首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gemcitabine is currently the best known chemotherapeutic option available for pancreatic cancer, but the tumor returns de novo with acquired resistance over time, which becomes a major issue for all gemcitabine-related chemotherapies. In this study, for the first time, we demonstrated that dihydroartemisinin (DHA) enhances gemcitabine-induced growth inhibition and apoptosis in both BxPC-3 and PANC-1 cell lines in vitro. The mechanism is at least partially due to DHA deactivates gemcitabine-induced NF-κB activation, so as to decrease tremendously the expression of its target gene products, such as c-myc, cyclin D1, Bcl-2, Bcl-xL. In our in vivo studies, gemcibabine also manifested remarkably enhanced anti-tumor effect when combined with DHA, as manifested by significantly increased apoptosis, as well as decreased Ki-67 index, NF-κB activity and its related gene products, and predictably, significantly reduced tumor volume. We concluded that inhibition of gemcitabine-induced NF-κB activation is one of the mechanisms that DHA dramatically promotes its anti-tumor effect on pancreatic cancer.  相似文献   

2.
Pancreatic adenocarcinoma is one of the most common malignancies worldwide. Gemcitabine is currently the standard first-line chemotherapeutic agent for pancreatic cancer. However, gemcitabine can induce activation of Akt and nuclear factor-κB (NF-κB), which is associated with its chemoresistance. It has been reported that gemcitabine combination therapies result in improved survival outcomes in pancreatic cancer. Therefore, agents that can either enhance the effects of gemcitabine or overcome chemoresistance to the drug are needed for the treatment of pancreatic cancer. Emodin is an active component of Chinese medicinal herbs and can inhibit the activation of Akt and NF-κB. In this study, we investigated whether emodin could enhance the anticancer effect of gemcitabine on pancreatic cancer in vivo. We demonstrated that treatment of gemcitabine combined with emodin efficiently suppressed tumor growth in mice inoculated with pancreatic tumor cells. This treatment paradigm promoted apoptotic cell death and mitochondrial fragmentation. Furthermore, it reduced phosphorylated-Akt (p-Akt) level, NF-κB activation and Bcl-2/Bax ratio, increased caspase-9 and -3 activation, Cytochrome C (CytC) release occurred in combination therapy. Collectively, emodin enhanced the activity of gemcitabine in tumor growth suppression via inhibition of Akt and NF-κB activation, thus promoting the mitochondrial-dependent apoptotic pathway. Therefore, our findings may provide new insights into understanding the pharmacological regulation of emodin on gemcitabine-mediated proapoptosis in pancreatic cancer and may aid in the design of new therapeutic strategies for the intervention of human pancreatic cancers.  相似文献   

3.

Background

Nuclear factor-κB (NF-κB) is constitutively activated in many cancers and plays a key role in promoting cell proliferation, survival, and invasion. Our understanding of NF-κB signaling in thyroid cancer, however, is limited. In this study, we have investigated the role of NF-κB signaling in thyroid cancer cell proliferation, invasion, and apoptosis using selective genetic inhibition of NF-κB in advanced thyroid cancer cell lines.

Results

Three pharmacologic inhibitors of NF-κB differentially inhibited growth in a panel of advanced thyroid cancer cell lines, suggesting that these NF-κB inhibitors may have off-target effects. We therefore used a selective genetic approach to inhibit NF-κB signaling by overexpression of a dominant-negative IκBα (mIκBα). These studies revealed decreased cell growth in only one of five thyroid cancer cell lines (8505C), which occurred through a block in the S-G2/M transition. Resistance to TNFα-induced apoptosis was observed in all cell lines, likely through an NF-κB-dependent mechanism. Inhibition of NF-κB by mIκBα sensitized a subset of cell lines to TNFα-induced apoptosis. Sensitive cell lines displayed sustained activation of the stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK) pathway, defining a potential mechanism of response. Finally, NF-κB inhibition by mIκBα expression differentially reduced thyroid cancer cell invasion in these thyroid cancer cell lines. Sensitive cell lines demonstrated approximately a two-fold decrease in invasion, which was associated with differential expression of MMP-13. MMP-9 was reduced by mIκBα expression in all cell lines tested.

Conclusions

These data indicate that selective inhibition of NF-κB represents an attractive therapeutic target for the treatment of advanced thyroid. However, it is apparent that global regulation of thyroid cancer cell growth and invasion is not achieved by NF-κB signaling alone. Instead, our findings suggest that other important molecular processes play a critical role in defining the extent of NF-κB function within cancer cells.  相似文献   

4.
Purpose Gemcitabine, a pyrimidine nucleoside, is approved for the treatment of non-small cell lung cancer, pancreatic carcinoma, and breast cancer. Chemotherapy regimens are determined experimentally with static tissue culture systems, animal models, and in Phase I clinical trials. The aim of this study was to assess for gemcitabine-induced cell death following infusion of drug under clinically-relevant conditions of infusion rate and drug exposure in an in vitro bioreactor system. Methods To estimate an appropriate harvest time for cells from the bioreactor after drug treatment, we estimated the temporal relationship between gemcitabine treatment for 1 h and cell death at a later time point with monolayer growth assays (i.e., static culture). Afterward, 5.3 mg gemcitabine was infused over 0.5 h in the bioreactor, followed by mono-exponential decay, simulating patient concentration–time profiles (n = 4). Controls were run with drug-free media (n = 4). Cells were harvested from the bioreactor at a later time point and assessed for cell death by flow cytometry. Results According to monolayer growth assay results, cytotoxicity became more apparent with increasing time. The E Max for cells 48 h after treatment was 50% and after 144 h, 93% (P = 0.022; t test), while flow cytometry showed complete DNA degradation by 120 h. Gemcitabine was infused in the bioreactor. The gemcitabine area under the concentration–time curve (AUC) was 56.4 μM h and the maximum concentration was 87.5 ± 2.65 μM. Flow cytometry results were as follows: the G1 fraction decreased from 65.1 ± 4.91 to 28.6 ± 12% (P = 0.005) and subG1 increased from 14.1 ± 5.28 to 42.6 ± 9.78% (P = 0.004) relative to control. An increase in apoptotic cells was observed by TUNEL assay. Conclusions The in vitro bioreactor system will be expanded to test additional cell lines, and will serve as a useful model system for assessing the role of drug pharmacokinetics in delivery of optimized anticancer treatment.  相似文献   

5.
Gemcitabine is a new standard chemotherapeutic agent used in the treatment of pancreatic cancer, but the mechanisms of gemcitabine sensitivity are still controversial. In our study to determine a mechanism that regulates gemcitabine sensitivity, we carried out molecular analysis on the susceptibility of the pancreatic cancer cells. Using a gemcitabine-sensitive pancreatic cancer cell line KLM1, we established a resistant cell line KLM1-R exhibiting a 20-fold IC50-value (the concentration of gemcitabine causing 50% growth inhibition). Microarray analysis of genes showed specific expression of selenoprotein P, one of the anti-oxidants, in the KLM1-R cell line but not in the KLM1 cell line. Administration of selenoprotein P inhibited the gemcitabine-induced cytotoxicity in the pancreatic cell lines. The levels of intracellular reactive oxygen species (ROS) were increased in the KLM1 cells by gemcitabine, but selenoprotein P suppressed the gemcitabine-induced ROS levels. Furthermore interferon-gamma suppressed the expression of selenoprotein P mRNA and increased intracellular ROS level, leading to the recovery of the gemcitabine sensitivity in KLM1-R. These results suggest a novel mechanism that selenoprotein P reduces the intracellular ROS levels, resulting in the insusceptibility to gemcitabine.  相似文献   

6.
NF-κB was shown previously to regulate apoptotic cell death processes in various experimental systems. However, its role in controlling teratogen-induced cell death has not been established yet. Therefore, the objective of the present study was to explore the involvement of the p65 subunit of NF-κB in the response of mouse embryonic fibroblasts (MEFs) to heat shock, using p65 knockout (p65?/?) cells. Indeed, we found p65?/? MEFs to be more susceptible to the exposure to heat shock, as compared with wild-type (WT) MEFs, as they demonstrated a more prominent decrease in cell survival and proliferation as well as the appearance of cells undergoing apoptotic cell death. These heat-shock-induced effects were preceded by a decrease in p65 expression in WT cells, which was accompanied by a decrease in IκBα expression in WT MEFs, while disappearing completely in p65?/? MEFs and accordingly, by an increase in p-IκBα expression in both cell lines, which was found to be more prominent in p65?/? MEFs. Interestingly, the heat shock-induced decrease in p65 expression was accompanied by an increase in HSP70 expression in both cell lines. However, it was again found to be more prominent in p65?/? MEFs. Taken together, our results suggest a protective role for the p65 subunit of NF-κB in mechanisms underlying the response of embryonic cells to heat shock.  相似文献   

7.
8.
Pancreatic cancer patients treated with gemcitabine (2',2'-difluorodeoxycytidine) can eventually develop resistance. Recently, published data from our laboratory demonstrated enhanced efficacy of gemcitabine with the dietary agent, indole-3-carbinol (I3C). The current study examined the possible mechanism for this I3C-enhanced efficacy. Several pancreatic cell lines (BxPC-3, Mia Paca-2, PL-45, AsPC-1 and PANC-1) were examined for modulation of human equilibrative nucleoside transporter 1 (hENT1) expression, the major transporter for gemcitabine, by I3C alone and combined with gemcitabine. I3C significantly (p<0.01) up-regulated hENT1 expression in several cell lines. Gemcitabine alone showed no effect on hENT1 expression. However, combining gemcitabine with I3C further increased hENT1 expression. Cell viability assays revealed no effect of I3C on normal cells, hTERT-HPNE. hENT1-specific inhibitor, nitrobenzylthioinosine, significantly abrogated I3C-induced gemcitabine cytotoxicity, further demonstrating its specificity. This study demonstrates that up-regulation of hENT1 expression may be a novel mechanism involved in the additive effect of I3C and gemcitabine.  相似文献   

9.
BACKGROUND: Gemcitabine is a pyrimidine nucleoside analog that is clinically active against pancreatic cancer. We have recently demonstrated that p38 MAPK is specifically activated by gemcitabine and that pharmacological blockade of p38 MAPK signaling prevented gemcitabine-induced apoptosis in human pancreatic cancer cells. In this study, we further investigated the implication of p38 MAPK in the cytotoxic action of gemcitabine. MATERIALS AND METHODS: Cells expressing a dominant-negative mutant of p38 MAPK were generated. Clonogenic assays were used to assess the long-term effect on cancer cell viability in the human pancreatic cancer cells, PK1 and PCI43. The p38 MAPK activation level was assessed using an antibody specific to the phosphorylated form. RESULTS: Gemcitabine increased the activation level of p38 MAPK in a dose-dependent manner and induced apoptosis in the two tested human pancreatic cancer cell lines. The selective p38 MAPK inhibitors, SB203580 and SB202190, reduced gemcitabine-induced activation of p38 MAPK, prevented the gemcitabine-induced apoptosis and increased long-term clonogenic survival. Overexpression of a dominant-negative p38 mutant in cells resulted in the reduction of gemcitabine-induced p38 MAPK activation and apoptosis, and increases in clonogenic survival. CONCLUSION: These results strongly suggest that the activation of p38 MAPK signaling is necessary for gemcitabine-induced cell death in human pancreatic cancer cells. Based upon these results, we suggest that molecules of p38 MAPK signaling pathways should be listed as novel targets for gemcitabine-based therapy.  相似文献   

10.
Kim A  Lee JE  Jang WS  Lee SJ  Park S  Kang HJ  Lee SS 《Leukemia research》2012,36(3):350-357
Nasal NK/T-cell lymphoma (NKTL) is a highly aggressive disease. Although radiotherapy is the first-line of treatment for NKTL, the clinical outcome is poor. Thus, there is a need for an effective radiosensitizer to improve the survival rate of patients. NF-κB activation contributes to cell survival as well as chemo- and radio-resistance in various cancer cells. In NKTL, the constitutive activation of NF-κB is also a critical factor. In the present study, we used two EBV-expressing NKTL cell lines (Hank-1 and NK-92) to evaluate the radiosensitizing effect of methotrexate (MTX), highlighting the role of NF-κB. Combined treatment of MTX and IR significantly induced apoptosis and growth inhibition in both NKTL cells. The synergistic cytotoxicity was correlated with blocking nuclear NF-κB and suppressing expression of NF-κB-mediated anti-apoptotic proteins. These data suggest that the combined treatment with MTX and IR can inhibit IR-induced NF-κB activation in NKTL cells. Taken together, co-treatment with MTX and IR may provide a therapeutic advantage for patients with NKTL.  相似文献   

11.
12.
The clinical benefit of gemcitabine for pancreatic cancer is low due to chemoresistance. Nuclear factor (NF)-κB, constitutively activated in pancreatic cancer, is a therapeutic target as it upregulates expression of genes controlling proliferation, apoptosis and angiogenesis. This study aimed to investigate whether downregulation of the p65 subunit of NF-κB by siRNA could enhance the efficacy of gemcitabine to treat pancreatic cancer. p65 siRNA synergized with gemcitabine to inhibit the proliferation and induce the apoptosis of pancreatic cancer cells in vitro and in vivo, and suppress the growth and angiogenesis of pancreatic tumors in nude mice. The mechanisms involved inhibition of NF-κB activity and consequent inhibition of Bcl-2, cyclin D1 and VEGF, and activation of caspase-3. The results suggest that downregulation of NF-κB p65 potentiates the efficacy of gemcitabine in combating pancreatic cancer.  相似文献   

13.
Gene therapy using an adenoviral vector expressing tumor necrosis factor-alpha (TNF-α) is a new therapeutic approach for pancreatic cancer. However, the efficacy of TNF-α is limited, because it activates nuclear factor-κB (NF-κB). We investigated the combined use of AxCAhTNF-α, adenoviral vector-expressing human TNF-α, and nafamostat mesilate, a serine-protease inhibitor, a NF-κB inhibitor, using pancreatic cancer in mice. In vitro, nafamostat mesilate inhibited TNF-α-induced NF-κB activation and enhanced TNF-α-induced apoptosis in human cancer cell line (MIAPaCa-2). In vivo, we assessed combination treatment of AxCAhTNF-α and nafamostat mesilate using xenograft models in nude mice by subcutaneous injection of MIAPaCa-2. When the implanted tumor size reached 8.0mm, TNF-α group (n=12), was injected AxCAhTNF-α intra-tumorally once a week, while combination group (n=12), was injected AxCAhTNF-α intra-tumorally once a week and nafamostat mesilate intraperitoneally thrice a week. In combination group, tumor growth was significantly slower, and the number of apoptosis cells was significantly greater than those in AxCAhTNF-α group (p<0.05). In conclusion, adenovirus vector-mediated TNF-α gene therapy combined with nafamostat mesilate was effective for pancreatic cancer in mice.  相似文献   

14.
PURPOSE: Gemcitabine-containing regimens are among standard therapies for the treatment of advanced non-small cell lung,pancreatic, or bladder cancers. Gemcitabine is a nucleoside analogue and its cytotoxicity is correlated with incorporation into genomic DNA and concomitant inhibition of DNA synthesis. However, it is still unclear by which mechanism(s) gemcitabine incorporation leads to cell death. EXPERIMENTAL DESIGN: We used purified oligodeoxynucleotides to study the effects of gemcitabine incorporation on topoisomerase I (top1) activity and tested the role of top1 poisoning in gemcitabine-induced cytotoxicity in cancer cells. RESULTS: We found that top1-mediated DNA cleavage was enhanced when gemcitabine was incorporated immediately 3' from a top1 cleavage site on the nonscissile strand. This position-specific enhancement was attributable to an increased DNA cleavage by top1 and was likely to have resulted from a combination of gemcitabine-induced conformational and electrostatic effects. Gemcitabine also enhanced camptothecin-induced cleavage complexes. We also detected top1 cleavage complexes in human leukemia CEM cells treated with gemcitabine and a 5-fold resistance of P388/CPT45 top1-deficient cells to gemcitabine, indicating that poisoning of top1 can contribute to the antitumor activity of gemcitabine. CONCLUSIONS: The present results extend our recent finding that incorporation of 1-beta-D-arabinofuranosylcytosine into DNA can induce top1 cleavage complexes [P. Pourquier et al. Proc. Natl. Acad. Sci. USA, 97: 1885-1890, 2000]. The enhancement of camptothecin-induced top1 cleavage complexes may, at least in part, contribute to the synergistic or additive effects of gemcitabine in combination with topotecan and irinotecan in human breast or lung cancer cells.  相似文献   

15.

Background

To develop a novel therapeutic strategy for human pancreatic cancer using a midkine promoter-based conditionally replicating adenovirus.

Methods

We examined midkine mRNA expression and midkine protein expression by seven human pancreatic cancer cell lines (AsPC-1, BxPC-3, CFPAC-1, HPAC, MIAPaCa-2, PANC-1, and Suit-2), as well as by non-cancerous pancreatic tissue and pancreatic cancers. Midkine promoter activity was measured in cancer cell lines by the dual luciferase reporter assay. Adenoviral transduction efficiency was assessed by fluorescent staining of cancer cell lines using adenovirus type 5 containing the green fluorescent protein gene (Ad5GFP). Replication of adenovirus type 5 containing the 0.6 kb midkne promoter (Ad5MK) was assessed by the detection of E1 protein in cancer cell lines. The cytotoxicity of Ad5MK for cancer cells was evaluated from the extent of growth inhibition after viral infection. Infection and replication were also assessed in nude mice with subcutaneous Suit-2 tumors by intratumoral injection of Ad5MK, Ad5GFP, or vehicle. E1a mRNA expression in the treated tumors and expression of the replication-specific adenoviral hexon protein were evaluated. Finally, the anti-tumor activity of Ad5MK against intraperitoneal xenografts of Suit-2 pancreatic cancer cells was examined after intraperitoneal injection of the virus.

Results

Both midkine mRNA expression and midkine protein expression were strong in AsPC-1 and CFPAC-1 cell liens, moderate in BxPC-3, HPAC, and Suit-2 cell lines, and weak in PANC-1 and MIAPaCa-2 cell lines. Expression of midkine mRNA was significantly stronger in pancreatic cancers than in non-cancerous pancreatic tissues. The relative luciferase activity mediated by the 0.6 kb midkne fragment in AsPC-1, PANC-1, and Suit-2 cell lines was approximately 6 to 20 times greater than that in midkne-negative MIAPaCa-2 cell lines. Pancreatic cancer cell lines exhibited a heterogeneous adenoviral transduction profile. E1A expression was higher in cell lines with strong midkine expression than in cell lines with weak midkine expression. Ad5MK showed much greater cytotoxicity for midkine-expressing Suit-2 and PANC-1 cell lines than for midkine-negative MIAPaCa-2 cell lines. In the Suit-2 subcutaneous xenograft model, expression of E1A was detected in Ad5MK-treated tumors, but not in untreated and Ad5GFP-treated tumors. In the Suit-2 intraperitoneal xenograft model, the Ad5MK group survived for significantly longer than the Ad5GFP, PBS, and untreated groups.

Conclusion

Ad5MK has an anti-tumor effect against human pancreatic cancer cell lines that express midkine mRNA. Midkine promoter-based conditionally replicative adenovirus might be a promising new gene therapy for pancreatic cancer.  相似文献   

16.

Background

To develop a novel therapeutic strategy for human pancreatic cancer using a midkine promoter-based conditionally replicating adenovirus.

Methods

We examined midkine mRNA expression and midkine protein expression by seven human pancreatic cancer cell lines (AsPC-1, BxPC-3, CFPAC-1, HPAC, MIAPaCa-2, PANC-1, and Suit-2), as well as by non-cancerous pancreatic tissue and pancreatic cancers. Midkine promoter activity was measured in cancer cell lines by the dual luciferase reporter assay. Adenoviral transduction efficiency was assessed by fluorescent staining of cancer cell lines using adenovirus type 5 containing the green fluorescent protein gene (Ad5GFP). Replication of adenovirus type 5 containing the 0.6 kb midkne promoter (Ad5MK) was assessed by the detection of E1 protein in cancer cell lines. The cytotoxicity of Ad5MK for cancer cells was evaluated from the extent of growth inhibition after viral infection. Infection and replication were also assessed in nude mice with subcutaneous Suit-2 tumors by intratumoral injection of Ad5MK, Ad5GFP, or vehicle. E1a mRNA expression in the treated tumors and expression of the replication-specific adenoviral hexon protein were evaluated. Finally, the anti-tumor activity of Ad5MK against intraperitoneal xenografts of Suit-2 pancreatic cancer cells was examined after intraperitoneal injection of the virus.

Results

Both midkine mRNA expression and midkine protein expression were strong in AsPC-1 and CFPAC-1 cell liens, moderate in BxPC-3, HPAC, and Suit-2 cell lines, and weak in PANC-1 and MIAPaCa-2 cell lines. Expression of midkine mRNA was significantly stronger in pancreatic cancers than in non-cancerous pancreatic tissues. The relative luciferase activity mediated by the 0.6 kb midkne fragment in AsPC-1, PANC-1, and Suit-2 cell lines was approximately 6 to 20 times greater than that in midkne-negative MIAPaCa-2 cell lines. Pancreatic cancer cell lines exhibited a heterogeneous adenoviral transduction profile. E1A expression was higher in cell lines with strong midkine expression than in cell lines with weak midkine expression. Ad5MK showed much greater cytotoxicity for midkine-expressing Suit-2 and PANC-1 cell lines than for midkine-negative MIAPaCa-2 cell lines. In the Suit-2 subcutaneous xenograft model, expression of E1A was detected in Ad5MK-treated tumors, but not in untreated and Ad5GFP-treated tumors. In the Suit-2 intraperitoneal xenograft model, the Ad5MK group survived for significantly longer than the Ad5GFP, PBS, and untreated groups.

Conclusion

Ad5MK has an anti-tumor effect against human pancreatic cancer cell lines that express midkine mRNA. Midkine promoter-based conditionally replicative adenovirus might be a promising new gene therapy for pancreatic cancer.  相似文献   

17.
Agents that can potentiate the efficacy of standard chemotherapy against pancreatic cancer are of great interest. Because of their low cost and safety, patients commonly use a variety of dietary supplements, although evidence of their efficacy is often lacking. One such commonly used food supplement is Zyflamend, a polyherbal preparation with potent anti-inflammatory activities and preclinical efficacy against prostate and oral cancer. Whether Zyflamend has any efficacy against human pancreatic cancer alone or in combination with gemcitibine, a commonly used agent, was examined in cell cultures and in an orthotopic mouse model. In vitro, Zyflamend inhibited the proliferation of pancreatic cancer cell lines regardless of p53 status and also enhanced gemcitabine-induced apoptosis. This finding correlated with inhibition of NF-κB activation by Zyflamend and suppression of cyclin D1, c-myc, COX-2, Bcl-2, IAP, survivin, VEGF, ICAM-1 and CXCR4. In nude mice, oral administration of Zyflamend alone significantly inhibited the growth of orthotopically transplanted human pancreatic tumors, and when combined with gemcitabine, further enhanced the antitumor effects. Immunohistochemical and Western blot analyses of tumor tissue showed that the suppression of pancreatic cancer growth correlated with inhibition of proliferation index marker (Ki-67), COX-2, MMP-9, NF-κB and VEGF. Overall, these results suggest that the concentrated multiherb product Zyflamend alone can inhibit the growth of human pancreatic tumors and, in addition, can sensitize pancreatic cancers to gemcitabine through the suppression of multiple targets linked to tumorigenesis.  相似文献   

18.
Abstract

Purpose: Transforming growth factor-β-activated kinase 1 (TAK1) plays a role in inhibiting apoptosis in response to multiple stresses. In the present study, we investigated the role of TAK1 in cell death induced by heat stress (HS). Materials and methods: TAK1 knockdown HeLa cells and their parental cells were exposed to HS at 44?°C for 15,?30,?45?min followed by colony formation assay. Heat shock proteins (HSPs) induction, NF-κB phosphorylation, and caspase-3 cleavage were estimated by western blotting using specific antibodies. Global gene expression analysis was performed using the GeneChip® system. The anti-apoptotic roles of the identified genes were elucidated using small interfering RNAs targeting those genes. Results: Heat sensitivity estimated by colony formation assay and caspase-3 cleavage increased in TAK1 knockdown cells. This sensitisation was not due to alterations in HSP induction or NF-κB phosphorylation as the expression levels of these proteins did not differ significantly between the TAK1 knockdown and the parent cells after HS exposure. The GeneChip® analysis revealed differences in gene expression between both cell variants after HS exposure and defined the genetic network associated with cell death. TNF-α interacting protein 3 (TNFAIP3) and Interleukin 8 (IL-8) are two of the identified genes. RNA interference against these genes increased the cleavage of caspase-3 and cell death after HS exposure. Conclusion: Our findings reveal the role of TAK1 in thermoresistance and show that the mediation is independent of NF-κB phosphorylation but is dependent on TNFAIP3 and IL-8 induction.  相似文献   

19.
In the present study, we examined the role of Src in gemcitabine-induced cell growth suppression in human pancreatic cancer cell lines. In two human pancreatic cancer cell lines, PK-9 and MIA PaCa-2, we found that a selective Src protein tyrosine kinase inhibitor, PP2, inhibited gemcitabine-induced cell growth suppression. When dominant negative src cDNA was constitutively expressed in PK-9 cells (PK-9-Src-DN), the degree of gemcitabine-induced cell growth suppression was decreased compared with that of mock-transfected PK-9 cells. The mechanism of the inhibitory effect of gemcitabine-induced cytotoxicity was found to be the suppression of apoptosis, which was downregulated in PK-9-Src-DN cells. These results indicate that Src mediates signals that culminate in suppressing cell growth and survival in the presence of gemcitabine, at least in particular cell lines.  相似文献   

20.
In this study, we investigated the role of NF-κB (canonical and alternative pathways) in the survival or proliferation of mantle cell lymphoma (MCL) cell lines. P50/p65 complexes were detectable by EMSA assays in 4/5 cell lines. Stable expression of a dominant-negative form of IkBa had no effect on proliferation nor on apoptosis in EBV-negative cell lines. Three out of 4 of the cell lines tested exhibited Phospho-p65 (Ser536). The alternative NF-κB pathway was not activated in 4/5 cell lines tested. Patient samples were also studied by Western blot, EMSA and Immunohistochemistry (IHC). No p50/p65 complexes were detected in cells freshly collected from 7 patients, but 1/7 cells exhibited Phospho-p65 (Ser536). We investigated immunohistochemically, the expression of NF-κB in 86 patients enrolled in two multicentre prospective trials. Patients with MCL exhibiting negative or positive cytoplasmic expression of NF-κB had a median overall survival of 35.7 months compared to 22.4 months for patients with nuclear NF-κB expression (p = 0.0193). All these data suggest that NF-κB does not play a key role in proliferation and apoptotic processes in MCL cell lines. In patient samples, the presence of p65 in the nucleus reflecting NF-κB activation is rare but associated with a poor outcome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号