首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vibrio cholerae (VC)-loaded microparticles were prepared using poly(DL lactide-co-glycolide) with a water-in-oil-in-water emulsion/solvent extraction technique. Particle characteristics including size distribution, VC-loading efficiencies, and in-vitro release pattern were investigated. The dispersed phase was PLG dissolved in dichloromethane, and the continuous phase was water containing PVP as a stabilizer with varied sodium chloride concentrations. VC was successfully entrapped in the microparticles with trapping efficiencies up to 97.8%, a loading level of 55.4 g/mg, and particle size of 3.8 microm. Using 10% w/v PVP with 5% w/v NaCl in the continuous phase resulted in a higher loading level (55.4 +/- 6.9 g/mg), loading efficiency (97.8%), core region content (25.7 +/- 1.9 g/mg) and lower surface content (6.2 +/- 0.9 g/mg) than without NaCl (loading content: 40.7 +/- 5.1 g/mg; loading efficiency 52.1%; core region content: 8.3 +/- 0.5 g/mg; surface content: 19.5 +/- 1.1 g/mg). A linear release profile from VC-loaded microparticles was found. A preliminary animal oral administration study indicated that the VC-loaded microparticles, as an oral delivery system, have shown effective immunogencity in rats for 2 months. The VC incorporation and physicochemical characterization data obtained in this study may be relevant in optimising the vaccine incorporation and delivery properties of these potential vaccine targeting carriers.  相似文献   

2.
An approach is proposed using Vibrio cholerae (VC)-loaded microparticles as oral vaccine delivery systems for improved vaccine bioavailability and increased therapeutic efficacy. The VC-loaded microparticles were prepared with 50:50 poly(DL-lactide-co-glycolide) (PLG), 75:25 poly(DL-lactide-co-glycolide) and poly(lactide acid) (PLA)/PEG blend copolymers by the solvent evaporation method. VC was successfully entrapped in three types of microparticles with loading efficiencies and loading levels as follows: 50:50 PLG systems: 97.8% and 55.4 +/- 6.9 micro g/mg; 75:25 PLG systems: 89.2% and 46.5 +/- 4.4 micro g/mg; PLA/PEG-blended systems: 82.6% and 53.7 +/- 5.8 micro g/mg. The different distributions of VC in the core region and on the surface were as follows: 50:50 PLG systems 25.7 +/- 1.9 and 6.2 +/- 0.9 micro g/mg; 75:25 PLG systems: 25.8 +/- 2.2 and 3.6 +/- 0.4 micro g/mg; PLA/PEG-blended systems: 32.4 +/- 2.1 and 5.2 +/- 1.0 micro g/mg, respectively. In vitro active release of VC was affected mainly by matrix type and VC-loaded location in microparticles. The therapeutic immunogenic potential of VC loaded with 50:50 PLG, 75:25 PLG and PLA/PEG-blended microparticles was evaluated in adult mice by oral immunization. Significantly higher antibody responses and serum immunoglobin Ig G, IgA and IgM responses were obtained when sera from both VC-loaded 75:25 PLG and PLA/PEG-blended microparticles immunized mice were titrated against VC. The most immunogenicity in evoking serum IgG, IgA and IgM responses was immunized by VC-loaded PLA/PEG-blended microparticles, and with VC challenge in mice, the survival rate (91.7%).  相似文献   

3.
An approach is proposed using Vibrio cholerae (VC)-loaded microparticles as oral vaccine delivery systems for improved vaccine bioavailability and increased therapeutic efficacy. The VC-loaded microparticles were prepared with 50:50 poly(DL-lactide-co-glycolide) (PLG), 75:25 poly(DL-lactide-co-glycolide) and poly(lactide acid) (PLA)/PEG blend copolymers by the solvent evaporation method. VC was successfully entrapped in three types of microparticles with loading efficiencies and loading levels as follows: 50:50 PLG systems: 97.8% and 55.4 ± 6.9 µg/mg; 75:25 PLG systems: 89.2% and 46.5 ± 4.4?µg/mg; PLA/PEG-blended systems: 82.6% and 53.7 ± 5.8?µg/mg. The different distributions of VC in the core region and on the surface were as follows: 50:50 PLG systems 25.7 ± 1.9 and 6.2 ± 0.9?µg/mg; 75:25 PLG systems: 25.8 ± 2.2 and 3.6 ± 0.4?µg/mg; PLA/PEG-blended systems: 32.4 ± 2.1 and 5.2 ± 1.0?µg/mg, respectively. In vitro active release of VC was affected mainly by matrix type and VC-loaded location in microparticles. The therapeutic immunogenic potential of VC loaded with 50:50 PLG, 75:25 PLG and PLA/PEG-blended microparticles was evaluated in adult mice by oral immunization. Significantly higher antibody responses and serum immunoglobin Ig G, IgA and IgM responses were obtained when sera from both VC-loaded 75:25 PLG and PLA/PEG-blended microparticles immunized mice were titrated against VC. The most immunogenicity in evoking serum IgG, IgA and IgM responses was immunized by VC-loaded PLA/PEG-blended microparticles, and with VC challenge in mice, the survival rate (91.7%).  相似文献   

4.
Patent Briefing     
Japanese encephalitis virus (JEV)-loaded poly(lactide) (PLA) lamellar and poly(DL-lactide-co-glycolide) (PLG) microparticles were successfully prepared with low molecular weight PLA by the precipitate method and with 6% w/v PLG in the organic phase, 10% w/v PVP and 5% w/v NaCl in the continuous phase, by using a water-in-oil-in-water emulsion/solvent extraction technique, respectively. JEV was entrapped in the PLG microparticles by a solvent extraction technique with trapping efficiencies up to 98%, loading level 5.5% w/w, and mean particle size 3.8 #181;m. The distribution (%) of JEV on the PLG microparticles surface, outer layer, and core were 11.2, 41.7 and 46.4%, respectively. The cumulative release of JEV had an upper limit of ~ 58% of the JEV load at 24 days. The steady release rate was 1.33 #181;g JEV/mg microparticles/day of JEV release maintained for 24 days. The corresponding virus loading of the PLA lamellae is ~ 0.78% w/w and the loading efficiency (77.8%), JEV content (7.84 #181;g/mg), and yield (96.3%), respectively. The distribution (%) of JEV on the microparticles surface, outer layer, and core were 82.1, 13.3 and 2.2%, respectively. The live JEV challenge in mice test, in which mice received one dose of 20 mg JEV-loaded PLG microparticles, 20 mg JEV-loaded PLA lamellar in comparison with JEV or PBS solution, was evaluated after IP immunization of BALB/c mice. The study results show that the greatest survival was observed in the group of mice immunized with 20 mg JEV-loaded PLG microparticles and 20 mg JEV-loaded PLA microparticles group (80%). The JEV incorporation, physicochemical characterization data, and the animal results obtained in this study may be relevant in optimizing the vaccine incorporation and delivery properties of these potential vaccine targeting carriers.  相似文献   

5.
Microparticles containing ovalbumin as a model protein drug were prepared using poly(L-lactide; PLA) with a water-in-oil-in-water emulsion/solvent evaporation technique. The dispersed phase was PLA dissolved in dichloromethane (DCM), and the continuous phase was water-containing polyvinyl pyrolidone (PVP) as stabilizer with sodium chloride. Microparticle characteristics, loading efficiencies, protein distribution in microparticles, and in-vitro release properties were investigated. The OVA leaking into the continuous phase during the formation of microparticle by DCM evaporation was also evaluated. Results show that OVA was successfully entrapped in the microparticles with trapping efficiencies up to 72%, loading level 8.7% w/v, and particle size 14 #181;m. The semi-solid suspension changes to a solid particle happened during a 10-min period. Total protein-leaking amount was reduced after addition of NaCl in the continuous aqueous phase, which resulted from reducing the solidification time and protein-leaking rate. Using 5% w/v NaCl in the continuous phase resulted in higher loading content (87.2 1.0 #181;g/mg), and loading efficiency (72.2%), which resulted from more protein in the deeper layer (50.2 2.3 #181;g/mg) and higher microparticle yield (75.2%) than without NaCl (loading content: 74.0 1.0 #181;g/mg; loading efficiency 51.8%; deeper layer content: 18.3 3.5 #181;g/mg; yield: 63.6%). These results constitute a step forward in the improvement of existing technology in controlling protein encapsulation and delivery from microparticles prepared by the multiple emulsion solvent evaporation method.  相似文献   

6.
Japanese encephalitis virus (JEV)-loaded poly(lactide) (PLA) lamellar and poly(DL-lactide-co-glycolide) (PLG) microparticles were successfully prepared with low molecular weight PLA by the precipitate method and with 6% w/v PLG in the organic phase, 10% w/v PVP and 5% w/v NaCl in the continuous phase, by using a water-in-oil-in-water emulsion/solvent extraction technique, respectively. JEV was entrapped in the PLG microparticles by a solvent extraction technique with trapping efficiencies up to 98%, loading level 5.5% w/w, and mean particle size 3.8 microm. The distribution (%) of JEV on the PLG microparticles surface, outer layer, and core were 11.2, 41.7 and 46.4%, respectively. The cumulative release of JEV had an upper limit of approximately 58% of the JEV load at 24 days. The steady release rate was 1.33 microg JEV/mg microparticles/day of JEV release maintained for 24 days. The corresponding virus loading of the PLA lamellae is approximately 0.78% w/w and the loading efficiency (77.8%), JEV content (7.84 microg/mg), and yield (96.3%), respectively. The distribution (%) of JEV on the microparticles surface, outer layer, and core were 82.1, 13.3 and 2.2%, respectively. The live JEV challenge in mice test, in which mice received one dose of 20 mg JEV-loaded PLG microparticles, 20 mg JEV-loaded PLA lamellar in comparison with JEV or PBS solution, was evaluated after IP immunization of BALB/c mice. The study results show that the greatest survival was observed in the group of mice immunized with 20 mg JEV-loaded PLG microparticles and 20 mg JEV-loaded PLA microparticles group (80%). The JEV incorporation, physicochemical characterization data, and the animal results obtained in this study may be relevant in optimizing the vaccine incorporation and delivery properties of these potential vaccine targeting carriers.  相似文献   

7.
Microparticles containing ovalbumin as a model protein drug were prepared using poly(L-lactide; PLA) with a water-in-oil-in-water emulsion/solvent evaporation technique. The dispersed phase was PLA dissolved in dichloromethane (DCM), and the continuous phase was water-containing polyvinyl pyrolidone (PVP) as stabilizer with sodium chloride. Microparticle characteristics, loading efficiencies, protein distribution in microparticles, and in-vitro release properties were investigated. The OVA leaking into the continuous phase during the formation of microparticle by DCM evaporation was also evaluated. Results show that OVA was successfully entrapped in the microparticles with trapping efficiencies up to 72%, loading level 8.7% w/v, and particle size 14 microm. The semi-solid suspension changes to a solid particle happened during a 10-min period. Total protein-leaking amount was reduced after addition of NaCl in the continuous aqueous phase, which resulted from reducing the solidification time and protein-leaking rate. Using 5% w/v NaCl in the continuous phase resulted in higher loading content (87.2 +/- 1.0 microg/mg), and loading efficiency (72.2%), which resulted from more protein in the deeper layer (50.2 +/- 2.3 microg/mg) and higher microparticle yield (75.2%) than without NaCl (loading content: 74.0 +/- 1.0 microg/mg; loading efficiency 51.8%; deeper layer content: 18.3 +/- 3.5 microg/mg; yield: 63.6%). These results constitute a step forward in the improvement of existing technology in controlling protein encapsulation and delivery from microparticles prepared by the multiple emulsion solvent evaporation method.  相似文献   

8.
Insulin-loaded poly(lactide) (PLA) microparticles were successfully prepared by 6% w/v PLA in the organic phase, 10% w/v PVP and varied types of 5%w/v electrolytes in the continuous phase, by using a water-in-oil-in-water emulsion/solvent extraction technique. Addition of electrolytes such as NaCl, CaCl2 into the external phase significantly improved insulin entrapment efficiency compared to the case of no additives. NaCl was the most effective for obtaining high entrapment efficiency, with microparticle yield 81.2%, trapping efficiencies 49%, insulin-loading level 5.5% w/w and mean particle size 14.8?µm. The distribution (%) of insulin on the PLA microparticles surface, outer layer and core were 8, 37 and 43%, respectively. The cumulative release of insulin had an upper limit of ~24% of the insulin load at 24 days. A steady release rate was 0.5?µg insulin/mg microparticles/day of insulin release maintained for 24 days. Total protein-leaking amount was reduced after addition of electrolytes in the continuous aqueous phase. Rabbit glucose levels were evaluated after subcutaneous 20?mg insulin-loaded PLA microparticles or PLA blank microparticles. Study results show that the insulin-loaded PLA microparticles significantly reduced the glucose level than PLA blank microparticles. The insulin-loaded PLA microparticles, physicochemical characterization data and the animal result obtained in this study may be relevant in optimizing the PLA microparticle formulation incorporation and delivery insulin carriers.  相似文献   

9.
Insulin-loaded poly(lactide) (PLA) microparticles were successfully prepared by 6% w/v PLA in the organic phase, 10% w/v PVP and varied types of 5%w/v electrolytes in the continuous phase, by using a water-in-oil-in-water emulsion/ solvent extraction technique. Addition of electrolytes such as NaCl, CaCl2 into the external phase significantly improved insulin entrapment efficiency compared to the case of no additives. NaCl was the most effective for obtaining high entrapment efficiency, with microparticle yield 81.2%, trapping efficiencies 49%, insulin-loading level 5.5% w/w and mean particle size 14.8 microm. The distribution (%) of insulin on the PLA microparticles surface, outer layer and core were 8, 37 and 43%, respectively. The cumulative release of insulin had an upper limit of approximately 24% of the insulin load at 24 days. A steady release rate was 0.5 microg insulin/mg microparticles/day of insulin release maintained for 24 days. Total protein-leaking amount was reduced after addition of electrolytes in the continuous aqueous phase. Rabbit glucose levels were evaluated after subcutaneous 20 mg insulin-loaded PLA microparticles or PLA blank microparticles. Study results show that the insulin-loaded PLA microparticles significantly reduced the glucose level than PLA blank microparticles. The insulin-loaded PLA microparticles, physicochemical characterization data and the animal result obtained in this study may be relevant in optimizing the PLA microparticle formulation incorporation and delivery insulin carriers.  相似文献   

10.
Microparticles containing 5-fluorouracil (5-FU) were prepared using poly(dllactide-co-glycolide) with an oil-in-oil emulsion/solvent extraction technique. Particle characteristics including size distribution, 5-FU loading efficiencies, in vitro release and degradation were investigated. The dispersed phase was composed of PLG dissolved in dichloromethane, and the continuous phase was paraffin oil containing lecithin. 5-FU was successfully entrapped in the microparticles with trapping efficiencies up to 76%, loading level 10% w/v, and particle size 3 µm. Release profiles of 5-FU loaded microparticles were determined to follow a first-order-time relationship. An optimized preparation of 5-FU microparticles was achieved and was capable of controlling the release of 5-FU over 21 days with an in vitro delivery rate of 0.4 µg 5-FU/mg particles/ day in the study. Preliminary animal studies indicated that the 5-FU loaded microparticles as an ocular delivery system showed no ocular toxicity and no significant inflammatory response in rabbits for 2 months. The 5-FU loaded microparticles approach, with PLG, might be a potential for the application of long-term delivery of hydrophilic drugs in the eye.  相似文献   

11.
Microparticles containing 5-fluorouracil (5-FU) were prepared using poly(DL-lactide-co-glycolide) with an oil-in-oil emulsion/solvent extraction technique. Particle characteristics including size distribution, 5-FU loading efficiencies, in vitro release and degradation were investigated. The dispersed phase was composed of PLG dissolved in dichloromethane, and the continuous phase was paraffin oil containing lecithin. 5-FU was successfully entrapped in the microparticles with trapping efficiencies up to 76%, loading level 10% w/v, and particle size 3 microm. Release profiles of 5-FU loaded microparticles were determined to follow a first-order-time relationship. An optimized preparation of 5-FU microparticles was achieved and was capable of controlling the release of 5-FU over 21 days with an in vitro delivery rate of 0.4 microg 5-FU/mg particles/day in the study. Preliminary animal studies indicated that the 5-FU loaded microparticles as an ocular delivery system showed no ocular toxicity and no significant inflammatory response in rabbits for 2 months. The 5-FU loaded microparticles approach, with PLG, might be a potential for the application of long-term delivery of hydrophilic drugs in the eye.  相似文献   

12.
Insulin-loaded microparticles were produced from blends of poly(ethylene glycol) (PEG) with poly (L-lactide) (PLA) homopolymer and poly (DL-lactide co-glycolide) copolymers (PLG) using a water-in-oil solvent extraction method. The dispersed phase was composed of PLG/PEG or PLA/PEG dissolved in dichloromethane, and the continuous phase was methanol containing 10% PVP. Characteristics, including particle size distribution, insulin loading capacity and efficiencies, in vitro release, degradation and stability, were investigated. The stability of insulin associated with microparticles prepared using PEG and 50:50 PLG and PLA was analysed by HPSEC and quantified by peak area following incubation in PBS at 37 degrees C for up to 1 month. Insulin was successfully entrapped in the PLG/PEG and PLA/PEG microparticles with trapping efficiencies up to 56 and 48%, loading levels 17.8 and 10.6% w/w, and particle sizes 8 and 3 microm, respectively. The insulin-loaded PLG/PEG and PLA/PEG microparticles were capable of controlling the release of insulin over 28 days with in vitro delivery rates of 0.94 and 0.65 microg insulin/mg particles/day in the first 4 days and a steady release with rate of 0.4 and 0.43 microg insulin/mg particles/day over the following 4 weeks, respectively. Extensive degradation of the PLG/PEG microparticles also occurred over 4 weeks, whereas the use of PLA/PEG blends resulted in a stable microparticle morphology and much reduced fragmentation and aggregation of the associated insulin.  相似文献   

13.
Zein has been proposed as a polymer for targeted-drug delivery via the oral route. Zein microparticles were loaded with prednisolone and evaluated as an oral delivery system. Microparticles were formulated using phase separation. Starting quantities of zein and prednisolone, along with the agitation method and temperature were found to significantly impact drug loading and loading efficiency. Vortex mixing produced the highest drug loading and loading efficiency. Drug release was measured in simulated conditions of the stomach and small intestine using the microparticles made with the method that best improved drug loading. In simulated stomach and small intestine conditions, prednisolone release reached almost 70% over 3 and 4?h, respectively. While a clinically relevant dose may be delivered using c. 100?mg of zein microparticles, prednisolone release from the microparticles indicates that they may not be suited as a controlled- or targeted-delivery system.  相似文献   

14.
Purpose. Microparticles containing ovalbumin as a model for protein drugs were formulated from blends of poly(DL lactide-co-glycolide) and poly(ethylene oxide)-poly(propylene oxide) copolymers (Pluronic). The objectives were to achieve uniform release characteristics and improved protein delivery capacity. Methods. The water- in oil -in oil emulsion/solvent extraction technique was used for microparticle production. Results. A protein loading level of over 40% (w/w) was attained in microparticles having a mean diameter of approximately 5 µm. Linear protein release profiles over 25 days in vitro were exhibited by certain blend formulations incorporating hydrophilic Pluronic F127. The release profile tended to plateau after 10 days when the more hydrophobic Pluronic L121 copolymer was used to prepare microparticles. A delivery capacity of 3 µg OVA/mg particles/ day was achieved by formulation of microparticles using a 1:2 blend of PLG:Pluronic F127. Conclusions. The w/o/o formulation approach in combination with PLG:Pluronic blends shows potential for improving the delivery of therapeutic proteins and peptides from microparticulate systems. Novel vaccine formulations are also feasible by incorporation of Pluronic L121 in the microparticles as a co-adjuvant.  相似文献   

15.
The chitosan only, chitosan/Pluronic F68, chitosan/gelatin, chitosan/Pluronic F68/gelatin microparticles and betamethasone-loaded chitosan/Pluronic F68/gelatin microparticles were successfully prepared by a spray-drying method. Microparticle characteristics (yield rate, zeta potential, particle size and tap density), loading efficiencies, microparticle morphology and in-vitro release properties were investigated. By properly choosing excipient type, concentration and varying the spray-drying parameters, a high degree of control was achieved over the physical properties of the dry chitosan powders. SEM micrograph shows that the particle sizes of the varied chitosan composed microparticles ranged from 2.12-5.67 microm and the external surfaces appear smooth. Using betamethasone as model drug, the spray-drying is a promising way to produce good spherical and smooth surface microparticles with a narrow particle size range for controlled delivery of betamethasone. The positively charged betamethasone-loaded microparticles entrapped in the chitosan/Pluronic F68/gelatin microparticles with trapping efficiencies up to 94.5%, yield rate 42.5% and mean particle size 5.64 microm varied between 4.32-6.20 microm and tap densities 0.128 g/cm(3). The pH of particle was increased with increasing betamethasone-loaded amount, but both zeta potential and tap density of the particles decreased with increasing betamethasone-loaded amount. The betamethasone release rates from chitosan/Pluronic F68/gelatin microparticles were influenced by the drug/polymer ratio in the manner that an increase in the release% and burst release% was observed when the drug loading was decreased. The in vitro release of betamethasone showed a dose-dependent burst followed by a slower release phase that was proportional to the drug concentration in the concentration range between 14-44%w/w.  相似文献   

16.
The objective of this study was to investigate the effect of poly(lactide-co-glycolide) (PLGA) molecular weight (Resomer RG 502H, RG 503H, and RG 504H) on the release behavior of dexamethasone sodium phosphate-loaded microparticles. The microparticles were prepared by three modifications of the solvent evaporation method (O/W-cosolvent, O/W-dispersion, and W/O/W-methods). The encapsulation efficiency of microparticles prepared by the cosolvent- and W/O/W-methods increased from approximately 50% to >90% upon addition of NaCl to the external aqueous phase, while the dispersion method resulted in lower encapsulation efficiencies. The release of dexamethasone sodium phosphate from PLGA microparticles (>50 microm) was biphasic. The initial burst release correlated well with the porosity of the microparticles, both of which increased with increasing polymer molecular weight (RG 504H > 503H > 502H). The burst was also dependent on the method of preparation and was in the order of dispersion method > WOW method > consolvent method. In contrast to the higher molecular weight PLGA microparticles, the release from RG 502H microparticles prepared by cosolvent method was not affected by volume of organic solvent (1.5-3.0 ml) and drug loading (4-13%). An initial burst of approximately 10% followed by a 5-week sustained release phase was obtained. Microparticles with a size <50 microm released in a triphasic manner; an initial burst was followed by a slow release phase and then by a second burst.  相似文献   

17.
Betamethasone (BTM)-loaded microparticles prepared by a spray drying method using chitosan (CTS) as raw material, type-A gelatin and ethylene oxide-propylene oxide block copolymer (Pluronic F68) as modifiers. The BTM-loaded in varied chitosan/Pluronic F68/gelatin microparticle formulations was investigated. By properly choosing excipient type and concentration a high degree of control was achieved over the physical properties of the BTM-loaded microparticles. Microparticle characteristics (zeta potential, tap density, particle size and yield), loading efficiencies, microparticle morphology and in-vitro release properties were examined. Surface morphological characteristics and surface charges of prepared microparticles were observed by using scanning electron microscopy (SEM) and microelectrophoresis. A SEM micrograph shows that the particle sizes of the varied chitosan composed microparticles ranged from 1.1-4.7 microm and the external surfaces appear smooth. The BTM-loaded microparticles entrapped in the chitosan/Pluronic F68/gelatin microparticles with trapping efficiencies up to 93%, collected yield rate 44%, and mean particle size varied between 1-3 microm, positive surface charge (20-40 mv), and tap densities (0.04-0.40 g/cm3) were obtained. The collected BTM yield and size of particle was increased with increasing BTM-loaded amount but both zeta potential and tap density of the particles decreased with increasing BTM-loaded amount. The in vitro release of BTM showed a dose-dependent burst followed by a slower release phase that was proportional to the drug concentration in the concentration range between 5-30%w/w. The in vitro drug release from the chitosan/Pluronic F68/gelatin 1/0.1/0.4 microspheres had a prolong release pattern. These formulation factors were correlated to particulate characteristics for optimizing BTM microspheres in pulmonary delivery.  相似文献   

18.
The effects of various amphiphilic polymers on the kinetics of protein release from reservoir-type microspheres, prepared by a solid-in-oil-in-water emulsion-solvent evaporation method, were investigated. Bovine serum albumin (BSA), as a model protein, was firstly micronized through co-lyophilization with amphiphilic polymers, such as poly (ethylene glycol) (PEG), polyvinylpyrrolidone (PVP), and pluronic F68. This process was based on the aqueous phase separation of protein and amphiphilic polymer induced by freezing-condensation. Mixing of poly(lactic-co-glycolic acid) (PLGA) and poly(lactic acid) (PLA) (at a ratio of 4:6) in a methylene chloride solution provided a'polymer-alloy' structure, where the preformed solid BSA microparticles were selectively distributed in the inner PLGA-rich phase. The reservoir-type microspheres obtained through this process showed high entrapment efficiencies (more than 85%) and reduced initial burst releases (less than 10%). Although PVP did not modify the BSA release profile, PEG and pluronic F68 enhanced the BSA release, with no increase of the initial burst effect, responding to their loading percentage: 3% loading of PEG or pluronic F68 resulted in typical zero-order release kinetics. The abilities of these amphiphilic polymers to modify the protein release profile could be predicted from their partitioning characteristics in the polymer-alloys and in the methylene chloride/water system.  相似文献   

19.
The purpose of this study was to evaluate ovalbumin (OVA) leakage pathways and to explore the mechanism of the surface-indented microparticle formation in the preparation of OVA-loaded microparticles. OVA-loaded poly (D,L-lactic-co-glycolic acid) (PLGA) microparticles were prepared by a water-in oil-in water (w/o/w) solvent evaporation method associated with varied NaCl (NaCl) concentrations and adjusted with urea at 1240mOsm kg(-1) in the external aqueous phase. To evaluate dichloromethane (DCM)-related OVA leakage, three stirring rates, 600, 800, 1000rpm at 25 degrees C were carried out during the solvent evaporation stage. Both DCM and OVA levels in the external phase medium and total dispersion were sampled and measured. The time course of particle characteristics was evaluated by microscopy or SEM photography. The surface adsorptive capacities of the prepared microparticles were measured by using bovine serum albumin conjugated with fluorescein isothiocyanate (FITC-BSA). The findings were that the DCM-related OVA leakage accounted for approximately 34%, of the total leakage. By combining NaCl in the external phase, a faster solidifying crust-like structure was formed as a barrier to remarkably reduce OVA loss and improve OVA content from 40.1 to 72.8 microg mg(-1). The yield and OVA content for formulations containing NaCl were much improved by the ionic effect, in addition to the osmotic effect. The total entrapment efficiency was also highly increased from 43 to 72%. The formations of the crust-like surface structure of the microparticle were affected by entrapped drugs, salt content in the external phase and aqueous volume in the inner phase. A scheme was proposed to interpret the formation mechanism of the surface-indented microparticles. In comparison to the surface-smooth microparticles, the surface adsorptive capacities of the surface-indented microparticles were highly improved from 26.6 to 87.0%, determined by the adsorption of FITC-BSA.  相似文献   

20.
Fenofibrate-loaded microparticles based on PVP/Eudragit E or HPMC/Eudragit E blends were prepared by spray-drying. The composition of the systems (in particular the polymer/polymer blend ratio and the drug loading) was varied and the resulting key properties were determined (including drug release measurements in 0.1 M HCl, X-ray diffraction studies, solubility measurements and particle size analysis). For reasons of comparison, also the respective physical drug/polymer/polymer mixtures, microparticles based on binary drug/PVP and drug/HPMC blends, the fenofibrate powder as received and a commercially available drug product were investigated. Importantly, highly supersaturated fenofibrate solutions were created upon exposure of the different types of microparticles to the release medium, in contrast to any reference formulation. Also, the presence of co-dissolved Eudragit E led to a significant increase in fenofibrate solubility. At 10 % drug loading, all microparticles were amorphous and drug release stable during one month open storage. However, at 30 % loading, HPMC containing microparticles showed storage instability, due to drug re-crystallization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号