首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Compression induced by a pituitary tumor on the optic chiasm can generate visual field deficits, yet it is unknown how this compression affects the retinotopic organization of the visual cortex. It is also not known how the effect of the tumor on the retinotopic organization of the visual cortex changes after decompression. The authors used functional MRI (fMRI) to map the retinotopic organization of the visual cortex in a 68-year-old right-handed woman before and 3 months after surgery for a recurrent pituitary macroadenoma. The authors demonstrated that longitudinal changes in visual field perimetry, as assessed by the automated Humphrey visual field test, correlated with longitudinal changes in fMRI activation in a retinotopic manner. In other words, after decompression of the optic chiasm, fMRI charted the recruitment of the visual cortex in a way that matched gains in visual field perimetry. On the basis of this case, the authors propose that fMRI can chart neural plasticity of the visual cortex on an individual basis and that it can also serve as a complementary tool in decision making with respect to management of patients with chiasmal compression.  相似文献   

2.
The value of sulcal landmarks for predicting functional areas was quantitatively examined. Medial occipital sulci were identified using anatomical magnetic resonance images to create individual cortical-surface models. Functional visual areas were identified using retinotopically organized visual stimuli, and positron emission tomography subtraction imaging with intra-subject averaging. Functional areas were assigned labels by placement along the cortical surface from V1. Structure-function spatial covariances between sulci and functional areas, and spatial covariances among functional areas, were determined by projecting sulcal landmarks and functional areas into a standardized stereotaxic space and computing the 'r' statistics. A functional area was considered to spatially covary with a sulcus or another functional area if their geometric centers correlated significantly (P < 0.05) in two or more axes. Statistically significant spatial covariances were found for some, but not all comparisons. The finding of significant spatial covariances within a standardized stereotaxic space indicates that nine-parameter spatial normalization does not account for all the predictive value of structural or functional locations, and may be improved upon by using selected sulcal and functional landmarks. The present findings quantify for the first time the strength of structure--function spatial covariance and comment directly on developmental theories addressing the etiology of structure--function correspondence.  相似文献   

3.
Several studies have shown that neurons with similar response properties are arranged together in domains across primary visual cortex (V1). An orderly pattern of domains has been described for preferences to ocular dominance, orientation, and spatial frequency. Temporal frequency preference, another important attribute of the visual scene, also might be expected to map into different domains. Using optical imaging and a variety of quantitative methods, we examined how temporal frequency selectivity is mapped in V1 of the prosimian primate, bush baby (Otolemur garnetti). We found that unlike other attribute maps, selectivity for different temporal frequencies is arranged uniformly across V1 with no evidence of local clustering. Global tuning for temporal frequency, based on magnitude of response, showed a good match to previous tuning curves for single neurons. A peak response was found around 2.0 Hz, with smaller attenuation at lower temporal frequencies than at higher frequencies. We also examined whether the peak temporal frequency response differed between anatomical compartments defined by cytochrome oxidase (CO). No significant differences in the preference for temporal frequency were found between these CO compartments. Our findings show that key sensory attributes that are linked in perception can be organized in quite distinct ways in V1 of primates.  相似文献   

4.
The tactile sensation of the teeth is involved in various oral functions, such as mastication and speech. Using functional magnetic resonance imaging, we investigated the cortical sensory representation of the oral area, including the teeth. First, we identified the somatotopic representation of the lips, teeth and tongue in the postcentral gyrus (GpoC). Tactile stimuli were applied to the lower lip, tongue and teeth. The foci activated by each stimulus were characterized by the center of gravity (COG) of activated areas. Secondly, we examined the rostro-caudal changes in the somatotopic organization in the GPoC in terms of the overlap between each sensory representation. In the rostral portion of the GPoC, the COG of the representation of teeth was located significantly superior to that of the tongue and inferior to that of the lip, consistent with the classical 'sensory homunculus' proposed by Penfield; however, this somatotopic representation became unclear in the middle and caudal portions of the GPoC. The overlap between each representation in the middle and caudal portions of the GPoC was significantly greater than that in the rostral portion of the GPoC. These findings support the theory that the input from oral structures converges hierarchically across the primary somatosensory cortex.  相似文献   

5.
A double-label deoxyglucose technique was used to study orientation columns throughout visual cortex in awake behaving macaques. Four macaques were trained to fixate while contrastreversing, stationary gratings or one-dimensional noise of a single orientation or an orthogonal orientation were presented, during uptake of [14C]deoxyglucose ([14C]DG) or [3H]DG, respectively. The two orthogonal stimulus orientations produced DG-labeled columns that were maximally separated in the two isotope maps (inter-digitated) in four areas: V1, V2, V3 and VP. The topographic change from interdigitated to overlapping columns occurred abruptly rather than gradually, at corresponding cortical area borders (e.g. VP and V4v, respectively). In addition, the data suggest that orientation column topography systematically changes with retinotopic eccentricity. In V1, the orientation columns systematically avoided the cytochrome oxidase blobs in the parafoveal representation, but converged closer to the blobs in the foveal representation. A control experiment indicated that this was unlikely to reflect eccentricity-dependent differences in cortical spatial frequency sensitivity. A similar eccentricity-dependent change in the topography of orientation columns occurred in V2. In parafoveal but not foveal visual field representations of V2, the orientation columns were centered on the thick cytochrome oxidase stripes, extended into the adjacent interstripe region, but were virtually absent in the thin stripes.  相似文献   

6.
Pre-operative functional magnetic resonance imaging (fMRI), cortical evoked potentials (EPs) and intraoperative optical imaging of intrinsic signals (iOIS) were employed to relate the temporal-spatial characteristics of sensorimotor responses in human brain. Peripheral somasthetic stimulation (2 s) was provided either by a 110 Hz finger vibrator or transcutaneous median nerve stimulation in eight patients undergoing neurosurgical procedures. Each technique provided unique spatial patterns and temporal response profiles. EPs and iOIS activities were observed over the surface of pre- and post-central gyri (at the level of the superior genu) with very similar spatial distributions. In contrast, fMRI spatial distributions depended upon the model used for statistical correlation analysis. Using a monophasic response model, fMRI primarily localized within the central sulcus and did not demonstrate large signal changes over the pre- and post-central gyri (areas with iOIS/EP activity). However, as initial negative responses were incorporated into the response model, fMRI progressively localized closer to the iOIS and somatosensory EP maps. Temporally, responses to single stimuli differed between the fMRI and iOIS techniques. Using a monophasic model for fMRI analysis, the total fMRI response was delayed by 2--3 s relative to iOIS. As initial negative responses were incorporated in the analysis, the fMRI time course developed temporal characteristics similar to iOIS. Ultimately, when fMRI time courses were examined over pixels co-localizing with iOIS activation (without using statistical correlation analysis), the fMRI temporal profile included an initial decrease in signal (an initial dip) that closely resembled the time course of iOIS response. This is the first study to experimentally co-localize (temporally and spatially) iOIS and fMRI signals in human subjects. The spatial/temporal differences in this study likely reflect the capillary versus venous contributions of iOIS and fMRI, respectively. The temporal/spatial co-localization of the iOIS signal and the fMRI initial dip suggests the initial fMRI dip and the iOIS signal may result from similar physiologic events.  相似文献   

7.
Despite extraordinary diversity in the rodent order, studies of motor cortex have been limited to only 2 species, rats and mice. Here, we examine the topographic organization of motor cortex in the Eastern gray squirrel (Sciurus carolinensis) and cortical connections of motor cortex in the California ground squirrel (Spermophilus beecheyi). We distinguish a primary motor area, M1, based on intracortical microstimulation (ICMS), myeloarchitecture, and patterns of connectivity. A sensorimotor area between M1 and the primary somatosensory area, S1, was also distinguished based on connections, functional organization, and myeloarchitecture. We term this field 3a based on similarities with area 3a in nonrodent mammals. Movements are evoked with ICMS in both M1 and 3a in a roughly somatotopic pattern. Connections of 3a and M1 are distinct and suggest the presence of a third far rostral field, termed "F," possibly involved in motor processing based on its connections. We hypothesize that 3a is homologous to the dysgranular zone (DZ) in S1 of rats and mice. Our results demonstrate that squirrels have both similar and unique features of M1 organization compared with those described in rats and mice, and that changes in 3a/DZ borders appear to have occurred in both lineages.  相似文献   

8.
Cerebral cortical development involves a complex cascade of events which are difficult to visualize in intact, living subjects. In this study, we apply diffusion tensor imaging (DTI) to the evaluation of cortical development in human infants ranging from 26 to 41 weeks gestational age (GA). Apparent diffusion of water in cortex is maximally anisotropic at 26 weeks GA and anisotropy values approach zero by 36 weeks GA. During this period, the major eigenvector of the diffusion tensor in cerebral cortex is oriented radially across the cortical plate, in accord with a predominately radial deployment of its neuronal constituents. Values for the rotationally averaged water diffusion coefficient increase between 26 and 32 weeks GA, then decrease thereafter. These changes in DTI parameters are specific to cerebral cortex and reflect changes in underlying cortical architecture and formation of neuronal connections. Because of its correlation with tissue microstructure and non-invasive nature, DTI offers unique insight into cortical development in preterm human newborns and, potentially, detection of derangements of its basic cytoarchiteture.  相似文献   

9.
The adult visual cortex maintains a substantial potential for plasticity in response to a change in visual input. For instance, transcranial magnetic stimulation (TMS) studies have shown that binocular deprivation (BD) increases the cortical excitability for inducing phosphenes with TMS. Here, we employed TMS to trace plastic changes in adult visual cortex before, during, and after 48 h of monocular deprivation (MD) of the right dominant eye. In healthy adult volunteers, MD-induced changes in visual cortex excitability were probed with paired-pulse TMS applied to the left and right occipital cortex. Stimulus-response curves were constructed by recording the intensity of the reported phosphenes evoked in the contralateral visual field at range of TMS intensities. Phosphene measurements revealed that MD produced a rapid and robust decrease in cortical excitability relative to a control condition without MD. The cortical excitability returned to preinterventional baseline levels within 3 h after the end of MD. The results show that in contrast to the excitability increase in response to BD, MD acutely triggers a reversible decrease in visual cortical excitability. This shows that the pattern of visual deprivation has a substantial impact on experience-dependent plasticity of the human visual cortex.  相似文献   

10.
Somatotopic organization of human secondary somatosensory cortex   总被引:8,自引:6,他引:2  
This fMRI study investigated the human somatosensory system, especially the secondary somatosensory cortex (SII), with respect to its potential somatotopic organization. Eight subjects received electrical stimulation on their right second finger, fifth finger and hallux. Within SII, the typical finding for both fingers was a representation site within the contralateral parietal operculum roughly halfway between the lip of the lateral sulcus and its fundus, whereas the representation site of the hallux was found more medially to this position at the fundus of the lateral sulcus, near the posterior pole of the insula. Somatotopy in SII seems to be less fine-grained than in primary somatosensory cortex (SI), as, in contrast to SI, no separate representations of the two fingers in SII were observed. A similar somatotopic representation pattern between fingers and the hallux was also observed within ipsilateral SII, indicating somatotopy of contra- as well as ipsilateral SII using unilateral stimulation. Further areas exhibiting activation were found in the superior and inferior parietal lobule, in the supplementary and cingulate motor area, and in the insula.  相似文献   

11.
It is well known that in the mammalian visual cortex the neurons, sharing similar response properties, are grouped together into functional units, known as cortical columns. The orientation and ocular dominance columnar organization is a fundamental element for both the anatomical and physiological features of the visual cortex. Nonetheless, little is known about the functional restoration of matured columnar columns following injury. In the present study, the visual cortex of adult cats was studied electrophysiologically, whereas the primary goal of the study was to reveal the functional stability of the columns, disconnected from the main visual input. Experiments were performed on the primary visual cortex (area 17) of 13 anaesthetized and paralyzed adult cats. The columnar distortion was produced by surgical incision perpendicular to the cortical columns. The single unit activity was recorded from 1186 visual cells (experimental groups) in areas proximal and distal to the lesion and, compared to data, received from intact visual cortex (control group). The results indicate that most of the visually responsive cells were found to be selective to specific orientation in all experimental groups (75-100%) similar to the normal control group (78%). Moreover, the distribution of orientation-specific cells was very similar in all experimental and control groups (p > 0.05), as well as in both recording areas (p > 0.05). The percentage of binocular cells was significantly lower in all experimental groups (23-49%) in comparison to the control (80%). However, the distribution of the binocular cells revealed the significant similarity between the experimental and control groups (p > 0.05). An additional finding of the study is that the visual responsiveness of cells was significantly reduced in all experimental groups: only 28-49% of cells were found to be responsive following injury, as compared to 86% in normal control group (p < 0.001). The distribution of cells has also been analysed in accordance with their directional specificity and it has been found that the majority of cells in the experimental groups were found to be bias and non-specific to light stimuli (52-84%) as compared normal controls (21%) (p < 0.001). It has been concluded that, despite the fact that no improvement in visual function was found, the inherent structure of the disrupted cortical columns in the visual cortex was generally preserved. Therefore, the disruption of the columnar connection does not lead to remarkable distortion of the connectivity pattern on the whole, though it does reduce the responsiveness level there. It was concluded that the columnar structure for both orientation and ocular dominance is characterized by high stability, which enables visual processing with minimal brain connections.  相似文献   

12.
Single neurons in primate V2 and cat A18 exhibit identical orientation tuning for sinewave grating and illusory contour stimuli. This cue invariance is also manifested in similar orientation maps to these stimuli, but in V1/A17 the illusory contour maps appear reversed. We hypothesized that this map reversal depends upon the spatial frequencies of the inducers in the illusory contours, relative to the spatial selectivities of these brain areas. We employed intrinsic signal optical imaging to measure orientation maps in cat A17/18 to illusory contours with inducers at spatial frequencies from 0.15 to 1.6 cpd. A17 illusory contour maps were indeed reversed compared with grating-driven maps for inducer spatial frequencies <1.3 cpd, whereas A18 maps were invariant. Simulations based on known neurophysiology demonstrated that map reversal can arise from linear filtering, and map invariance can be explained by a nonlinear (filter-rectify-filter) mechanism. The simulation also correctly predicted that A17 could show invariant maps when the inducer spatial frequency is sufficiently high (1.6 cpd), and that A18 maps could reverse at lower inducer frequencies (0.18 cpd). Thus, the map reversal or invariance to illusory contours depends critically on the relationship of the inducer spatial frequencies to the spatial filtering properties of neurons in each brain area.  相似文献   

13.
The kinetic occipital region in human visual cortex   总被引:8,自引:5,他引:3  
In the present study we showed that the kinetic occipital (KO) region, located laterally in occipital cortex approximately 20 mm behind human MT/V5, can be strongly and bilaterally activated under passive viewing conditions. We used continuous, randomly changing visual stimulation to compare kinetic gratings to uniform motion and kinetic gratings to luminance defined gratings. The KO activations under these passive conditions are stronger than those observed when the two types of gratings are compared under active conditions, i.e. while subjects perform a task (counting gratings of a given orientation). Region KO was shown to process both shape and motion information, the conjunction of which is typically present in kinetic contours. Area MT/V5 also processes these two aspects of visual stimulation but favors motion signals. Clear segregation of shape and motion processing was observed only in occipitotemporal and parietal regions respectively. Although neurons with properties similar to those derived from the conditions activating the KO region have been documented in the macaque monkey, their location seems inappropriate for them to correspond to the KO activation observed in humans.   相似文献   

14.
Manganese-enhanced magnetic resonance imaging (ME-MRI) was used to analyze the brain architecture in mice lacking the functional presynaptic active zone protein Bassoon. Anatomical characterization revealed a significant increase in the total brain volume in Bassoon mutants as compared with wild-type mice, which is mainly caused by changes in cortex and hippocampus volume. The measured enlargement in cortical volume coincides with an altered Mn2+ distribution within cortical layers as visualized by T1-weighted magnetic resonance imaging. Two days after manganese application, the cortex of Bassoon mutant mice appeared more laminated in ME-MRI, with an enhanced accumulation of manganese in deep, central, and superficial cortical cell layers. Whereas morphologically the cortical lamination is not affected by the absence of a functional Bassoon, an altered basal activation pattern was found in the cortex of the mutant mice both by metabolic labeling with [14C]-2-deoxyglucose and histochemical detection of the potassium analogue thallium uptake. Consequently, the results indicate that the absence of the functional presynaptic protein Bassoon causes disturbance in the formation of normal basal cortical activation patterns and thereby in the functional cortical architecture. Furthermore, this study shows that ME-MRI can become a valuable tool for a structural characterization of genetically modified mice.  相似文献   

15.
The posterior parietal cortex (PPC) has been proposed to play a critical role in exerting top-down influences on occipital visual areas. By inducing activity in the PPC (angular gyrus) using transcranial magnetic stimulation (TMS), and using the phosphene threshold as a measure of visual cortical excitability, we investigated the functional role of this region in modulating the activity of the visual cortex. When triple-pulses of TMS were applied over the PPC unilaterally, the intensity of stimulation required to elicit a phosphene from the visual cortex (area V1/V2) was reduced, indicating an increase in visual cortical excitability. The increased excitability that was observed with unilateral TMS was abolished when TMS was applied over the PPC bilaterally. Our results provide a demonstration of the top-down modulation exerted by the PPC on the visual cortex and show that these effects are subject to interhemispheric competition.  相似文献   

16.
Two crucial sources of information available to an organism when moving through an environment are visual and vestibular stimuli. Macaque cortical area MSTd processes visual motion, including cues to self-motion arising from optic flow and also receives information about self-motion from the vestibular system. In humans, whether human MST (hMST) receives vestibular afferents is unknown. We have combined 2 techniques, galvanic vestibular stimulation and functional MRI (fMRI), to show that hMST is strongly activated by vestibular stimulation in darkness, whereas adjacent area MT is unaffected. The activity cannot be explained in terms of somatosensory stimulation at the electrode site. Vestibular input appears to be confined to the anterior portion of hMST, suggesting that hMST as conventionally defined may contain 2 subregions. Vestibular activity was also seen in another area previously implicated in processing visual cues to self-motion, namely the cingulate sulcus visual area (CSv), but not in visual area V6. The results suggest that cross-modal convergence of cues to self-motion occurs in both hMST and CSv.  相似文献   

17.
A central goal in systems neuroscience is to understand how the brain encodes the intensity of sensory features. We used whole-head magnetoencephalography to investigate whether frequency-specific neuronal activity in the human visual cortex is systematically modulated by the intensity of an elementary sensory feature such as visual motion. Visual stimulation induced a tonic increase of neuronal activity at frequencies above 50 Hz. In order to define a functional frequency band of neuronal activity, we parametrically investigated which frequency band displays the strongest monotonic increase of responses with strength of visual motion. Consistently in all investigated subjects, this analysis resulted in a functional frequency band in the high gamma range from about 60 to 100 Hz in which activity reliably increased with visual motion strength. Using distributed source reconstruction, we found that this increase of high-frequency neuronal activity originates from several extrastriate cortical regions specialized in motion processing. We conclude that high-frequency activity in the human visual motion pathway may be relevant for encoding the intensity of visual motion signals.  相似文献   

18.
In this review we re-examine the concept of a cortical column in macaque primary visual cortex, and consider to what extent a functionally defined column reflects any sort of anatomical entity that subdivides cortical territory. Functional studies have shown that columns relating to different response properties are mapped in cortex at different spatial scales. We suggest that these properties first emerge in mid-layer 4C through a combination of thalamic afferent inputs and local intracortical circuitry, and are then transferred to other layers in a columnar fashion, via interlaminar relays, where additional processing occurs. However, several properties are not strictly columnar since they do not appear in all cortical layers. In contrast to the functional column, an anatomically based cortical column is defined most clearly in terms of the reciprocal connections it makes, both via intra-areal lateral connections and inter-areal feedback/feedforward pathways. The column boundaries are reinforced by interplay between lateral inhibition spreading beyond the column boundary and disinhibition within the column. The anatomical column acts as a functionally tuned unit and point of information collation from laterally offset regions and feedback pathways. Thalamic inputs provide the high-contrast receptive field sizes of the column's neurons, intra-areal lateral connections provide their low contrast summation field sizes, and feedback pathways provide surround modulation of receptive fields responses.  相似文献   

19.
Previous studies have reported considerable variability in primary visual cortex (V1) shape in both humans and macaques. Here, we demonstrate that much of this variability is due to the pattern of cortical folds particular to an individual and that V1 shape is similar among individual humans and macaques as well as between these 2 species. Human V1 was imaged ex vivo using high-resolution (200 microm) magnetic resonance imaging at 7 T. Macaque V1 was identified in published histological serial section data. Manual tracings of the stria of Gennari were used to construct a V1 surface, which was computationally flattened with minimal metric distortion of the cortical surface. Accurate flattening allowed investigation of intrinsic geometric features of cortex, which are largely independent of the highly variable cortical folds. The intrinsic shape of V1 was found to be similar across human subjects using both nonparametric boundary matching and a simple elliptical shape model fit to the data and is very close to that of the macaque monkey. This result agrees with predictions derived from current models of V1 topography. In addition, V1 shape similarity suggests that similar developmental mechanisms are responsible for establishing V1 shape in these 2 species.  相似文献   

20.
A hierarchical axis of object processing stages in the human visual cortex   总被引:4,自引:3,他引:1  
How are objects represented in the human visual cortex? Two conflicting theories suggest either a holistic representation, in which objects are represented by a collection of object templates, or a part-based representation, in which objects are represented as collections of features or object parts. We studied this question using a gradual object-scrambling paradigm in which pictures of objects (faces and cars) were broken in a stepwise manner into an increasing number of blocks. Our results reveal a hierarchical axis oriented anterior--posteriorly in the organization of ventral object-areas. Along this axis, representations are arranged in bands of increasing sensitivity to image scrambling. The axis starts in early visual areas through retinotopic areas V4/V8 and continues into the lateral-occipital sulcus dorsally and the posterior fusiform girus ventrally, corresponding together to the previously described object-related lateral occipital complex (LOC). Regions showing the highest sensitivity to scrambling tended to be located at the most anterior-lateral regions of the complex. In these more anterior regions, breaking the images into 16 parts produced a significant reduction in activation. Interestingly, activation was not affected when images were cut in two halves, either horizontally or vertically. Car images generally produced a weaker activation compared to faces in the lateral occipital complex but showed the same tendency of increased scrambling sensitivity along the anterior--posterior axis. These results suggest the existence of a hierarchical axis along ventral occipito-temporal object-areas, in which the neuronal properties shift from sensitivity to local object features to a more global and holistic representation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号