首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Pituitary adenylate cyclase-activating polypeptide (PACAP) and the proopiomelanocortin (POMC)-derived peptide alpha-melanocyte-stimulating hormone (alpha-MSH) both regulate multiple neuroendocrine functions and feeding behavior. Two subtypes of PACAP receptor mRNAs, pituitary adenylate cyclase-activating polypeptide-specific receptor (PAC1-R) and pituitary adenylate cyclase-activating polypeptide/vasoactive intestinal polypeptide mutual receptor (VPAC2-R), are actively expressed in the arcuate nucleus of the hypothalamus, where POMC cell bodies are located. This observation led us to investigate the possible regulatory action of PACAP on rat POMC neurons. Double-labeling in situ hybridization histochemistry revealed that approximately 50% of POMC-producing neurons express PAC1-R and/or VPAC2-R mRNAs. The proportion of POMC neurons that also contain PAC1-R mRNA was homogeneous along the rostro-caudal axis of the arcuate nucleus while POMC-positive cell bodies expressing the VPAC2-R subtype were more abundant in the rostral region. Incubation of mediobasal hypothalamic explants with PACAP (10(-7) M; 30 min) increased POMC mRNA expression, and this effect was blocked by PACAP6-38 (10(-6) M). In contrast, incubation with vasoactive intestinal polypeptide (10(-7) M) did not affect POMC mRNA level. Incubation of hypothalamic fragments with PACAP (10(-7) M) caused a significant increase in alpha-MSH content in the tissue and in the incubation medium. Altogether, the present results reveal that exogenous PACAP, acting probably through PAC1-R, regulates the activity of POMC neurons in the rat hypothalamus. These data suggest that the effects of PACAP on the gonadotropin-releasing hormone neuroendocrine axis and the regulation of feeding behavior may be mediated, at least in part, through modulation of POMC neurons.  相似文献   

2.
Pituitary adenylate cyclase-activating polypeptide (PACAP) is an amidated 38-residue polypeptide isolated from the ovine hypothalamus. Helodermin, a 35-amino acid peptide, and helospectins, peptides of 38 and 37 amino acid residues, have been isolated from lizard venom. PACAP, helodermin and helospectins share structural features and have a similar profile of pharmacological effects: they stimulate adenylate cyclase. We studied the distribution and characteristics of PACAP-like immunoreactivity in the rat brain with immunochemical and immunohistochemical methods and compared its distribution with that of helodermin- and helospectin-like immunoreactivities. With radioimmunoassay, the highest concentrations of PACAP-like immunoreactivity were found in the hypothalamus and cerebellum. PACAP-immunoreactive cell bodies were located immunohistochemically in the supraoptic nucleus, paraventricular and periventricular hypothalamic nuclei, and in the central grey. PACAP-immunoreactive fibres and terminals were detected in the medial part of the central nucleus of amygdala, in the median eminence and neurohypophysis, and in the central grey. No PACAP-immunoreactive structures were observed in areas such as the cerebral cortex, hippocampus, or cerebellum. The distribution of PACAP-like immunoreactivity differed considerably from the distribution of helodermin- and helospectin-like immunoreactivities. The results of this study suggest that PACAP is a neuropeptide with a role in the regulation of endocrine function in the hypothalamo-hypophyseal axis.  相似文献   

3.
4.
5.
We investigated the effect of pituitary adenylate cyclase activating peptide (PACAP) on the colon–inferior mesenteric ganglion (IMG) reflex loop in vitro . PACAP27 and PACAP38 applied to the IMG caused a prolonged depolarization and intense generation of fast EPSPs and action potentials in IMG neurones. Activation of PACAP-preferring receptors (PAC1-Rs) with the selective agonist maxadilan or vasoactive intestinal peptide (VIP)/PACAP (VPAC) receptors with VIP produced similar effects whereas prior incubation of the IMG with selective PAC1-R antagonists PACAP6-38 and M65 inhibited the effects of PACAP. Colonic distension evoked a slow EPSP in IMG neurones that was reduced in amplitude by prolonged superfusion of the IMG with either PACAP27, maxidilan, PACAP6-38, M65 or VIP. Activation of IMG neurones by PACAP27 or maxadilan resulted in an inhibition of ongoing spontaneous colonic contractions. PACAP-LI was detected in nerve trunks attached to the IMG and in varicosities surrounding IMG neurones. Cell bodies with PACAP-LI were present in lumbar 2–3 dorsal root ganglia and in colonic myenteric ganglia. Colonic distension evoked release of PACAP peptides in the IMG as measured by radioimmunoassay. Volume reconstructed images showed that a majority of PACAP-LI, VIP-LI and VAChT-LI nerve endings making putative synaptic contact onto IMG neurones and a majority of putative receptor sites containing PAC1-R-LI and nAChR-LI on the neurones were distributed along secondary and tertiary dendrites. These results suggest involvement of a PACAP-ergic pathway, operated through PAC1-Rs, in controlling the colon–IMG reflex.  相似文献   

6.
7.
8.
9.
The expression and axonal transport of pituitary adenylate cyclase-activating polypeptide (PACAP) was studied in the cultured vagus nerve of the rat by immunocytochemistry and in situ hybridization. The number of neurons immunoreactive for PACAP increased markedly within the nodose ganglion during a 24-48 h culture period, as did the number of cells containing messenger RNA for PACAP. PACAP was found to be axonally transported and accumulated at the site of a crush injury. The peptide was also released at this site. Addition of PACAP to regenerating nerves in culture did not affect axonal outgrowth, neither did antibodies against PACAP. Separate experiments showed that neither PACAP-27 nor PACAP-38 affected proliferation of non-neuronal cells measured as the incorporation of [3H]thymidine. In contrast, forskolin, another potent stimulator of adenylate cyclase besides PACAP, dramatically decreased [3H]thymidine incorporation. The results showed that, during regeneration of peripheral nerves, PACAP expression increases and the peptide is transported into the regenerating nerve, where it is released. The functional significance of this release is unknown, but it does not seem to be directly related to the initiation of proliferation of Schwann cells or initial axonal outgrowth.  相似文献   

10.
Pituitary adenylate cyclase-activating polypeptide (PACAP) potentiates both insulin release from islets and insulin action in adipocytes. Therefore, this peptide is considered a regulator of glucose homeostasis. PACAP and its receptors are localized not only in the peripheral tissues but in the central nervous system. The present study examined whether PACAP regulates the feeding behavior and the activity of neurons in the hypothalamic arcuate nucleus (ARC), a feeding center. Food intake was measured in the PACAP knock-out mice. Cytosolic Ca2+ concentration ([Ca2+]i) in single neurons isolated from the ARC of rats was measured by fura-2 microfluorometry, followed by immunocytochemical staining with anti-NPY antiserum. PACAP knock-out mice showed a decrease in the intake of high carbohydrate, but not high fat, food. PACAP increased [Ca2+]i in NPY neurons of the ARC that are implicated in the feeding, particularly the carbohydrate ingestion. Agonists of PACAP receptors, PAC1-R and VPAC2-R, also increased [Ca2+]i. The present study, by demonstrating that PACAP directly reacts with the ARC NPY neurons to increase [Ca2+]i and that ingestion of the carbohydrate-rich food is reduced in PACAP-deficiency, suggests a facilitative role for PACAP in the carbohydrate intake.  相似文献   

11.
Pituitary adenylate cyclase activating peptide (PACAP) is a vasoactive intestinal peptide (VIP)-like hypothalamic peptide occurring in two forms, PACAP-27 and the C-terminally extended PACAP-38. The predicted rat and human PACAP sequence is identical to the isolated ovine one. In the present study, the occurrence and distribution of PACAP-like peptides were examined in the gut of several species by immunocytochemistry and immunochemistry using an antibody raised against PACAP-27. PACAP-like immunoreactivity was observed in nerve fibers in the gut wall of all species examined (chicken, mouse, rat, hamster, guinea-pig, ferret, cat, pig, sheep and man). In the chicken and human gut, immunoreactive fibers were numerous in all layers. In the other species examined the fibers were predominantly found in the myenteric ganglia and smooth muscle. Delicate PACAP-immunoreactive fibers were seen in the gastric mucosa of mouse, rat, hamster and man but not in the other species examined. The chicken proventriculus harbored numerous PACAP-immunoreactive endocrine cells which were identical with the serotonin-containing cells storing gastrin-releasing peptide. PACAP-immunoreactive nerve cell bodies were numerous in the submucous ganglia and moderate in number in the myenteric ganglia of the human gut. They were few in the intramural ganglia of the other species examined. Extrinsic denervation (performed on segments of rat and guinea-pig small intestine) did not visibly affect the PACAP innervation, indicating an intramural origin of most PACAP-immunoreactive fibers. Double immunostaining for VIP and PACAP revealed co-existence of the two peptides in nerve cell bodies and nerve fibers of the human and chicken gut and in fibers in the gastric mucosa of mouse and rat. In all other species examined and in all other locations in the gut PACAP-immunoreactive nerve cell bodies and nerve fibers were distinct from those storing VIP; many of them contained gastrin-releasing peptide instead. Immunochemistry revealed PACAP-like peptides in gut extracts of all species studied; upon high performance liquid chromatography the immunoreactive material co-eluted with synthetic PACAP-27. The distribution of PACAP-immunoreactive nerve cell bodies and nerve fibers in the gut wall suggests their involvement in the regulation of both motor and secretory activities.  相似文献   

12.
13.
Han P  Lucero MT 《Neuroscience》2005,134(3):745-756
Pituitary adenylate cyclase activating polypeptide has been shown to reduce apoptosis in neonatal cerebellar and olfactory receptor neurons, however the underlying mechanisms have not been elucidated. In addition, the neuroprotective effects of pituitary adenylate cyclase activating polypeptide have not been examined in adult tissues. To study the effects of pituitary adenylate cyclase activating polypeptide on neurons in apoptosis, we measured caspase activation in adult olfactory receptor neurons in vitro. Interestingly, we found that the protective effects of pituitary adenylate cyclase activating polypeptide were related to the absence of a 4-aminopyridine (IC50=144 microM) sensitive rapidly inactivating potassium current often referred to as A-type current. In the presence of 40 nM pituitary adenylate cyclase activating polypeptide 38, both A-type current and activated caspases were significantly reduced. A-type current reduction by pituitary adenylate cyclase activating polypeptide was blocked by inhibiting the phospholipase C pathway, but not the adenylyl cyclase pathway. Our observation that 5 mM 4-aminopyridine mimicked the caspase inhibiting effects of pituitary adenylate cyclase activating polypeptide indicates that A-type current is involved in apoptosis. This work contributes to our growing understanding that potassium currents are involved with the activation of caspases to affect the balance between cell life and death.  相似文献   

14.
Neurotrophic factors such as pituitary adenylate cyclase activating polypeptide (PACAP38) are promising therapeutics for neurodegenerative diseases. However, delivery of trophic factors into brain neurons remains a challenge. The objective of this study is to determine whether adeno-associated virus (AAV) can mediate PACAP38 gene delivery into neurons in vitro and if transduction of AAV/PACAP38 into cortical neurons protects cells against neurotoxic insult. Primary cortical neuronal cultures are transduced with rAAV/PACAP38/GFP and cell survival against the nitric oxide releasing neurotoxin sodium nitroprusside (SNP) determined. GFP expression, a surrogate marker for successful transduction, is detected using fluorescent microscopy. The results show expression of GFP transgene and AAV capsid proteins in neurons. PACAP38 transduction significantly increases cell survival of neurons exposed to SNP. These results support the feasibility of using AAV-mediated delivery of PACAP38 to enhance neuronal survival and suggest that AAV-delivered PACAP38 maybe a therapeutic strategy for neurodegenerative diseases.  相似文献   

15.
Pituitary adenylate cyclase activating peptide (PACAP), a neuroregulatory peptide, is found in germinative regions of the CNS, including the olfactory bulb, throughout adulthood. We show that 1) PACAP immunoreactivity is also present in the neonatal mouse and adult mouse and rat olfactory epithelium, 2) PACAP expression pattern differs between neonatal and adult mice, and 3) PACAP is produced by olfactory ensheathing cells. PACAP may thus be a key factor in the uniquely supportive role of olfactory ensheathing cells in regeneration of neurons from olfactory epithelium and lesioned spinal cord. Using calcium imaging, we demonstrated physiological responses to PACAP in both neonatal and adult olfactory receptor neurons (ORNs). We propose that PACAP plays an important role in normal turnover of ORNs by providing neurotrophic support during development and regeneration and neuroprotective support of mature neurons.  相似文献   

16.
Pancreatic ganglia are innervated by neurons in the gut and are formed by precursor cells that migrate into the pancreas from the bowel. The innervation of the pancreas, therefore, may be considered an extension of the enteric nervous system. Pituitary adenylate cyclase-activating polypeptide (PACAP) is present in a subset of enteric neurons. We investigated the presence of PACAP in the enteropancreatic innervation in guinea pigs, and the response of pancreatic neurons to PACAP-related peptides. PACAP immunoreactivity was found in nerve fibers in both enteric and pancreatic ganglia and in nerve bundles that travelled between the duodenum and pancreas. PACAP-immunoreactive nerve fibers were densely distributed in the pancreatic ganglia, where they surrounded a subset of cholinergic cell bodies. Pancreatic ganglia did not contain PACAP-immunoreactive cell bodies; however, neuronal perikarya with PACAP immunoreactivity were found in the myenteric plexus of the duodenum. These cells co-stored vasoactive intestinal peptide (VIP). PACAP depolarized pancreatic neurons. Pancreatic neurons were also depolarized by VIP; however, PACAP was more efficacious at depolarizing pancreatic cells than VIP. These findings are consistent with the view that the PACAP effects were mediated through PACAP-selective (PAC1) receptors. PACAP-responsive neurons displayed PAC1 receptor immunoreactivity, which was also found in islet cells and enteric neurons. These results provide support for the hypothesis that PACAP modulates reflex activity between the gut and pancreas. The excitatory effect of PACAP would be expected to potentiate pancreatic secretion.  相似文献   

17.
In this study we characterized receptors for pituitary adenylate cyclase-activating polypeptide (PACAP) in chick cerebral cortex by in vitro binding technique, using [125I]-PACAP27 as a ligand. The specific binding of [125I]-PACAP27 to chick cerebral cortical membranes was found to be rapid, stable, saturable, and of high affinity. Scatchard analysis suggested binding to a single class of receptor binding sites with high affinity (K(d)=0.41+/-0.08 nM) and high capacity (B(max)=457+/-35 fmol/mg protein). The relative rank order of potency of the tested peptides to inhibit [125I]-PACAP27 binding to chick cerebrum was: PACAP38 approximately PACAP27>PACAP6-27 approximately PACAP6-38 > chicken VIP > mammalian VIP > secretin (inactive). It is concluded that the cerebral cortex of chick, in addition to VPAC recognition sites, contains a large population of PAC(1)-type receptor binding sites.  相似文献   

18.
Recent progress in research on pituitary adenylate-activating polypeptide (PACAP) with a special emphasis on the brain is reviewed. PACAP is a pleiotropic neuropeptide that belongs to the secretin/glucagon/vasoactive intestinal peptide family. PACAP functions as a hypothalamic hormone, neurotransmitter, neuromodulator, and neurotrophic factor. Studies on the gene encoding the PACAP precursor and the specific PACAP receptor (PAC1-R) and its subtypes have provided information on the control of gene expression for PACAP, and the relationship between the receptor subtypes and the signal transduction pathways. The PAC1-R is a G protein-coupled receptor with seven transmembrane domains and belongs to the VIP receptor family. At least eight subtypes of PAC1-R result from alternate splicing. Each subtype is coupled to specific signaling pathways, and its expression is tissue or cell specific. PACAP stimulates the release of arginine vasopressin and increases cytosolic Ca2+ ([Ca2+]i). PACAP serves as a neurotransmitter and/or neuromodulator and the activation of the PAC1-R stimulates a cAMP-protein kinase A signal transduction pathway which in turn evokes the [Ca2+]i signaling system. More importantly, PACAP is a neurotrophic factor that may play an important role during the development of the brain. The PAC1-R is actively expressed in different neuroepithelia from early developmental stages and expressed in various brain regions during prenatal and postnatal development. In the adult brain, PACAP appears to function as a neuroprotective factor that attenuates the neuronal damage resulting from various insults.  相似文献   

19.
The parasympathetic signalling molecules acetylcholine, pituitary adenylate cyclase activating peptide-38 (PACAP38) and vasoactive intestinal peptide (VIP) may be released from parasympathetic fibres and activate sensory nerve fibres during migraine attacks. Recently, it was shown that VIP does not induce migraine-like attacks in migraine patients. Interestingly, PACAP38 activates the same VPAC receptors as VIP, but also specifically activates the PAC1 receptor. The present thesis includes four double-blind placebo-controlled crossover studies aimed to explore the role of acetylcholine, PACAP and VIP in migraine and head pain. In study I-III we investigated acetylcholine, via the analogue carbachol, and PACAP38 in a human model of migraine. In study IV we studied if PACAP38 and VIP might induce central sensitization, neurogenic inflammation and mast cell degranulation in a cutaneous model of acute pain. Study I-II showed that carbachol induced short lasting mild headache and moderate cephalic vasodilatation in both healthy volunteers and migraine patients, but did not induce migraine-like attacks. In study III PACAP38 induced headache in healthy subjects and delayed migraine-like attacks in migraine patients as well as sustained dilatation of cephalic vessels. In study IV VIP and PACAP38 evoked skin pain, central sensitization, neurogenic inflammation and mast cell degranulation, but VIP showed to be more potent than PACAP38 in inducing neurogenic inflammation and mast cell degranulation. In conclusion, we found that carbachol infusion was not a good model for experimental migraine provocation, probably because the maximal dose was insufficient to produce enough nitric oxide to trigger migraine. PACAP38 infusion is a new pathway for migraine induction and the results from study IV suggest that neurogenic inflammation and mast cell degranulation are unlikely to cause PACAP38 induced migraine. The present thesis contributes to our knowledge on migraine pathophysiology and suggests PAC1 receptor antagonism as a new target for migraine treatment.  相似文献   

20.
Yang J  Li X  Wang SR 《Neuroscience letters》2002,323(3):179-182
This study has demonstrated that the short and long form of the pituitary adenylate cyclase-activating polypeptide (PACAP), i.e. PACAP(27) and PACAP(38), moderately but significantly, and in a concentration (0.5-5 microM)-dependent manner, stimulated inositol phosphates (IPs) accumulation in myo-[(3)H]inositol-prelabeled cerebral cortical and hypothalamal slices of chick and duck, and in slices of rat cerebral cortex; both peptides had no effect on IPs formation in rat hypothalamus. Vasoactive intestinal peptide (VIP; 0.5-5 microM) weakly enhanced IPs accumulation in chick hypothalamus, had no significant action in chick cerebral cortex (in fact there was a tendency to attenuate the IPs response in this tissue), and slightly, but significantly, inhibited the IPs accumulation in rat cerebral cortex. VIP showed no activity in rat hypothalamus. It is concluded that the stimulatory action of PACAP on phosphoinositide metabolism in avian cerebral cortex, similar to rat cerebral cortex, is mediated via phospholipase C-linked PAC(1) type receptors. In chick hypothalamus, however, there may be a component of VPAC type receptors stimulating IPs formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号