首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasmodium berghei-infected mice, a well-recognized model of experimental cerebral malaria (ECM), exhibit many of the hallmarks of a systemic inflammatory response, with organ damage in brain, lung, and kidneys. Identification of the molecules mediating pathogenesis of the inflammatory response, such as leukocyte adhesion, may lead to new therapies. Indeed, mice lacking the cell adhesion molecule P-selectin were significantly (P = 0.005) protected from death due to P. berghei malaria compared with C57BL/6 controls despite similar parasitemia (P = 0.6) being found in both groups of mice. P-selectin levels assessed by the quantitative dual radiolabeled monoclonal antibody technique increased significantly (P < 0.05) in several organs in C57BL/6 mice infected with P. berghei, supporting the concept of a systemic inflammatory response mediating malarial pathogenesis. Intravital microscopic analysis of the brain microvasculature demonstrated significant (P < 0.001) leukocyte rolling and adhesion in brain venules of P. berghei-infected mice compared with those found in uninfected controls. The maximum leukocyte adhesion occurred on day 6 of P. berghei infection, when the mice become moribund and exhibit marked vascular leakage into the brain, lung, and heart. However, P-selectin levels were significantly (P < 0.005) increased in brain, lung, and kidneys during P. berghei malaria in ECM-resistant BALB/c mice compared with those found in uninfected BALB/c controls, indicating that increased P-selectin alone is not sufficient to mediate malarial pathogenesis. Leukocyte adhesion to brain microvessels of P-selectin-deficient mice with P. berghei malaria was similar to that observed in control mice. Collectively, these results indicate that P-selectin is important for the development of malarial pathogenesis but is not required for leukocyte adhesion in brain.  相似文献   

2.
P-selectin is a leukocyte adhesion receptor expressed on the surface of activated platelets and endothelial cells. Its role in the pathogenesis of cerebral malaria was explored in a murine model of cerebral malaria. Infection of mice with Plasmodium berghei ANKA led to P-selectin up-regulation in brain vessels of cerebral malaria-susceptible mice but not of cerebral malaria-resistant mice. Treatment of susceptible mice with anti-mouse P-selectin mAb failed to prevent the development of the neurological syndrome. However, P-selectin-deficient mice infected with Plasmodium berghei ANKA had a cumulative incidence of cerebral malaria which was significantly reduced compared to wild-type animals (4.5% versus 80%, respectively), despite identical levels of parasitemia, platelet and leukocyte accumulation. To determine whether P-selectin on platelets and/or endothelium was responsible for the microvascular pathology, cerebral malaria was assessed in chimeric mice deficient in platelet or endothelial P-selectin, which were generated by bone marrow transplantation. Mice deficient only in endothelial P-selectin did not show any sign of cerebral malaria (vascular plugging, hemorrhages, or edema), while mice lacking only platelet P-selectin showed signs of cerebral malaria similar to that seen in wild-type mice. These results indicate that endothelial P-selectin plays an important role in the pathogenesis of cerebral malaria.  相似文献   

3.
Cerebral malaria (CM) is a major complication of Plasmodium falciparum infection, particularly in children. The pathogenesis of cerebral malaria involves parasitized red blood cell (RBC)-mediated vascular inflammation, immune stimulation, loss of blood-brain barrier integrity, and obstruction of cerebral capillaries. Therefore, blunting vascular inflammation and immune cell recruitment is crucial in limiting the disease course. Beta interferon (IFN-β) has been used in the treatment of diseases, such as multiple sclerosis (MS) but has not yet been explored in the treatment of CM. Therefore, we sought to determine whether IFN-β also limits disease progression in experimental cerebral malaria (ECM). Plasmodium berghei-infected mice treated with IFN-β died later and showed increased survival, with improved blood-brain barrier function, compared to infected mice. IFN-β did not alter systemic parasitemia. However, we identified multiple action sites that were modified by IFN-β administration. P. berghei infection resulted in increased expression of chemokine (C-X-C motif) ligand 9 (CXCL9) in brain vascular endothelial cells that attract T cells to the brain, as well as increased T-cell chemokine (C-X-C motif) receptor 3 (CXCR3) expression. The infection also increased the cellular content of intercellular adhesion molecule 1 (ICAM-1), a molecule important for attachment of parasitized RBCs to the endothelial cell. In this article, we report that IFN-β treatment leads to reduction of CXCL9 and ICAM-1 in the brain, reduction of T-cell CXCR3 expression, and downregulation of serum tumor necrosis factor alpha (TNF-α). In addition, IFN-β-treated P. berghei-infected mice also had fewer brain T-cell infiltrates, further demonstrating its protective effects. Hence, IFN-β has important anti-inflammatory properties that ameliorate the severity of ECM and prolong mouse survival.  相似文献   

4.
The Plasmodium berghei-infected mouse model is a well-recognized model for human cerebral malaria. Mice infected with P. berghei exhibit (i) metabolic acidosis (pH < 7.3) associated with elevated plasma lactate concentrations, (ii) significant (P < 0.05) vascular leakage in their lungs, hearts, kidneys, and brains, (ii) significantly (P < 0.05) higher cell and serum glutamate concentrations, and (iv) significantly (P < 0.05) lower mean arterial blood pressures. Because these complications are similar to those of septic shock, the simplest interpretation of these findings is that the mice develop shock brought on by the P. berghei infection. To determine whether the immune system and specifically CD8(+) T cells mediate the key features of shock during P. berghei malaria, we depleted CD8(+) T cells by monoclonal antibody (mAb) treatment and assessed the complications of malarial shock. P. berghei-infected mice depleted of CD8(+) T cells by mAb treatment had significantly reduced vascular leakage in their hearts, brains, lungs, and kidneys compared with infected controls treated with rat immunoglobulin G. CD8-depleted mice were significantly (P < 0.05) protected from lactic acidosis, glutamate buildup, and diminished HCO(3)(-) levels. Although the blood pressure decreased in anti-CD8 mAb-treated mice infected with P. berghei, the cardiac output, as assessed by echocardiography, was similar to that of uninfected control mice. Collectively, our results indicate that (i) pathogenesis similar to septic shock occurs during experimental P. berghei malaria, (ii) respiratory distress with lactic acidosis occurs during P. berghei malaria, and (iii) most components of circulatory shock are ameliorated by depletion of CD8(+) T cells.  相似文献   

5.
Immunopathology of thrombocytopenia in experimental malaria.   总被引:6,自引:0,他引:6       下载免费PDF全文
An early thrombocytopenia was observed in CBA mice during acute infection with Plasmodium berghei. This was associated with an increase in bone marrow megakaryocytes and a reduction of normal syngeneic 111Indium-labelled platelet life span. Malaria-induced thrombocytopenia was thus considered to be the result of increased peripheral platelet destruction rather than central hypoproduction. The occurrence of thrombocytopenia was modulated by T-cell depletion. Indeed, thymectomized, irradiated or anti-CD4 monoclonal antibody-treated mice failed to develop thrombocytopenia, although they were infected to the same extent. Conversely, a significant thrombocytopenia was observed in thymectomized mice reconstituted with CD4+ T cells. During the course of infection, a significant inverse correlation was found between platelet counts and platelet-associated IgG. Normal mice passively transferred with serum from syngeneic malaria-infected mice developed thrombocytopenia. The possibility to raise monoclonal anti-platelet antibodies from P. berghei-infected animals further suggested a role for an antibody-mediated platelet destruction during acute murine malaria infection. These results indicate that in murine malaria, thrombocytopenia is mediated by immune mechanisms and that CD4+ T cells might be significantly involved.  相似文献   

6.
Antibody-dependent cell-mediated cytotoxicity (ADCC) against mouse erythrocytes sensitized with immunoglobulin G was studied in mice with malaria. Spleen cells from mice had enhanced cytotoxic activity early in Plasmodium berghei infection but not later in the disease. Sera from infected animals and partially purified malarial immune complexes inhibited ADCC. In addition, ADCC was diminished in spleen cells from mice infected with the lethal variant of P. yoelii 17x compared with that in mice infected with the nonlethal variant. P. berghei-infected erythrocytes did not release 51Cr when incubated with effector cells unless the erythrocytes were sensitized with antibodies against normal mouse erythrocytes.  相似文献   

7.
Lack of an adequate animal model of Plasmodium falciparum severe malarial anemia (SMA) has hampered the understanding of this highly lethal condition. We developed a model of SMA by infecting C57BL/6 mice with P. chabaudi followed after recovery by P. berghei infection. P. chabaudi/P. berghei-infected mice had an initial 9- to 10-day phase of relatively low parasitemia and severe anemia, followed by a second phase of hyperparasitemia, more profound anemia, reticulocytosis, and death 14 to 21 days after infection. P. chabaudi/P. berghei-infected animals had more intense splenic hematopoiesis, higher interleukin-10 (IL-10)/tumor necrosis factor alpha and IL-12/gamma interferon (IFN-γ) ratios, and higher antibody levels against P. berghei and P. chabaudi antigens than P. berghei-infected or P. chabaudi-recovered animals. Early treatment with chloroquine or artesunate did not prevent the anemia, suggesting that the bulk of red cell destruction was not due to the parasite. Red cells from P. chabaudi/P. berghei-infected animals had increased surface IgG and C3 by flow cytometry. However, C3(-/-) mice still developed anemia. Tracking of red cells labeled ex vivo and in vivo and analysis of frozen tissue sections by immunofluorescence microscopy showed that red cells from P. chabaudi/P. berghei-infected animals were removed at an accelerated rate in the liver by erythrophagocytosis. This model is practical and reproducible, and its similarities with P. falciparum SMA in humans makes it an appealing system with which to study the pathogenesis of this condition and explore potential immunomodulatory interventions.  相似文献   

8.
The sequestration of parasitized erythrocytes in the microvasculature of vital organs is central to the pathogenesis of severe Plasmodium falciparum malaria. This process is mediated by specific interactions between parasite adherence ligands and host receptors on vascular endothelium such as intercellular adhesion molecule-1 (ICAM-1) and CD36. Using immunohistochemistry we have examined the distribution of putative sequestration receptors in different organs from fatal cases of P.falciparum malaria and noninfected controls. Receptor expression and parasite sequestration in the brain were quantified and correlated. Fatal malaria was associated with widespread induction of endothelial activation markers, with significantly higher levels of ICAM-1 and E-selectin expression on vessels in the brain. In contrast, cerebral endothelial CD36 and thrombospondin staining were sparse, with no evidence for increased expression in malaria. There was highly significant co-localization of sequestration with the expression of ICAM-1, CD36, and E-selectin in cerebral vessels but no cellular inflammatory response. These results suggest that these receptors have a role in sequestration in vivo and indicate that systemic endothelial activation is a feature of fatal malaria.  相似文献   

9.
We explored the role of CD40-CD40L (CD154) in the severe malaria elicited by Plasmodium berghei anka infection in mice. Mortality was >90% by day 8 after infection in +/+ mice, but markedly decreased in CD40-/- or in CD40L-/- mice, as well as in +/+ mice treated with anti-CD40L monoclonal antibody. Parasitemia was similar in the different conditions. Breakdown of the blood-brain barrier was evident in infected +/+, but not in CD40-/- mice. Thrombocytopenia was less severe in CD40-/- mice than in the +/+ controls. Sequestration of macrophages in brain venules and alveolar capillaries was reduced in CD40-/- or in CD40L-/- mice, whereas sequestration of parasitized red blood cells or polymorphonuclear leukocytes in alveolar capillaries was CD40-CD40L-independent. CD40 mRNA was increased in the brain and lung of infected mice whereas CD40L was increased in the lung. Tumor necrosis factor plasma levels were similarly increased in infected +/+ or CD40-/- mice. Expression of CD54 and its mRNA levels in the brain were moderately decreased in CD40-deficient mice. Thus the mortality associated with severe malaria requires CD40-CD40L interaction that contributes to the breakdown of the blood-brain barrier, macrophage sequestration, and platelet consumption.  相似文献   

10.
Nude mice died when infected with the normally avirulent malarial parasite Plasmodium berghei yoelii. Furthermore, malaria recrudesced in Nu/Nu mice after the termination of acute disease by treatment with clindamycin. Recrudescence was not observed in Nu/Nu mice that had been grafted with thymic tissue or treated with hyperimmune serum. Mice mad B cell deficient by treatment with anti-mu-chain serum also died when infected with P. berghei yoelii. The data suggest that a crucial role of the thymus in preventing recrudescent malaria in this model system is to provide a helper function in the production of protective antibody.  相似文献   

11.
The ATP-binding cassette transporter A1 (ABCA1) modulates the transbilayer distribution of phosphatidylserine at the outer leaflet of the plasma membrane. This external exposure of phosphatidylserine is a hallmark of microparticle production and is impaired in ABCA1(-/-) mice. In this study, we report about the complete resistance to cerebral malaria of these mice. On analysis of histological and systemic parameters we evidenced an impairment of cellular responses to Plasmodium berghei ANKA infection in ABCA1(-/-) mice, as shown by lower plasma tumor necrosis factor levels, a weaker up-regulation of endothelial adhesion molecules in brain microvessels, a reduced leukocyte sequestration, as well as an ablated platelet accumulation. Besides, the number and the procoagulant activity of microparticles were dramatically reduced in the plasma of ABCA1(-/-) compared to ABCA1(+/+) mice. Moreover, microparticles derived from Plasmodium berghei ANKA-infected ABCA1(+/+) mice induced a significant increase of tumor necrosis factor release by noninfected macrophages. In ABCA1(-/-) mice platelet and macrophage responses to vesiculation agonists were ablated and reduced, respectively. Altogether, by pointing out the ABCA1 transporter as a major element controlling cerebral malaria susceptibility, these data provide a novel insight into its pathophysiological mechanisms and are consistent with a pathogenic role of microparticles in this neurological syndrome.  相似文献   

12.
Recent epidemiological observations suggest that clinical evolution of Plasmodium falciparum infections might be influenced by the concurrent presence of another Plasmodium species, and such mixed-species infections are now known to occur frequently in residents of most areas of endemicity. We used mice infected with P. berghei ANKA (PbA), a model for cerebral malaria (CM), to investigate the influence of experimental mixed-species infections on the expression of this pathology. Remarkably, the development of CM was completely inhibited by the simultaneous presence of P. yoelii yoelii but not that of P. vinckei or another line of P. berghei. In the protected coinfected mice, the accumulation of CD8(+) T cells in the brain vasculature, a pivotal step in CM pathogenesis, was found to be abolished. Protection from CM was further found to be associated with species-specific suppression of PbA multiplication. These observations establish the concept of mixed Plasmodium species infections as potential modulators of pathology and open novel avenues to investigate mechanisms implicated in the pathogenesis of malaria.  相似文献   

13.
Nifedipine and verapamil (Martin et al. Science 1987;235:899-901) are a class of calcium channel blockers involved in the reversal of chloroquine (CQ) drug resistance in CQ-sensitive Plasmodium spp. Nifedipine alters calcium-dependent functions of macrophages and neutrophils during Plasmodium berghei malaria. However, knowledge of nifedipine-induced immunomodulation of T cell functions during P. berghei malaria is still limited. We investigated the effect of nifedipine on the immune status of splenic T cells during P. berghei malaria. The intracellular calcium levels were determined in the FURA-2A/M loaded T cells by spectrofluorometry. Splenic T cell proliferation, phosphatidylserine (PS) externalization, Fas expression and Bcl2/Bax expression were determined by flow cytometry. We report a significant increase in mean percent parasitemia in nifedipine-treated and P. berghei-infected mice. Although nifedipine treatment alone did not affect the resting state free calcium levels in splenic T cells, the rise in intracellular calcium levels of T cells following P. berghei infection was significantly less in nifedipine-treated mice compared to untreated groups at various parasitemia levels. Antigen-specific splenic T cell proliferation and apoptosis was ablated in nifedipine-treated and untreated groups at various parasitemia levels. The study unequivocally reflects the suppression of P. berghei-specific T cell immune responses by nifedipine.  相似文献   

14.
The role of splenic macrophages in resistance to lethal Plasmodium berghei or self-limiting Plasmodium yoelii was studied by testing their rate of phagocytosis and their production of O2 metabolites (H2O2 and O2-) upon nonspecific stimulation with zymosan. It was found that, compared with P. berghei, infection of mice with P. yoelii resulted in an earlier appearance and in higher numbers of adherent cells in the spleen. Furthermore, the capacity of macrophages to generate O2 metabolites was significantly higher in P. yoelii- than in P. berghei-infected mice. This difference in the production of O2 metabolites was more pronounced when calculated on a per spleen basis. On the other hand, phagocytosis by macrophages was similar in both types of infection. The data suggest that lethal and nonlethal malaria species differ in their capacity to induce the production of O2 metabolites by macrophages, thereby influencing the final course of disease.  相似文献   

15.
Experimental severe malaria (ESM; also known as experimental cerebral malaria) is an acute lethal syndrome caused by infection with Plasmodium berghei ANKA and associated with coma and other neurological manifestations in mice. Various inbred strains of mice exhibit differences in susceptibility to the development of ESM. For example, C57BL/6 mice are highly susceptible and DBA/2 mice are relatively resistant. We report here the results of a genomewide scan for host genomic regions that control resistance to ESM in DBA/2 mice using an F(2) intercross population of susceptible and resistant strains. A region of mid-chromosome 18 was found to be a major determinant of resistance to ESM.  相似文献   

16.
Platelet (P-) selectin and intercellular adhesion molecule-1 (ICAM-1) mediate accumulation of neutrophils in brain. However, the mechanisms regulating neutrophil accumulation and damage after traumatic brain injury (TBI) are poorly defined. We hypothesized that mice deficient in both P-selectin and ICAM-1 (-/-) would have decreased brain neutrophil accumulation and edema, and improved functional and histopathological outcome after TBI compared with wild-type (+/+). In Protocol I, neutrophils and brain water content were quantified at 24 h after TBI. No difference in brain neutrophil accumulation was observed between groups; however, brain edema was decreased in dual P-selectin and ICAM-1 -/- (P < 0.05 vs. +/+ mice). In Protocol II, after TBI, tests of motor and memory function and histopathology were assessed over 21 days. No difference in motor or memory function or histopathological damage was observed between +/+ and -/- mice. A role for adhesion molecules in the pathogenesis of brain edema independent of leukocyte accumulation in brain is suggested.  相似文献   

17.
Tumor necrosis factor-alpha (TNF) is known to be an important mediator in the pathogenesis of several inflammatory diseases. Vascular endothelial cells represent a major target of TNF effects. Platelet sequestration has been found in brain microvessels during experimental cerebral malaria and lung in experimental pulmonary fibrosis, implying that it may participate in TNF-dependent microvascular pathology. In this study, we investigated the mechanisms of platelet-endothelial interaction, using co-cultures between platelets and TNF-activated mouse brain microvascular endothelial cells (MVECs). Adhesion and fusion of platelets to MVECs was evidenced by electron microscopy, dye transfer, and flow cytometry. It was induced by TNF and interferon-gamma and depended on LFA-1 expressed on the platelet surface and ICAM-1 expressed on MVECs. The adhesion and fusion also led to the transfer of platelet markers on the MVEC surface, rendering these more adherent for leukocytes, and to an enhanced MVEC sensitivity to TNF-induced injury. These results suggest that platelets can participate in TNF-induced microvascular pathology.  相似文献   

18.
为探讨调节性T细胞(Tregs)对伯氏疟原虫感染所致鼠脑型疟发生和感染结局的影响机制,用伯氏疟原虫ANKA株分别感染对照组和抗CD25单克隆抗体注射组C57BL/6小鼠,计数红细胞感染率;感染前和感染后3、5、8天制备脾细胞悬液,流式细胞术检测脾Tregs百分含量;ELISA和Griess方法检测脾细胞培养上清IFN-γ、IL-10和NO水平。结果表明大多数C57BL/6鼠于感染后8—11天死于脑疟,抗CD25单克隆抗体注射组小鼠感染后3~4周死于贫血和过度原虫血症。对照组小鼠脾细胞培养上清IFN-γ、NO、IL—10水平于感染后开始升高,感染后5天达到峰值,感染后8天与感染后5天相比,IFN-γ、NO轻微下降,IL-10显著下降。感染后3、5天,实验组IFN-γ、NO水平显著高于对照组,IL—10水平显著低于对照组。感染后8天,实验组和对照组IFN-γ、NO、IL-10水平得到逆转。这表明Tregs通过修饰前炎症应答影响伯氏疟原虫感染鼠脑型疟发生和感染结局。  相似文献   

19.
The role of platelets was investigated in two models of lipopolysaccharide (LPS)-induced toxicity in mice: the systemic reaction, provoked by intravenous LPS injection in D-galactosamine-sensitized recipients, which results in host death, and the local reaction, elicited in the skin by sequential injections of LPS and tumor necrosis factor alpha at 24-h intervals, which results in hemorrhagic necrosis. In both models, the depletion of platelets with a rabbit polyclonal or a mouse monoclonal antiplatelet immunoglobulin G afforded significant protection. In the local reaction, studies of the distribution of 111In-labelled platelets as well as optical and electron microscopy showed that platelets are localized in the dermal venules before hemorrhage occurs. Anti-CD11a (LFA-1) and anti-CD54 (ICAM-1) monoclonal antibodies prevented both platelet localization and hemorrhagic necrosis, and these determinants were detected on mouse platelets by immunofluorescence. The antiplatelet monoclonal antibody did not reduce the localization of polymorphonuclear leukocytes in the dermal venules, as shown by histological sections. Thus, in the local reaction, the stimulation with LPS and tumor necrosis factor alpha leads to a binding of platelets to the endothelium of venules by their beta 2 integrins, which seems necessary for the development of the hemorrhagic necrosis.  相似文献   

20.
Tumor necrosis factor (TNF) induced by Plasmodium berghei ANKA (PbA) infection was suggested to play an important role in the development of cerebral malaria (CM). We asked whether TNF-alpha/beta double-deficient mice, which have a complete disruption of the TNF-signaling pathways, are protected from CM and what might be the possible mechanisms of protection. PbA infection induces fatal CM in wild-type mice, which die within 5 to 8 days with severe neurological signs. In contrast, TNF-alpha/beta-deficient mice are completely resistant to PbA-induced CM. As PbA-induced up-regulation of endothelial intercellular adhesion molecule (ICAM)-1 expression as well as the systemic release of nitric oxide is found only in wild-type mice, TNF is apparently central for the recruitment of mononuclear cells and microvascular damage. Mononuclear cell adhesion to the endothelium, vascular leak and, perivascular hemorrhage are found only in the brain of wild-type mice. By contrast, the development of parasitemia and anemia is independent of TNF. Resistance to CM in TNF-alpha/beta-deficient mice is associated with reduced interferon-gamma and interleukin-12 expression in the brain, in the absence of increased T helper type 2 cytokines. In conclusion, TNF apparently is required for PbA-induced endothelial ICAM-1 up-regulation and subsequent microvascular pathology resulting in fatal CM. In the absence of TNF, ICAM-1 and nitric oxide up-regulation are reduced, and PbA infection fails to cause fatal CM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号