首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ventral tegmental area (VTA) GABA neurons appear to be critical regulators of mesocorticolimbic dopamine (DA) neurotransmission, which has been implicated in alcohol reward. The aim of this study was to evaluate the effects of low-dose “non-contingent” intravenous (IV) ethanol (0.01-0.1 g/kg) on VTA GABA neuron firing rate and synaptic responses, as well as VTA GABA neuron firing rate during low-dose “contingent” IV ethanol self-administration. Intravenous administration of 0.01-0.03 g/kg ethanol significantly increased VTA GABA neuron firing rate and afferent-evoked synaptic responses. In the runway self-administration paradigm, presentation of an olfactory cue (S+; almond extract) or no-cue (S−; no odor) in the Start box was paired with IV administration of low-dose ethanol (0.01 g/kg) or saline in the Target box. Runway excursion times decreased significantly in association during S+, and increased significantly during S− conditions. The firing rate of VTA GABA neurons markedly increased when rats received 0.01 g/kg IV ethanol in the Target box. VTA GABA neuron firing increased in the Start box of the runway in association with S+, but not S−. These findings demonstrate that VTA GABA neurons are activated by low-dose IV ethanol and that their firing rate increases in anticipation of ethanol reward.  相似文献   

2.
Tobacco use is a major public health problem. Nicotine acts on widely distributed nicotinic acetylcholine receptors (nAChRs) in the brain and excites dopamine (DA) neurons in the ventral tegmental area (VTA). The elicited increase of DA neuronal activity is thought to be an important mechanism for nicotine reward and subsequently the transition to addiction. However, the current understanding of nicotine reward is based predominantly on the data accumulated from in vitro studies, often from VTA slices. Isolated VTA slices artificially terminate communications between neurons in the VTA and other brain regions that may significantly alter nicotinic effects. Consequently, the mechanisms of nicotinic excitation of VTA DA neurons under in vivo conditions have received only limited attention. Building upon the existing knowledge acquired in vitro, it is now time to elucidate the integrated mechanisms of nicotinic reward on intact systems that are more relevant to understanding the action of nicotine or other addictive drugs. In this review, we summarize recent studies that demonstrate the impact of prefrontal cortex (PFC) on the modulation of VTA DA neuronal function and nicotine reward. Based on existing evidence, we propose a new hypothesis that PFC–VTA functional coupling serves as an integration mechanism for nicotine reward. Moreover, addiction may develop due to nicotine perturbing the PFC–VTA coupling and thereby eliminating the PFC-dependent cognitive control over behavior.  相似文献   

3.
Zhang D  Yang S  Yang C  Jin G  Zhen X 《Psychopharmacology》2008,199(4):625-635
RATIONALE: Sex differences in cocaine abuse have been well documented. However, the underlying mechanism remains unclear. OBJECTIVES: To explore the potential role of ovarian hormones in the regulation of dopamine (DA) neuron firing activity in ventral tegmental area (VTA) induced by acute cocaine in intact female or ovariectomized (OVX) rats. RESULTS: The basal firing activity of VTA DA neurons was changed in a manner phase-locked to the estrous cycle: being highest in estrus and lowest in proestrus. Acute cocaine produced greater inhibition (P < 0.05) on the firing of VTA DA neurons during proestrus than during estrus. The inhibitory effect was completely blocked by OVX and restored by replacement of 17-beta-estradiol or, to a less extent, by replacement of progesterone. In addition, we also detected female hormone-associated changes in slow oscillation in VTA DA neurons. The results indicate that ovarian hormones, particularly estrogen, not only synergize with the inhibitory effect of cocaine on VTA DA neuron activity but also play an essential role in maintaining the sensitivity of DA neurons to cocaine-mediated inhibition on firing. Moreover, pretreatment of estrogen receptor (ER) antagonist raloxifene or a selective ERalpha antagonist Y134 largely attenuated the cocaine-inhibited DA neuron firing. We also found that cocaine-induced locomotor activity was estrous cycle dependent; 17-beta-estradiol but not progesterone replacement restored the cocaine-induced locomotor activity in OVX rats. CONCLUSION: The present results demonstrated that ovarian hormones, particularly estrogen, produce profound effect on VTA DA neuron activity, which, in turn, may contribute to the sex differences in response to psychostimulants.  相似文献   

4.
The rostromedial tegmental nucleus (RMTg), a structure located just posterior to the ventral tegmental area (VTA), is an important site involved in aversion processes. The RMTg contains γ-aminobutyric acid neurons responding to noxious stimuli, densely innervated by the lateral habenula and providing a major inhibitory projection to reward-encoding dopamine (DA) neurons in the VTA. Here, we studied how RMTg neurons regulate both spontaneous firing of DA cells and their response to the cannabinoid agonist WIN55212-2 (WIN), morphine, cocaine, and nicotine. We utilized single-unit extracellular recordings in anesthetized rats and whole-cell patch clamp recordings in brain slices to study RMTg-induced inhibition of DA cells and inhibitory postsynaptic currents (IPSCs) evoked by stimulation of caudal afferents, respectively. The electrical stimulation of the RMTg elicited a complete suppression of spontaneous activity in approximately half of the DA neurons examined. RMTg-induced inhibition correlated with firing rate and pattern of DA neurons and with their response to a noxious stimulus, highlighting that inhibitory inputs from the RMTg strongly control spontaneous activity of DA cells. Both morphine and WIN depressed RMTg-induced inhibition of DA neurons in vivo and IPSCs evoked by RMTg stimulation in brain slices with presynaptic mechanisms. Conversely, neither cocaine nor nicotine modulated DA neuron responses to RMTg stimulation. Our results further support the role of the RMTg as one of the main inhibitory afferents to DA cells and suggest that cannabinoids and opioids might disinhibit DA neurons by profoundly influencing synaptic responses evoked by RMTg activation.  相似文献   

5.
Kynurenic acid (KYNA) is an endogenous NMDA receptor antagonist as well as a blocker of the α7* nicotinic receptor and mounting evidence suggests that the compound participates in the pathophysiology of schizophrenia. Previous studies have shown that elevated levels of endogenous KYNA are associated with an increased firing of midbrain dopamine (DA) neurons. In the present study, utilizing extracellular single unit cell recording techniques, the mechanism involved in this excitatory action of the compound was analyzed in male Sprague–Dawley rats. Administration of 4-chlorokynurenine (4-Cl-KYN; 25 mg/kg, i.p.), which is converted to the selective NMDA glycine-site antagonist 7-chloro-kynurenic acid (7-Cl-KYNA), was found to increase firing rate and per cent burst firing activity of ventral tegmental area (VTA) DA neurons to the same magnitude as pretreatment of kynurenine (causing a 25-fold elevation in extracellular brain KYNA). Intravenous administration of the selective antagonist at the α7* nicotinic receptor methyllycaconitine (MLA; 1–4 mg/kg) did not affect firing of VTA DA neurons, whereas intraperitoneal administration of this drug in a high dose (6 mg/kg) was associated with a decreased firing rate and per cent burst firing activity. Administration of SDZ 220-581 (10 mg/kg, i.v.), a competitive antagonist at the glutamate recognition-site of the NMDA receptor, was found to increase firing rate and per cent burst firing. Present results have potential implications for the treatment of schizophrenia, and indicate that the increased activity of VTA DA neurons following elevation of brain KYNA is mediated through glutamatergic rather than by nicotinergic mechanisms.  相似文献   

6.
Previous work demonstrates the fundamental role of the firing pattern, specifically the burst firing mode of midbrain dopamine (DA) neurons in the regulation of DA release. Spontaneous burst firing has been shown to be dependent upon NMDA receptor activation of the DA cells. In addition to NMDA receptors, previous studies have reported that also GABA(B) receptors modulate the firing pattern of DA neurons in the substantia nigra. In the present electrophysiological study the role of GABA(B) receptors in the modulation of the firing pattern of DA neurons in the ventral tegmental area (VTA) in anaesthetised Sprague-Dawley rats was analysed. Systemic administration of the selective and potent GABA(B) receptor agonist baclofen dose-dependently reduced firing rate and burst firing in VTA DA neurons. An increase in the regularity of DA cell firing was also observed. All these effects were effectively antagonized by administration of the selective GABA(B) antagonist CGP 35348 (100 mg/kg or 200 mg/kg, i.v.). Administration of CGP 35348 (400 mg/kg, i.v.) per se was associated with a long-lasting increase in burst firing activity. The effects of systemic administration of baclofen, alone or in combination with CGP 35348, on the firing rate were largely mimicked by local microiontophoretic application of the drugs onto the DA neurons.Our findings indicate that central GABA(B) receptors may contribute to control of the burst firing mode of VTA DA neurons. Physiologically, activation of GABA(B) receptors may subserve a dampening function on VTA DA cell excitability which may counterbalance NMDA receptor-mediated excitation.  相似文献   

7.
Nicotine, the major psychoactive agent present in tobacco, acts as a potent addictive drug both in humans and laboratory animals, whose locomotor activity is also stimulated. A large body of evidence indicates that the locomotor activation and the reinforcing effects of nicotine may be related to its stimulatory effects on the mesolimbic dopaminergic function. Thus, it is now well established that nicotine can increase in vivo DA outflow in the nucleus accumbens and the corpus striatum. The stimulatory effect of nicotine on DA release most probably results from its ability to excite the neuronal firing rate and to increase the bursting activity of DA neurons in the substantia nigra pars compacta (SNc) and the ventral tegmental area (VTA), and from its stimulatory action on DA terminals in the corpus striatum and the nucleus accumbens. The neurochemical data are consistent with neuroanatomical findings showing the presence of nicotinic acetylcholine receptors (nAChRs) in the SNc, the VTA, and in projection areas of the central dopaminergic system such as the corpus striatum and the nucleus accumbens. Several lines of evidence indicate that the reinforcing properties of drugs of abuse, including nicotine, can be affected by a number of transmitter systems which may act by modulating central dopaminergic function. In this paper, the neurobiological mechanisms underlying nicotine addiction will be reviewed, and the possible strategies for new pharmacological treatments of nicotine dependence will be examined.  相似文献   

8.
Chronic cocaine administration leads to catecholamine reuptake inhibition which enhances reward and motivational behaviors. Ventral Tegmental Area dopaminergic (VTA DA) neuronal firing is associated with changes in reward predictive signals. Acute cocaine injections inhibit putative VTA DA cell firing in vertebrates. Parthenolide, a compound isolated from the feverfew plant (Tanacetum parthenium), has been shown to substantially inhibit cocaine's locomotion effects in a planarian animal model (Pagán et al., 2008). Here we investigated the effects of parthenolide on the spontaneous firing activity of putative VTA DA neurons in anesthetized male rats (250-300g). Single-unit recordings were analyzed after intravenous (i.v.) parthenolide administration followed by 1mg/kg i.v. cocaine injection. Results showed that parthenolide at 0.125 mg/kg and 0.250mg/kg significantly blocked cocaine's inhibitory effect on DA neuronal firing rate and bursting activity (p< 0.05, two way ANOVA). We propose that parthenolide might inhibit cocaine's effects on VTA DA neurons via its interaction with a common binding site at monoamine transporters. It is suggested that parthenolide could have a potential use as an overdose antidote or therapeutic agent to cocaine intoxication.  相似文献   

9.
Burst firing of dopaminergic neurons has been found to represent a particularly effective means of increasing dopamine release in terminal areas as well as activating immediate early genes in dopaminoceptive cells. Spontaneous burst firing is largely controlled by the level of activation of NMDA receptors in the ventral tegmental area (VTA) as a consequence of glutamate released from afferents arising mainly in the prefrontal cortex. Nicotine has been found to effectively increase burst firing of dopaminergic cells. This effect of nicotine may be due to an alpha 7 nicotinic receptor-mediated presynaptic facilitation of glutamate release in the VTA. By the use of in-vivo single-cell recordings and immunohistochemistry we here evaluated the role of alpha 7 nicotinic receptors in nicotine-induced burst firing of dopamine cells in the VTA and the subsequent activation of immediate early genes in dopaminoceptive target areas. Nicotine (0.5 mg/kg s.c.) was found to increase firing rate and burst firing of dopaminergic neurons. In the presence of methyllycaconitine (MLA, 6.0 mg/kg i.p.) nicotine only increased firing rate. Moreover, in the presence of dihydro-beta-erythroidine (DH beta E, 1.0 mg/kg i.p.), an antagonist at non-alpha 7 nicotinic receptors, nicotine produced an increase in burst firing without increasing the firing rate. Nicotine also increased Fos-like immunoreactivity in dopamine target areas, an effect that was antagonized with MLA but not with DH beta E. Our data suggest that nicotine's augmenting effect on burst firing is, indeed, due to stimulation of alpha 7 nicotinic receptors whereas other nicotinic receptors seem to induce an increase in firing frequency.  相似文献   

10.
Nicotine is reinforcing because it activates dopaminergic (DAergic) neurons within the ventral tegmental area (VTA) of the brain's mesocorticolimbic reward circuitry. This increase in activity can occur for a period of several minutes up to an hour and is thought to be a critical component of nicotine dependence. However, nicotine concentrations that are routinely self-administered by smokers are predicted to desensitize high-affinity α4β2 neuronal nicotinic acetylcholine receptors (nAChRs) in seconds. Thus, how physiologically relevant nicotine concentrations persistently activate VTA DAergic neurons is unknown. Here we show that nicotine can directly and robustly increase the firing frequency of VTA DAergic neurons for several minutes. In mouse midbrain slices, 300 nM nicotine elicited a persistent inward current in VTA DAergic neurons that was blocked by α-conotoxin MII[H9A;L15A], a selective antagonist of nAChRs containing the α6 subunit. α-conotoxin MII[H9A;L15A] also significantly reduced the long-lasting increase in DAergic neuronal activity produced by low concentrations of nicotine. In addition, nicotine failed to significantly activate VTA DAergic neurons in mice that did not express either α4 or α6 nAChR subunits. Conversely, selective activation of nAChRs containing the α4 subunit in knock-in mice expressing a hypersensitive version of these receptors yielded a biphasic response to nicotine consisting of an acute desensitizing increase in firing frequency followed by a sustained increase that lasted several minutes and was sensitive to α-conotoxin MII[H9A;L15A]. These data indicate that nicotine persistently activates VTA DAergic neurons via nAChRs containing α4 and α6 subunits.  相似文献   

11.
Introduction: The central dopaminergic system is involved in the pathophysiology of several neuropsychiatric disorders. Intracerebral microdialysis and electrophysiology provide two powerful techniques to investigate dopamine (DA) function and the mechanism of action of psychotropic drugs in vivo. Methods: Here, we developed a protocol allowing the combined measurement of neurochemical and electrical activities of the nigrostriatal and mesoaccumbens DA pathways, by coupling in vivo microdialysis and electrophysiology in the same isoflurane-anesthetized animal. DA neuron firing rate and burst firing were measured in the substantia nigra pars compacta (SNc) and the ventral tegmental area (VTA), whereas extracellular levels of DA and its main metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) were monitored in the striatum and the nucleus accumbens (NAc). The validity of the protocol was assessed using various drugs known to modify DA neuron activity in vivo. Results: The peripheral administration of the DA-D2 agonist quinpirole decreased SNc DA neuron firing rate and burst firing, as well as DA and DOPAC outflow in the rat striatum. Opposite effects were observed after the peripheral administration of the DA-D2 antagonist haloperidol. In rats and mice, the peripheral administration of cocaine elicited a decrease in VTA DA neuron firing rate and burst firing, and an increase in accumbal DA outflow, paralleled by a reduction in DOPAC outflow. Discussion: The obtained results, confirming previous electrophysiological and microdialysis studies, demonstrate that this protocol provides a suitable method for the study of DA neuron function and the mechanism of action of psychotropic drugs in the living brain of both rats and mice.  相似文献   

12.
Stress is well known to affect responsiveness to drugs of abuse and influencing approaching and drug-taking behaviour in both animals and humans. Consistently, in nicotine addicted subjects both negative events and perceived stress levels are reported to increase drug use and facilitate relapse to smoke even after long periods of abstinence. It has been suggested that stressful stimuli may influence the rewarding properties of abused drugs by acting on the dopaminergic mesolimbic system. In line with this hypothesis, a recent microdialysis study in rats has shown that acute restraint stress exposure prevents the nicotine-induced mesolimbic dopaminergic activation in the nucleus accumbens (NAC) shell via a corticosterone-mediated mechanism. In the present study we sought to evaluate the impact of acute restraint stress on nicotine-induced activation of the mesoaccumbal dopaminergic system by extracellular single unit recordings of antidromically-identified NAC shell projecting dopaminergic neurons within the ventral tegmental area (VTA). Nicotine intravenous administration dose-dependently (0.05–0.4 mg/kg) stimulated the spontaneous firing and bursting of mesoaccumbal dopaminergic neurons in unstressed rats, as previously reported. By contrast, nicotine failed to increase mesoaccumbal dopaminergic neuron activity in rats previously exposed to 1-h immobilisation stress. Our observations show that acute restraint stress inhibits the response of the mesoaccumbal dopaminergic system to the stimulating properties of nicotine. These findings corroborate the notion that stress reduces the sensitivity to nicotine and suggest that the decreased dopaminergic release in the NAC shell is due to a reduced firing and bursting activity in the VTA.  相似文献   

13.
Aberrant dopamine (DA) signaling has been advanced as a contributing factor to the pathophysiology of a number of psychiatric conditions including schizophrenia; however, the many factors involved in regulating DA system responsivity have not been completely delineated to date. We have shown previously that DA neuron activity states are independently regulated by distinct afferent pathways. We now provide evidence that these pathways interact to control the population of neurons that are phasically activated. As shown previously, infusions of NMDA into the ventral subiculum (vSub) increases the number of spontaneously active DA neurons (population activity), while having no effect on firing rate or average bursting activity. In contrast, NMDA activation of the pedunculopontine tegmental nucleus (PPTg) results in a significant increase in DA neuron burst firing without significantly affecting population activity. However, simultaneous excitation of the vSub and PPTg induces a significant increase in both DA neuron population activity and burst firing resulting in a approximately 4-fold increase in the number of high-bursting neurons observed per electrode track. These data suggest that DA neuron population activity is not simply associated with the tonic release of DA in forebrain regions, but rather represents a recruitable pool of DA neurons that can be further modulated by excitatory inputs to induce a graded phasic response. Taken as a whole, we propose that the synchronous activity of distinct afferent inputs to the VTA phasically activates selective populations of DA neurons, and hence may be a site of pathological regulation underlying aberrant DA signaling.  相似文献   

14.
A growing body of evidence suggests that structural changes in the cortex may disrupt dopaminergic transmission in circuits involving the prefrontal cortex (PFC) and may contribute to the etiology of schizophrenia. In this study, we utilize a rodent model of neonatal disruption of cortical development using prenatal administration of the mitotoxin methylazoxymethanol acetate (MAM). Using intracellular recordings in vivo, we compare the physiology of prefrontal cortical neurons and their responses to topical administration of dopamine (DA) in intact animals and adult rats treated prenatally with MAM. Topical administration of DA hyperpolarized the membrane potential (MP) and decreased the firing rate of neurons recorded in deep layers of the PFC in intact animals. Furthermore, electrical stimulation of the VTA evoked fast onset epsps or long-lasting depolarizations in PFC neurons. In comparison, PFC neurons recorded in MAM-treated animals had significantly faster baseline firing rates. Moreover, topical administration of DA did not affect the MP or firing rate of the neurons in MAM-treated animals. However, MAM-treated animals exhibited an increase in the percentage of neurons responding with long-lasting depolarizations to stimulation of the VTA. The results of this study indicate that PFC neurons in the MAM-treated rats are not responsive to DA administered superficially, while at the same time exhibit greater responsiveness to VTA stimulation. These results are consistent with a rewiring of the corticolimbic system in response to neurodevelopmental insults.  相似文献   

15.
Previous electrophysiological studies have demonstrated that non-dopaminergic (non-DA) neurons within the substantia nigra pars reticulata (SNR) are extremely sensitive to the inhibitory effects of GABA and GABA-mimetic drugs, including benzodiazepines, whereas dopaminergic (DA) neurons in the substantia nigra pars compacta (SNC) are less sensitive to these compounds and may be influenced indirectly by SNR neurons. The interactions between A10 DA and non-DA neurons within the adjacent ventral tegmental area (VTA) are not as well characterized. In the present experiments, single unit recording and microiontophoretic techniques were used to determine the effects of benzodiazepines on DA and non-DA neurons in the VTA of chloral hydrate anesthetized rats. Diazepam, administered intravenously (i.v.), potently inhibited non-DA, SNR-like cells within the VTA. The effects of diazepam on A10 DA cells were more variable than those observed on non-DA, SNR-like cells in this region, but 77% of such cells showed moderate to marked excitation. Both of these effects were reversed by the benzodiazepine antagonist Ro 15-1788; on many cells, this agent produced marked rebound effects beyond the original basal firing rates. However, when administered alone, Ro 15-1788 exerted no effect on either cell population. Microiontophoretic administration of the benzodiazepines chlordiazepoxide and flurazepam resulted in marked inhibition of non-DA SNR-like cells, but produced either mild inhibition or no effect on A10 DA cells; excitation of DA cells was never observed even though the same neuron was excited by i.v. diazepam. These findings suggest that benzodiazepines act directly upon non-DA, SNR-like cells in the VTA to produce inhibition of activity and a disinhibition of A10 DA cells. This relationship makes it unlikely that benzodiazepines would enhance feedback inhibition of DA cells following neuroleptic administration. In fact, when administered following haloperidol, i.v. diazepam failed to reverse haloperidol-induced increases of A10 DA cell firing; if anything, diazepam further depolarized the cell. If antipsychotic drugs produce their clinical effects, in part, by inducing depolarization inactivation of DA cells, then benzodiazepines might be a useful adjunctive therapy in the treatment of schizophrenia.  相似文献   

16.
Stress during adolescence is a risk factor for neuropsychiatric diseases, including schizophrenia. We recently observed that peripubertal male rats exposed to a combination of daily footshock plus restraint stress exhibited schizophrenia-like changes. However, numerous studies have shown sex differences in neuropsychiatric diseases as well as on the impact of coping with stress. Thus, we decided to evaluate, in adolescent female rats, the impact of different stressors (restraint stress [RS], footshock [FS], or the combination of FS and RS [FS+RS]) on social interaction (3-chamber social approach test/SAT), anxiety responses (elevated plus-maze/EPM), cognitive function (novel object recognition test/NOR), and dopamine (DA) system responsivity by evaluating locomotor response to amphetamine and in vivo extracellular single unit recordings of DA neurons in the ventral tegmental area (VTA) in adulthood. The impact of FS+RS during early adulthood was also investigated. Adolescent stress had no impact on social behavior, anxiety, cognition and locomotor response to amphetamine. In addition, adolescent stress did not induce long-lasting changes in VTA DA system activity. However, a decrease in the firing rate of VTA DA neurons was found 1–2 weeks post-adolescent stress. Similar to adolescent stress, adult stress did not induce long-lasting behavioral deficits and changes in VTA DA system activity, but FS+RS decreased VTA DA neuron population activity 1–2 weeks post-adult stress. Our results are consistent with previous studies showing that female rodents appear to be more resilient to developmental stress-induced persistent changes than males and may contribute to the delayed onset and lesser severity of schizophrenia in females.  相似文献   

17.
Nicotine prominently mediates the behavioral effects of tobacco consumption, either through smoking or when taking tobacco by snuff or chew. However, many studies question the exclusive role of nicotine in these effects. The use of preparations containing all the components of tobacco, such as tobacco and smoke extracts, may be more suitable than nicotine alone to investigate the behavioral effects of smoking and tobacco intake. In the present study, the electrophysiological effects of tobacco and smoke on ventral tegmental area dopaminergic (DA) neurons were examined in vivo in anesthetized wild-type (WT), β2-nicotinic acetylcholine receptor (nAChR) knockout (β2−/−), α4−/−, and α6−/− mice and compared with those of nicotine alone. In WT mice, smoke and nicotine had similar potentiating effects on DA cell activity, but the action of tobacco on neuronal firing was weak and often inhibitory. In particular, nicotine triggered strong bursting activity, whereas no bursting activity was observed after tobacco extract (ToE) administration. In β2−/− mice, nicotine or extract elicited no modification of the firing patterns of DA cells, indicating that extract acts predominantly through nAChRs. The differences between DA cell activation profiles induced by tobacco and nicotine alone observed in WT persisted in α6−/− mice but not in α4−/− mice. These results would suggest that tobacco has lower addiction-generating properties compared with either nicotine alone or smoke. The weak activation and prominent inhibition obtained with ToEs suggest that tobacco contains compounds that counteract some of the activating effects of nicotine and promote inhibition on DA cell acting through α4β2*-nAChRs. The nature of these compounds remains to be elucidated. It nevertheless confirms that nicotine is the main substance involved in the tobacco addiction-related activation of mesolimbic DA neurons.  相似文献   

18.
The alpha2 adrenoceptor (alpha2R) agonist clonidine is used as a treatment for heroin addiction. Substantial evidence indicates that dopaminergic and noradrenergic systems have key roles in opiate dependence and withdrawal but the possible interactions between these two pathways remain unclear. The objective of this study was to establish the effects of clonidine pretreatment on ventral tegmental area dopaminergic (VTA DA) neuronal activity during morphine withdrawal. Responses of VTA DA neurons to withdrawal precipitated by naltrexone were characterized in anesthetized rats using extracellular recordings. As expected, withdrawal produced a marked inhibition of VTA DA neuronal activity. However, pretreatment with clonidine prevented this inhibition induced by withdrawal, and instead produced a long-lasting activation of firing rate (+50%) and burst firing (+19%). In contrast, pretreatment with a more selective alpha2R agonist, UK14304, did not prevent the inhibition of VTA DA neuron activity during withdrawal. We tested whether the high affinity of clonidine for imidazoline-1 receptors (I1Rs) was responsible for the difference between these two alpha2R agonists. In morphine-dependent rats pretreated with rilmenidine (mixed alpha2R/I1R agonist), precipitation of withdrawal elicited a 22% increase of VTA DA impulse activity. The action of clonidine on I1Rs was studied by coadministering clonidine with RX821002, a specific alpha2R antagonist. Pretreatment with RX821002 plus clonidine prevented the inhibition of VTA DA activity during withdrawal but failed to produce excitation. These results indicate that the pharmacological effects of clonidine on VTA DA neurons during morphine withdrawal is related to actions on I1Rs as well as alpha2Rs.  相似文献   

19.
Electrophysiological techniques and in vivo microdialysis were used to investigate the effect of SB 242084, a potent and selective 5-HT2C receptor antagonist in the control of nigro-striatal and mesolimbic dopaminergic function. Thus, extracellular single unit recordings were performed from neurochemically-identified dopamine (DA) neurons in the substantia nigra, pars compacta (SNc) and the ventral tegmental area (VTA), as well as monitoring of striatal and accumbal basal DA release in anesthetized rats following the administration of SB 242084 and RO 60-0175. Administration of SB 242084 (160-640 microg/kg, i.v.) caused a dose-dependent increase in the basal firing rate of VTA DA neurons, reaching its maximum (27.8+/-6%, above baseline) after 640 microg/kg. Moreover, bursting activity was significantly enhanced by SB 242084 in the VTA. On the other hand, SB 242084 (160-640 microg/kg, i.v.) did not cause any significant change in the basal firing rate and bursting activity of DA neurons in the SNc. Injection of the 5-HT2C receptor agonist RO 60-0175 (80-320% microg/kg, i.v.) dose-dependently decreased the basal firing of DA neurons in the VTA but not in the SNc. RO 60-0175 exerted its maximal inhibitory effect (53.9+/-15.1%, below baseline) in the VTA at the dose of 320 microg/kg. Basal DA release (34.8+/-9%, above baseline) and dihydroxyphenylacetic acid (DOPAC) efflux (19.7+/-7%, above baseline) were significantly enhanced in the nucleus accumbens following the intraperitoneal administration of 10 mg/kg SB 242084. Intraperitoneal injection of 5 mg/kg SB 242084 significantly increased DA release (16.4+/-6%, above baseline) in the nucleus accumbens, but did not affect DOPAC efflux. In the striatum, SB 242084 (5 and 10 mg/kg, i.p.) only slightly increased DA release above baseline (3.5+/-4 and 11.2+/-6%, respectively), without affecting DOPAC efflux in this area. However, the effect of SB 242084 in the striatum was rendered more evident by the fact that injection of the vehicle used to dissolve the drug in a group of control rats, significantly reduced basal DA output by 19.6+/-7%. Stimulation of 5-HT2C receptors by RO 60-0175 (1 mg/kg, i.p.) significantly decreased DA release in the nucleus accumbens by 26.1+/-4% (below baseline) 60 min after injection. On the other hand, RO 60-0175 (1 mg/kg, i.p.) did not cause any significant change of DA release in the striatum. However, DOPAC efflux was reduced by RO 60-0175 (1 mg/kg, i.p.) both in the striatum and the nucleus accumbens. Taken together, these data indicate that the central 5-HT system exerts a tonic and phasic inhibitory control on mesolimbic DA neuron activity and that 5-HT2C receptor subtypes are involved in this effect. Moreover, these findings might open new possibilities for the employment of 5-HT2C receptor antagonists in the treatment of neuropsychiatric disorders related to a hypofunction of central DA neurons.  相似文献   

20.
Acetaldehyde increases dopaminergic neuronal activity in the VTA.   总被引:4,自引:0,他引:4  
Acetaldehyde is the first and principal metabolite of ethanol administered systemically. To its rise in blood, after administration of disulfiram, is ascribed the aversive reaction that should discourage alcoholics from drinking. In the present study, we sought to determine the effect of acetaldehyde on the electrophysiological properties of dopamine (DA)-containing neurons in the ventro tegmental area (VTA) of rats in vivo. Intravenous (i.v.) administration of acetaldehyde (5-40 mg/kg) readily and dose-dependently increased the firing rate, spikes/burst, and burst firing of VTA neurons. Ethanol (250-1000 mg/kg/i.v.) administration produced similar increments in electrophysiological parameters. In addition, a second group of rats was pretreated with the alcohol-dehydrogenase inhibitor 4-methyl-pyrazole (90 mg/kg) intraperitoneally (i.p.), and ethanol and acetaldehyde were administered i.v. at the same doses, 48 h later. In this group, ethanol effects were drastically reduced and the firing rate, spikes/burst, and burst firing were not significantly altered. In contrast, acetaldehyde fully retained its capacity to stimulate electrophysiological indices. The results indicate that acetaldehyde produces electrophysiological actions on VTA neurons in vivo, similar to those produced by ethanol, and significantly participate in ethanol-induced increment in DA neuronal activity. These results also suggest that acetaldehyde, by increasing DA neuronal activity in the VTA, may significantly contribute to the centrally mediated positive motivational properties of ethanol, which would oppose the well-known peripherally originating aversive properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号