also reduced and became discontinuous in all channels, possibly due to paracrine signaling. Other than showing a mild correlation to VE-cadherin, which may be linked through a cAMP-initiated pathway, KLF2 was found to be largely independent of shear stress for this system. To gauge the adhesiveness of the endothelium to leukocytes, THP-1 cells were introduced into flow-conditioned channels and their attachment measured. Relative to static controls, THP-1 adhesion was reduced in straight and bifurcating channels. However, even in the presence of flow, areas where multiple channels converged were found to be the most prone to THP-1 attachment. The microfluidic system enabled a full analysis of the effect of the tortuous flow expected in a modular construct on endothelial cell phenotype.  相似文献   

12.
Within the liver, non-parenchymal cells (NPCs) are critically involved in the regulation of hepatocyte polarization and maintenance of metabolic function. We here report the establishment of a liver organoid that integrates NPCs in a vascular layer composed of endothelial cells and tissue macrophages and a hepatic layer comprising stellate cells co-cultured with hepatocytes. The three-dimensional liver organoid is embedded in a microfluidically perfused biochip that enables sufficient nutrition supply and resembles morphological aspects of the human liver sinusoid. It utilizes a suspended membrane as a cell substrate mimicking the space of Disse. Luminescence-based sensor spots were integrated into the chip to allow online measurement of cellular oxygen consumption. Application of microfluidic flow induces defined expression of ZO-1, transferrin, ASGPR-1 along with an increased expression of MRP-2 transporter protein within the liver organoids. Moreover, perfusion was accompanied by an increased hepatobiliary secretion of 5(6)-carboxy-2′,7′-dichlorofluorescein and an enhanced formation of hepatocyte microvilli. From this we conclude that the perfused liver organoid shares relevant morphological and functional characteristics with the human liver and represents a new in vitro research tool to study human hepatocellular physiology at the cellular level under conditions close to the physiological situation.  相似文献   

13.
Study of osteoblastic cells in a microfluidic environment   总被引:10,自引:0,他引:10  
Bone tissue engineering consists of culturing osteoblastic cells onto synthetic three-dimensional (3D) porous scaffolds. The organization of bone cells into 3D scaffolds is crucial for ex vivo tissue formation. Diffusional rates of nutrients could be greatly improved by perfusing media through the 3D microporous scaffolds. However, bone cells cultured in vitro are responsive to a variety of different mechanical signals including fluid flow and shear stresses. In this work, we attempt to study osteoblastic cells behaviour cultured within microdevices allowing continuous and homogenous feeding of cells. We have fabricated polydimethylsiloxane PDMS microdevices with a 3D microstructured channel network. Mouse calvarial osteoblastic cells MC3T3-E1 were seeded at 2x10(6)cells/ml and cultured into the microdevices under flow rates of 0, 5, 35 microl/min. Cells attached and proliferated well in the designed microdevices. Cell viability was found around 85% up to 1 to 2 weeks for shear stress value under 5 mPa. The alkaline phosphatase (ALP) activity was enhanced 3- and 7.5-fold inside the microdevices under static and dynamic flow of 5 microl/min as compared to flat static cultures in PDMS coated Petri dishes. Therefore, osteoblastic cells could be successfully cultured inside the microdevices under dynamic conditions and their ALP activity was enhanced. These results are promising for bone cell growth and differentiation as well as future tissue regeneration using larger 3D microfluidic microdevices.  相似文献   

14.
L Xia  T Arooz  S Zhang  X Tuo  G Xiao  TA Susanto  J Sundararajan  T Cheng  Y Kang  HJ Poh  HL Leo  H Yu 《Biomaterials》2012,33(32):7925-7932
Bioartificial liver (BAL) system is promising as an alternative treatment for liver failure. We have developed a bioreactor with stacked sandwich culture plates for the application of BAL. This bioreactor design addresses some of the persistent problems in flat-bed bioreactors through increasing cell packing capacity, eliminating dead flow, regulating shear stress, and facilitating the scalability of the bioreactor unit. The bioreactor contained a stack of twelve double-sandwich-culture plates, allowing 100 million hepatocytes to be housed in a single cylindrical bioreactor unit (7?cm of height and 5.5?cm of inner diameter). The serial flow perfusion through the bioreactor increased cell-fluid contact area for effective mass exchange. With the optimal perfusion flow rate, shear stress was minimized to achieve high and uniform cell viabilities across different plates in the bioreactor. Our results demonstrated that hepatocytes cultured in the bioreactor could re-establish cell polarity and maintain liver-specific functions (e.g. albumin and urea synthesis, phase I&II metabolism functions) for seven days. The single bioreactor unit can be readily scaled up to house adequate number of functional hepatocytes for BAL development.  相似文献   

15.
The ability to culture cells in three dimensional extracellular matrix (3D ECM) has proven to be an important tool for laboratory biology. Here, we demonstrate a microfluidic perfusion array on a 96-well plate format capable of long term 3D ECM culture within biomimetic microchambers. The array consists of 32 independent flow units, each with a 4 μl open-top culture chamber, and 350 μl inlet and outlet wells. Perfusion is generated using gravity and surface tension forces, allowing the array to be operated without any external pumps. MCF-10A mammary epithelial cells cultured in Matrigel in the microfluidic array exhibit acinus morphology over 9 days consistent with previous literature. We further demonstrated the application of the microfluidic array for in vitro anti-cancer drug screening.  相似文献   

16.
Kan P  Miyoshi H  Ohshima N 《Tissue engineering》2004,10(9-10):1297-1307
To develop a feasible perfusion-type bioartificial liver device, perfusion of hepatocyte-nonparenchymal cell (NPC) cocultures with medium supplemented with hepatocyte growth factor (HGF) and heparin-binding epidermal growth factor-like growth factor (HB-EGF) was carried out. On day 1 of culture, perfusion at a constant shear stress of 1.3 dyn/cm2 enhanced ammonia metabolic and urea synthetic activities of hepatocytes. These enhanced activities were sustained up to day 7 only when growth factors were present. In contrast, no beneficial effects of growth factors on these activities were observed in static cultures. In perfusion cultures, three-dimensional cell aggregates were formed. On the surface of these aggregates, flattened cell layers composed mainly of NPCs were found, and the central cluster of cell aggregates was composed of round-shaped hepatocytes and reticulin fibrils. These observations strongly suggested that the reconstruction of different types of liver cells and connective tissues formed tissue-mimicking cell aggregates in the perfusion culture that was able to modulate the liver-specific functions of hepatocytes. Thus, perfusion culture conditions of the hepatocyte--NPC coculture system should be appropriately designed to induce suitable reconstruction of the cultured cells for use as a bioartificial liver device.  相似文献   

17.
We present the fabrication, characterization and cell culture results of a microfluidic device for generating steep gradient interfaces of small molecules (<1 kDa) across cell culture with no convective shear stresses applied to the cells. We use a novel streamline of two fluids to generate stable and uniform gradient interfaces/boundaries by confronting one fluid with the other. We separate a gradient generation channel and a cell culture channel by a polyester membrane so that viscous shear stress by the bottom channel flow does not convectively disturb the chemical environment of cultured cells seeded on the membrane in the top channel. Using two-component dyes to characterize the steepness of the diffusional interface, we demonstrate 50 μm wide steps for about 400 Da molecules. Using BCECF, a 689 Da pH-sensitive diffusible dye which is actively taken up by living cells, we demonstrate gradient boundaries narrower than five cell diameters in HeLa culture. We also demonstrate steep gradients of pH across cells in the same device. This work should be of interest to researchers attempting to generate gradients of small, rapidly diffusing molecules for studies in cellular differentiation and signaling. Figure Generating steep, shear-free gradients of small molecules for cell culture  相似文献   

18.
This study reports a microfluidic cell culture chip consisting of 48 microbioreactors for high-throughput perfusion 3-dimensional (3-D) cell culture-based assays. Its advantages include the capability for multiplexed and backflow-free medium delivery, and both efficient and high-throughput micro-scale, 3-D cell culture construct loading. In this work, the microfluidic cell culture chip is fabricated using two major processes, specifically, a computer-numerical-controlled (CNC) mold machining process and a polydimethylsiloxane (PDMS) replication process. The chip is composed of micropumps, microbioreactors, connecting microchannels and a cell/agarose scaffold loading mechanism. The performance of the new pneumatic micropumps and the cell/agarose scaffold loading mechanism has been experimentally evaluated. The experimental results show that this proposed multiplexed medium-pumping design is able to provide a uniform pumping rate ranging from 1.5 to 298.3 μl hr−1 without any fluid backflow and the resultant medium contamination. In addition, the simple cell/agarose loading method has been proven to be able to load the 3-D cell culture construct uniformly and efficiently in all 48 microbioreactors investigated. Furthermore, a micro-scale, perfusion, 3-D cell culture-based assay has been successfully demonstrated using this proposed cell culture chip. The experimental results are also compared to a similar evaluation using a conventional static 3-D cell culture with a larger scale culture. It is concluded that the choice of a cell culture format can influence assay results. As a whole, because of the inherent advantages of a miniaturized perfusion 3-D cell culture assay, the cell culture chip not only can provide a stable, well-defined and more biologically-meaningful culture environment, but it also features a low consumption of research resources. Moreover, due to the integrated medium pumping mechanism and the simple cell/agarose loading method, this chip is economical and time efficient. All of these traits are particularly useful for high-precision and high-throughput 3-D cell culture-based assays.  相似文献   

19.
具有梯度的流体切应力促进血管内皮细胞增殖   总被引:1,自引:0,他引:1  
目的探讨流体切应力(shear stress,SS)对血管内支架边缘内皮细胞(endothelial cells,ECs)增殖的影响。方法应用具有切应力梯度的平行平板流动腔(梯度切应力组)和普通矩形平行平板流动腔(恒定切应力组),分别对ECs施加0.566 ̄1.438Pa和1.137Pa的切应力,加载时间6h,以未施加切应力的ECs为静止对照组。流式细胞仪检测各组ECs细胞周期的变化。结果梯度切应力组ECs在受力6h后进入S期与G2+M期细胞明显多于静止对照组与稳定切应力组(P<0.05);恒定切应力组的ECs受力后进入S期与G2+M期细胞明显少于其他两组(P<0.05)。结论梯度切应力促进ECs进入分裂增殖期,而稳定的层流切应力则产生对ECs细胞周期的抑制作用。提示血管内支架植入后,继发的血流切应力改变诱导细胞进入分裂、增殖期,这可能是引起支架内再狭窄过程中血管内膜增生的原因之一。  相似文献   

20.
Physiological models have demonstrated that cells undergo a cyclic regimen of hydrostatic compression and fluid shear stress within the lacunar-canalicular porosity of bone. A new modular bioreactor was designed to incorporate both perfusion fluid flow and hydrostatic compression in an effort to more accurately simulate the mechanical loading and stress found in natural bone in vivo. The bioreactor design incorporated custom and off-the-shelf components to produce levels of mechanical stimuli relevant to the physiologic range, including hydrostatic compression exceeding 300 kPa and perfusion shear stress of 0.7 dyne/cm2. Preliminary findings indicated that the novel system facilitated the viable growth of cells on discrete tissue engineering scaffolds. The bioreactor has established an experimental platform for ongoing investigation of the interactive effect of perfusion fluid flow and hydrostatic compression on multiple cell types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号