首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent evidence suggests that the human sleep electroencephalogram (EEG) shows regional differences over both the sagittal and coronal planes. In the present study, in a group of 10 right-handers, the authors investigated the presence of hemispheric asymmetries in the homeostatic regulation of human sleep EEG power during and after selective slow-wave sleep (SWS) deprivation. The SWS deprivation was slightly more effective over the right hemisphere, but the left hemisphere showed a markedly larger increase of EEG power in the 1.00-24.75 Hz range during recovery-night non-REM sleep, and a larger increase of EEG power during both deprivation-night and recovery-night REM sleep. These results support the greater need for sleep recuperative processes of the left hemisphere, suggesting that local sleep regulation processes may also act during REM sleep.  相似文献   

2.
Sleep EEG was recorded and analyzed in patients with neurotic insomnia. It was found that interhemispheric asymmetry in the same individual can vary during sleep from right-hemispheric to left-hemispheric. Interhemispheric EEG asymmetry is closely related to the stage of sleep. The development of left-hemisphere or right-hemisphere asymmetry is mainly determined by activity of the right hemisphere. The development of interhemispheric asymmetry during wakefulness, stages 1 and 2 sleep, and delta sleep is mediated by common mechanisms. __________ Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 141, No. 2, pp. 157–160, February, 2006  相似文献   

3.
Sleep deprivation in the rat: VIII. High EEG amplitude sleep deprivation   总被引:1,自引:0,他引:1  
The disk apparatus was used to deprive six rats of the portion of non-rapid eye movement (NREM) sleep with high electroencephalogram (EEG) amplitude (HS2). All HS2 deprived (HS2D) rats died or were sacrificed when death seemed imminent within 23 to 66 days. No anatomical cause of death was identified. All deprived rats showed a debilitated appearance, lesions on their tails and paws, and weight loss in spite of increased food intake. Energy expenditure (calculated from the caloric value of food, weight change, and wastes) increased to more than twice baseline values. With one exception, yoked control rats remained generally healthy. It was not clear whether the changes in HS2D rats resulted from the loss of HS2 or the general disruption of NREM sleep that accompanied this loss. Also, it was not possible to produce major HS2 loss without incurring some loss of paradoxical sleep (PS). Control studies indicated that the partial PS loss in HS2D rats could not, in and of itself, account for all the pathological effects. However, an interaction of HS2D and partial PS loss in producing pathological effects cannot be ruled out.  相似文献   

4.
Sleep electroencephalographic (EEG) slow-wave activity is increased after wakefulness and decreases during sleep. Regional sleep EEG differences are thought to be a consequence of activation of specific cortical neuronal circuits during waking. We investigated the relationship between handedness and interhemispheric brain asymmetry. Bilateral EEG recordings were obtained from the frontal and occipital cortex in rats with a clear paw preference in a food-reaching task (right, n = 5; left, n = 5). While still na?ve to the task, no waking or sleep EEG asymmetry was present. During the food-reaching task, the waking EEG showed significant, substantial power increases in the frontal hemisphere contralateral to the dominant paw in the low theta range (4.5-6.0 Hz). Moreover, the non-REM sleep EEG following feeding bouts was markedly asymmetric, with significantly higher power in the hemisphere contralateral to the preferred paw in frequencies >1.5 Hz. No asymmetry was evident in the occipital EEG. Correlation analyses revealed a positive association between the hemispheric asymmetry during sleep and the degree of preferred use of the contralateral paw during waking in frequencies <9.0 Hz. Our findings show that handedness is reflected in specific, regional EEG asymmetry during sleep. Neuronal activity induced by preferential use of a particular forelimb led to a local enhancement of EEG power in frequencies within the delta and sigma ranges, supporting the hypothesis of use-dependent local sleep regulation. We conclude that inherent laterality is manifested when animals are exposed to complex behavioral tasks, and sleep plays a role in consolidating the hemispheric dominance of the brain.  相似文献   

5.
Long-term effects of 24-h sleep deprivation (SD) on sleep and sleep EEG were analyzed in male rats during 4 recovery days (Rec). An increase of total sleep time and non-rapid eye-movement (NREM) sleep was present during Rec 1-4, and of REM sleep in Rec 1 and in the dark periods of Rec 2 and 3. After the initial increase of slow-wave activity (SWA, mean EEG power density in the 0.75-4.0 Hz range) in NREM sleep, SWA declined below baseline until Rec 3. Sleep continuity was increased in Rec 1. The persistent effects of SD which are probably due to homeostatic and circadian facets of sleep regulation, must be taken into account in the design of SD studies.  相似文献   

6.
To test the theory that sleep is a regional, use-dependent process, rats were subjected to unilateral sensory stimulation during waking. This was achieved by cutting the whiskers on one side, in order to reduce the sensory input to the contralateral cortex. The animals were kept awake for 6 h in an enriched environment to activate the cortex contralateral to the intact side. Whiskers are known to be represented in the barrel field of the contralateral somatosensory cortex and their stimulation during exploratory behavior results in a specific activation of the projection area. In the 6 h recovery period following sleep deprivation, spectral power of the nonrapid eye-movement (NREM) sleep EEG in the 0.75-6.0 Hz range exhibited an interhemispheric shift towards the cortex that was contralateral to the intact whiskers. The results support the theory that sleep has a regional, use-dependent facet.  相似文献   

7.
De Gennaro L  Ferrara M  Bertini M 《Sleep》2001,24(6):673-679
STUDY OBJECTIVES: Aim of the present study was to assess changes in arousal rates after selective slow-wave (SWS) and total sleep deprivations. DESIGN: Two-way mixed design comparing the arousal index (Al), as expressed by the number of EEG arousals divided by sleep duration, in totally or selectively sleep deprived subjects. SETTING: Sleep laboratory. PATIENTS OR PARTICIPANTS: Nineteen normal male subjects [mean age=23.3 years (S.E.M.=0.55)]. INTERVENTIONS: Al was measured in baseline nights and after selective SWS (N=10) and total sleep deprivation (N=9). MEASUREMENTS AND RESULTS: During the baseline nights AI values changed across sleep stages as follows: stage 1 > stage 2 and REM > SWS, but did not present any significant variations as a function of time elapsed from sleep onset. The recovery after deprivation showed a reduction in EEG arousals, more pronounced after total sleep deprivation; this decrease affected NREM but not REM sleep. During the baseline nights Al showed a close-to-significance negative correlation with REM duration, while during the recovery nights a significant positive relation with stage 1 duration was found. CONCLUSIONS: The present results suggest that recuperative processes after sleep deprivation are also associated with a higher sleep continuity as defined by the reduction of EEG arousals.  相似文献   

8.
Several recent results show that sleep and sleep regulation are not only global phenomena encompassing the entire brain, but have local features. It is well established that slow-wave activity [SWA; mean electroencephalographic (EEG) power density in the 0.75-4.0 Hz band] in non-rapid eye movement (NREM) sleep is a function of the prior history of sleep and wakefulness. SWA is thought to reflect the homeostatic component of the two-process model of sleep regulation. According to this model, originally formulated for the rat and later extended to human sleep, the timing and structure of sleep are determined by the interaction of a homeostatic Process S and a circadian process. Our aim was to investigate the dynamics of SWA in the EEG of two brain regions (frontal and occipital cortex) after sleep deprivation (SD) in two of the mice strains most often used in gene targeting. C57BL/6J (n = 9) and 129/Ola (n = 8) were recorded during a 24-h baseline day, 6-h SD, and 18-h recovery. Both derivations showed a significant increase in SWA in NREM sleep after SD in both strains. In the first hour of recovery, SWA was enhanced more in the frontal derivation than in the occipital derivation and showed a faster decline. This difference resulted in a lower value for the time constant for the decrease of SWA in the frontal derivation (frontal: 10.9 +/- 2.1 and 6.8 +/- 0.9 h in Ola and C57, respectively; occipital: 16.6 +/- 2.1 and 14.1 +/- 1.5 h; P < 0.02; for each of the strains; paired t-test). Neither time constant differed significantly between the strains. The subdivision of SWA into a slower and faster band (0.75-2.5 Hz and 2.75-4.0 Hz) further highlighted regional differences in the effect of SD. The lower frequency band had a higher initial value in the frontal derivation than in the occipital derivation in both strains. Moreover, in the higher frequency band a prominent reversal took place so that power in the frontal derivation fell below the occipital values in both strains. Thus our results indicate that there may be differences in the brain in the effects of SD on SWA in mice, suggesting regional differences in the dynamics of the homeostatic component of sleep regulation. The data support the hypothesis that sleep has local, use- or waking-dependent features that are reflected in the EEG, as has been shown for humans and the laboratory rat.  相似文献   

9.
Changes in the waking EEG as a consequence of sleep and sleep deprivation.   总被引:14,自引:0,他引:14  
Electroencephalographic (EEG) activity was monopolarly recorded during resting wakefulness in 10 volunteers under the following conditions: at night before going to sleep, at night before total sleep deprivation, in the morning after waking, in the morning after sleep deprivation and at night after having slept during the day. Absolute and relative power and inter- and intrahemispheric correlation were established. After diurnal and nocturnal sleep as compared to sleep deprivation, we obtained the following significant results: interhemispheric correlations were higher; intrahemispheric correlations were lower; absolute power of alpha 2, beta 1 and beta 2 was lower; and relative power of alpha 2 and beta 2 was lower. EEG changes as a consequence of sleep or lack of sleep are dependent on prior sleep and/or wakefulness and not on circadian phase. EEG activity during wakefulness is a sensitive parameter and a useful tool to assess the consequences of sleep on brain functional organization.  相似文献   

10.
Sleep deprivation in the rat: IV. Paradoxical sleep deprivation   总被引:6,自引:0,他引:6  
Twelve rats were subjected to paradoxical sleep deprivation (PSD) by the disk apparatus. All PSD rats died or were sacrificed when death seemed imminent within 16-54 days. No anatomical cause of death was identified. All PSD rats showed a debilitated appearance, lesions on their tails and paws, and weight loss in spite of increased food intake. Their yoked control (PSC) rats remained healthy. Since dehydration was ruled out and several measures indicated normal or accelerated use of nutrients, the food-weight changes in PSD rats were attributed to increased energy expenditure (EE). The measurement of EE, based upon caloric value of food, weight, and wastes, indicated that all PSD rats increased EE, with mean levels reaching more than twice baseline values. All of these changes had been observed in rats deprived totally of sleep; the major difference was that they developed more slowly in PSD rats.  相似文献   

11.
Sleep deprivation in the rat: III. Total sleep deprivation   总被引:5,自引:0,他引:5  
Ten rats were subjected to total sleep deprivation (TSD) by the disk apparatus. All TSD rats died or were sacrificed when death seemed imminent within 11-32 days. No anatomical cause of death was identified. All TSD rats showed a debilitated appearance, lesions on their tails and paws, and weight loss in spite of increased food intake. Their yoked control (TSC) rats remained healthy. Since dehydration was ruled out and several measures indicated accelerated use rather than failure to absorb nutrients, the food-weight changes in TSD rats were attributed to increased energy expenditure (EE). The measurement of EE, based upon caloric value of food, weight, and wastes, indicated that all TSD rats increased EE, with mean levels reaching more than twice baseline values.  相似文献   

12.
Several studies have emphasized the relationship between (1) rapid eye movement sleep (REM sleep) and learning, and (2) between REM sleep and asymmetry in EEG activity. Since we have shown that obtaining operant conditioned responses via auditory biofeedback during REM sleep is feasible, we demonstrate here that REM contingent auditory stimulations (white noise stimulation or interruption of a continuous white noise stimulation) lead to differential changes in phasic and tonic components of REM sleep. Whereas during baseline nights a relative right activation is found in the medium bands of EEG frequencies, our procedure seems to induce a systematic interhemispheric change during experimental nights. A new approach to the information processing hypothesis during REM sleep is proposed in terms of functional lateralized modifications of the EEG.  相似文献   

13.
NREM sleep with low-voltage EEG in the rat   总被引:5,自引:0,他引:5  
NREM sleep in the rat has traditionally been defined by electroencephalographic (EEG) amplitudes above those of wakefulness (W) and paradoxical sleep (PS); we refer to this high-amplitude NREM sleep as "HS." We have found that approximately 5% of total time is occupied by episodes in which EEG amplitude is low, distinguishing it from HS; theta amplitude is low, distinguishing it from PS; and electromyographic (EMG) amplitude is low, distinguishing it from W. We have called these low-EEG, low-theta, low-EMG episodes "low-amplitude sleep" (LS). Three studies are done to elucidate additional characteristics of LS. Polygraphically scored 30-s epochs were matched with independent classifications of rat behavior as W, NREM, or PS; 87% of polygraphically scored LS epochs were matched with NREM sleep behavior. Response thresholds to noxious stimuli were lowest in W, intermediate and similar in LS and HS, and highest in PS. The incidence of PGO-type (ponto-geniculo-occipital) waves in W, HS, and LS were all very low in comparison with rates in PS. Thus, LS and HS exhibited similarly quiescent spontaneous behavior, similar intermediate response thresholds, and similar low rates of PGO-type activity. Accordingly, we have proposed that LS, along with HS, is an NREM sleep stage.  相似文献   

14.
The sleep-wake cycles of 24- and 30- day-old rats reared in darkness from 48 hr after birth (E) were polygraphically recorded in 3 3-hr sessions (0900–1200 hr; 1230–1530 hr; 1600–1900 hr) and compared to normally reared controls (C). The total amount of paradoxical sleep (PS) over the 3 3-hr sessions of the light-deprived rats (E24 and E30) was significantly less than in the controls (C24, and C30). The distribution of PS over the 3 sessions was different for the control groups: C24 showed a significantly greater amount of PS and SWS during 1230–1530 hr, and C30 during 1230–1530 and 16–19 hr. Light-deprived groups showed no significant variations neither in PS nor in SWS or W within the three sessions. These data fail to support the hypothesis that PS functions as a compensatory stimulation under conditions of low stimulation.  相似文献   

15.
Effects of deprivation of REM sleep on spontaneous occurring spike wave complexes in the WAG/Rij rat strain were studied by means of the pendulum and platform technique. During the deprivation period, which lasted three days, variable results were obtained. While a suppression of the total duration of epileptic activity was found for the pendulum deprived animals, no such evident effect was detected in the platform deprived rats. Probably, instrumental effects are responsible for these differential results. On the other hand, subsequent to deprivation, a prolonged reduction of the total duration of spike wave activity was seen in both deprived groups. While it is known that under normal circumstances absences only occur during low levels of arousal and because there is evidence that deprivation of REM sleep has arousal increasing properties, it is suggested that the reduction in epilepsy is caused by an increase of arousal. This result also implies that, at least in the case of absence epilepsy, REM sleep deprivation is not the crucial factor for the epilepsy provoking effect of total sleep deprivation.  相似文献   

16.
Asymmetry of waking electroencephalography (EEG) alpha power in frontal regions has been correlated with waking emotional reactivity and the emotional content of dream reports. Little is known regarding alpha asymmetry during sleep. The present study was performed to compare alpha power and alpha power asymmetry in various brain regions across states of sleep and wakefulness. Waking and sleep EEG were recorded in a group of patients undergoing polysomnographic evaluation for possible sleep disorders. Alpha EEG asymmetry in frontal and temporal regions was significantly correlated in waking versus sleep, particularly during rapid eye movement (REM) sleep. These results suggest that patterns of frontal alpha asymmetry are stable across sleep and waking and may be related to emotional reactivity during dreaming. During sleep, alpha power was highest during slow-wave sleep and lowest during REM sleep. Implications of these data for understanding the functional significance of alpha power during waking and sleeping are considered.  相似文献   

17.
During specific rapid eye movement (REM) sleep deprivation its homeostatic regulation is expressed by progressively more frequent attempts to enter REM and by a compensatory rebound after the deprivation ends. The buildup of pressure to enter REM may be hypothesized to depend just on the time elapsed without REM or to be differentially related to non-REM (NREM) and wakefulness. This problem bears direct implications on the issue of the function of REM and its relation to NREM. We compared three protocols that combined REM-specific and total sleep deprivation so that animals underwent similar 3-h REM deprivations but different concomitant NREM deprivations for the first 2 (2T1R), 1 (1T2R), or 0 (3R) hours. Deprivation periods started at hour 6 after lights on. Twenty-two chronically implanted rats were recorded. The median amount of REM during all three protocols was approximately 1 min. The deficits of median amount of NREM in minutes within the 3-h deprivation periods as compared with their baselines were, respectively for 2T1R, 1T2R, and 3R, 35 (43%), 25 (25%), and 7 (7%). Medians of REM rebound in the three succeeding hours, in minutes above baseline, were, respectively, 8 (44%), 9 (53%), and 9 (50%), showing no significant differences among protocols. Attempted transitions to REM showed a rising trend during REM deprivations reaching a final value that did not differ significantly among the three protocols. These results support the hypothesis that the build up of REM pressure and its subsequent rebound is primarily related to REM absence independent of the presence of NREM.  相似文献   

18.
Jeong J  Kim DJ  Kim SY  Chae JH  Go HJ  Kim KS 《Sleep》2001,24(2):197-202
STUDY OBJECTIVES: Sleep deprivation can affect the waking EEG that may reflect information processing of the brain. We examined the effect of total sleep deprivation (TSD) on nonlinear dynamics of the waking EEG. DESIGN: Paired-group design. SETTING: A sleep disorders laboratory in a hospital. PARTICIPANTS: Twenty healthy male volunteers. INTERVENTIONS: Waking EEG data were recorded from subjects with eyes closed after (a) an 8-hour night's sleep and (b) TSD for 24 hours. The dimensional complexity (D2), as a nonlinear measure of complexity, of the EEG after a full night sleep were compared with those of the EEG after TSD. MEASUREMENTS AND RESULTS: The sleep-deprived states had lower D2 values at three channels (P4, O2, and C3) than normal states. CONCLUSIONS: TSD results in the decrease of complexity in the brain, which may imply sub-optimal information processing of the cerebral cortex. We suggest that the investigation of the relation between nonlinear dynamics of the waking EEG induced by TSD and cognitive performance may offer fruitful clues for understanding the role of sleep and the effects of sleep deprivation on brain function.  相似文献   

19.
Sleep deprivation exerts antidepressant effects after only one night of deprivation, demonstrating that a rapid antidepressant response is possible. In this report we tested the hypothesis that total sleep deprivation induces an increase in extracellular serotonin (5-HT) levels in the hippocampus, a structure that has been proposed repeatedly to play a role in the pathophysiology of depression. Sleep deprivation was performed using the disk-over-water method. Extracellular levels of 5-HT were determined in 3 h periods with microdialysis and measured by high performance liquid chromatography coupled with electrochemical detection. Sleep deprivation induced an increase in 5-HT levels during the sleep deprivation day. During an additional sleep recovery day, 5-HT remained elevated even though rats displayed normal amounts of sleep. Stimulus control rats, which had been allowed to sleep, did not experience a significant increased in 5-HT levels, though they were exposed to a stressful situation similar to slee-deprived rats. These results are consistent with a role of 5-HT in the antidepressant effects of sleep deprivation.  相似文献   

20.
Applying a modified flowerpot technique, which made it possible to use a test animal as its own control, twenty-four hour cycles of locomotor activity were recorded in eight juvenile male rats on 12/12 hr light/dark (LD) schedule during six days of rapid eye movement (REM) sleep deprivation. It was found that the LD difference in locomotor activity unrelated to feeding was instantaneously abolished during REM sleep deprivation. The daily rhythm of food-directed activity, however, was only gradually attenuated. Due to this equalisation in the light and dark activity the rats gave an impression of hyperactivity during the light hours although the total daily motor output after an initial increase returned close to the baseline value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号