首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Key “driver” mutations have been discovered in specific subgroups of non-small-cell lung cancer (NSCLC) patients. Activating mutations in the form of deletions in exon 19 (del 19) or the missense mutation L858R in the tyrosine kinase domain of the epidermal growth factor receptor (EGFR) predict outcome to EGFR tyrosine kinase inhibitors (TKIs) such as gefitinib and erlotinib. Pooled data from several phase II studies show that gefitinib and erlotinib induce responses in over 70% of NSCLC patients harbouring EGFR mutations, with progression-free survival (PFS) ranging from 9 to 13 months and median survival of around 23 months. Two studies in Caucasian and Asian patients have confirmed that these subgroups of patients attain response rates of 70% with erlotinib and gefitinib, including complete responses, PFS up to 14 months and median survival up to 27 months. These landmark outcomes have been accompanied by new challenges: the additional role of chemotherapy and the management of tumours with the secondary T790M mutation that confers resistance to EGFR TKIs. Mechanisms of resistance to reversible EGFR TKIs should be further clarified and could be related to modifications in DNA repair. The presence of double mutations (T790M plus either L858R or del 19) at the time of diagnosis could be much more frequent than originally thought. The sensitivity to EGFR TKIs could be greatly influenced by the expression of genes involved in the repair of DNA double-strand breaks by homologous recombination and non-homologous end joining.  相似文献   

2.
Most advanced Non–Small-cell lung cancers (NSCLCs) with activating epidermal growth factor receptor (EGFR) mutations (exon 19 deletions or L858R) initially respond to the EGFR tyrosine kinase inhibitors (TKIs) gefitinib and erlotinib. However, over time (median of 6–12 months), most tumors develop acquired resistance to EGFR TKIs. Intense research in these NSCLCs has identified two major mechanisms of resistance to gefitinib/erlotinib: secondary resistance mutations and “oncogene kinase switch" systems. The secondary T790M mutation occurs in 50% of EGFR-mutated patients with TKI resistance, and in vitro, this mutation negates the hypersensitivity of activating EGFR mutations. Sensitive detection methods have identified a proportion of TKI-naive tumors that carry T790M, and these resistant clones may be selected after exposure to gefitinib or erlotinib. Other secondary resistance mutations (D761Y, L747S, T854A) seem to be rare. The amplification of the MET oncogene is present in 20% of TKI-resistant tumors; however, in half of the cases with this “oncogene kinase switch" mechanism the T790M is coexistent. It is possible that other kinases (such as insulin-like growth factor-1 receptor [IGF-1R]) might also be selected to bypass EGFR pathways in resistant tumors. The growing preclinical data in EGFR-mutated NSCLCs with acquired resistance to gefitinib or erlotinib has spawned the initiation or conception of clinical trials testing novel EGFR inhibitors that in vitro inhibit T790M (neratinib, XL647, BIBW 2992, and PF-00299804), MET, or IGF-1R inhibitors in combination with EGFR TKIs, and heat shock protein 90 inhibitors. Ongoing preclinical and clinical research in EGFR-mutated NSCLC has the potential to significantly improve the outcomes of patients with these somatic mutations.  相似文献   

3.
Kwak E 《The oncologist》2011,16(11):1498-1507
Small-molecule tyrosine kinase inhibitors (TKIs) of the human epidermal growth factor receptor (HER) include the reversible epidermal growth factor receptor (EGFR/HER-1) inhibitors gefitinib and erlotinib. EGFR TKIs have demonstrated activity in the treatment of patients with non-small cell lung cancer (NSCLC) harboring activating EGFR mutations; however, multiple mechanisms of resistance limit the benefit of these drugs. Although resistance to EGFR TKIs can be intrinsic and correlated with molecular lesions such as in Kirsten rat sarcoma viral oncogene homolog (KRAS; generally observed in a wild-type EGFR background), acquired resistance to EGFR TKIs can evolve in the setting of activating EGFR mutations, such as in the case of EGFR T790M mutations. Several irreversible inhibitors that target multiple members of the HER family simultaneously are currently in clinical development for NSCLC and may have a role in the treatment of TKI-sensitive and TKI-resistant disease. These include PF00299804, an inhibitor of EGFR/HER-1, HER-2, and HER-4, and afatinib (BIBW 2992), an inhibitor of EGFR/HER-1, HER-2, and HER-4. Results of large, randomized trials of these agents may help to determine their potential for the treatment of NSCLC.  相似文献   

4.
Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) as first-line therapy for patients with EGFR-mutated non–small-cell lung cancer (NSCLC) have shown a significantly better objective response rate and progression-free survival than platinum doublet therapy. However, acquired resistance often occurs within 12 months. One of the potential strategies for treating acquired resistance in NSCLC is the readministration of EGFR-TKIs, a strategy that has mainly been evaluated using gefitinib or erlotinib. The aim of the present study is to investigate the efficacy and safety of EGFR-TKI readministration with afatinib in patients with advanced NSCLC harboring activating EGFR mutations without T790M. The primary endpoint is progression-free survival. The secondary endpoints include the objective response rate, disease control rate, overall survival, toxicity, and quality of life. A total of 12 patients will be enrolled in this trial.  相似文献   

5.
PURPOSE: In patients whose lung adenocarcinomas harbor epidermal growth factor receptor (EGFR) tyrosine kinase domain mutations, acquired resistance to the tyrosine kinase inhibitors (TKI) gefitinib (Iressa) and erlotinib (Tarceva) has been associated with a second-site EGFR mutation, which leads to substitution of methionine for threonine at position 790 (T790M). We aimed to elucidate the frequency and nature of secondary EGFR mutations in patients with acquired resistance to TKI monotherapy. EXPERIMENTAL DESIGN: Tumor cells from patients with acquired resistance were examined for secondary EGFR kinase domain mutations by molecular analyses. RESULTS: Eight of 16 patients (50% observed rate; 95% confidence interval, 25-75%) had tumor cells with second-site EGFR mutations. Seven mutations were T790M and one was a novel D761Y mutation found in a brain metastasis. When combined with a drug-sensitive L858R mutation, the D761Y mutation modestly reduced the sensitivity of mutant EGFR to TKIs in both surrogate kinase and cell viability assays. In an autopsy case, the T790M mutation was found in multiple visceral metastases but not in a brain lesion. CONCLUSIONS: The T790M mutation is common in patients with acquired resistance. The limited spectrum of TKI-resistant mutations in EGFR, which binds to erlotinib in the active conformation, contrasts with a wider range of second-site mutations seen with acquired resistance to imatinib, which binds to ABL and KIT, respectively, in closed conformations. Collectively, our data suggest that the type and nature of kinase inhibitor resistance mutations may be influenced by both anatomic site and mode of binding to the kinase target.  相似文献   

6.
《Clinical lung cancer》2020,21(3):232-237
BackgroundInsights into the mechanism of resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) could provide important information for further patient management, including the choice of second-line treatment. The EGFR T790M mutation is the most common mechanism of resistance to first- and second-generation EGFR TKIs. Owing to its biologic relevance in the response of non–small-cell lung cancer (NSCLC) to the selective pressure of treatment, the present study investigated whether the occurrence of T790M at progression differed among patients receiving gefitinib, erlotinib, or afatinib.Patients and MethodsThe present retrospective study included patients with NSCLC with an EGFR activating mutation, who had received gefitinib, erlotinib, or afatinib as first-line treatment. Plasma samples for the analysis of cell-free DNA were taken at disease progression and analyzed using a digital droplet polymerase chain reaction EGFR mutation assay.ResultsA total of 83 patients were enrolled; 42 had received gefitinib or erlotinib and 41afatinib. The patient characteristics were comparable across the 2 groups. The median time to progression (TTP) was 14.4 months for the gefitinib and erlotinib group and 10.2 months for the afatinib group (P = .09). Of the 83 patients, 47 (56.6%) were positive for the T790M in plasma. A greater incidence of T790M was observed in patients with progression during gefitinib or erlotinib therapy compared with patients treated with afatinib (33 [79%] vs. 14 [34%], respectively; odds ratio, 7.1; 95% confidence interval, 2.7-18.5; P = .0001).ConclusionsAlthough gefitinib, erlotinib, and afatinib showed a comparable TTP in patients receiving first-line therapy, the incidence of T790M differed among them, as demonstrated by the present study, which could have implications for the choice of second-line treatment.  相似文献   

7.
Mutations of the epidermal growth factor receptor (EGFR) gene have been reported in non-small-cell lung cancer (NSCLC), especially in patients with adenocarcinoma and never smokers. Some common somatic mutations in EGFR, including deletion mutations in exon 19 and leucine-to-arginine substitution at amino acid position 858 (L858R) in exon 21, have been examined for their ability to predict sensitivity to gefitinib or erlotinib, which are selective EGFR tyrosine kinase inhibitors (EGFR-TKIs). On the other hand, reports have shown that the threonine-to-methionine substitution at amino acid position 790 (T790M) in exon 20 is related to gefitinib resistance. Some studies have indicated that high copy numbers of the EGFR gene may be a more effective molecular predictor to responsiveness and prolonged survival in patients treated with EGFR-TKIs. Here, we describe two NSCLC patients with the L858R mutation who did not respond to gefitinib. Case 1 harbored both the T790M and L858R mutations, and fluorescence in situ hybridization showed EGFR gene amplification. Case 2 harbored both the L858R and aspartic acid-to-tyrosine substitution at amino acid position 761 in exon 19 of EGFR mutations and had a high polysomy status for EGFR. In these two cases, tumors showed resistance to gefitinib treatment despite the presence of EGFR L858R mutation and increased copy number. Our findings encourage further molecular analysis to elucidate the relationship between the EGFR status, including mutations and amplifications, and the responsiveness of NSCLC to gefitinib.  相似文献   

8.
The discovery of mutations in the tyrosine kinase domain of the epidermal growth factor receptor (EGFR) gene in non-small cell lung cancer (NSCLC) accelerated the research of molecular-targeted therapy by EGFR-tyrosine kinase inhibitors (TKIs), such as gefitinib and erlotinib. About 90% of EGFR mutations are clustered in exons 19 (deletion) and 21 (point mutation at codon 858) and patients with these mutations have great response to EGFR-TKIs. However, tumors that initially respond to EGFR-TKIs almost inevitably become resistant later and T790M secondary mutation in the EGFR gene and MET amplification are reported to account for the mechanism of this acquired resistance. In this review, we summarize the recent findings about EGFR mutations, amplification, alterations of other related genes and sensitivity and acquired resistance to EGFR-TKIs. We also discuss from our studies the relationship between EGFR mutations and other molecular alterations such as aberrant methylation in tumor suppressor genes (TSGs), which indicates that they are related to the mechanism of the pathogenesis of lung cancer. The accumulated important data confer further insights on translational research, providing us with the new strategies for the treatment of NSCLCs.  相似文献   

9.
Emergence of acquired resistance is virtually inevitable in patients with a mutation in the epidermal growth factor receptor gene (EGFR) treated with EGFR tyrosine kinase inhibitors (TKIs). Several novel TKIs that may prevent or overcome the resistance mechanisms are now under clinical development. However, it is unknown how tumor cells will respond to intensive treatment using these novel TKIs. We previously established HCC827EPR cells, which are T790M positive, through combined treatment with erlotinib and a MET-TKI from erlotinib-hypersensitive HCC827 cells. In this study, we treated HCC827EPR cells sequentially with an irreversible EGFR-TKI, CL-387,785, to establish resistant cells (HCC827CLR), and we analyzed the mechanisms responsible for resistance. In HCC827CLR cells, PTEN expression was downregulated and Akt phosphorylation persisted in the presence of CL-387,785. Akt inhibition restored CL-387,785 sensitivity. In addition, withdrawal of CL-387,785 reduced cell viability in HCC827CLR cells, indicating that these cells were "addicted" to CL-387,785. HCC827CLR cells overexpressed the EGFR, and inhibition of the EGFR or MEK-ERK was needed to maintain cell proliferation. Increased senescence was observed in HCC827CLR cells in the drug-free condition. Through long-term culture of HCC827CLR cells without CL-387,785, we established HCC827-CL-387,785-independent cells, which exhibited decreased EGFR expression and a mesenchymal phenotype. In conclusion, PTEN downregulation is a newly identified mechanism underlying the acquired resistance to irreversible EGFR-TKIs after acquisition of T790M against erlotinib. This series of experiments highlights the flexibility of cancer cells that have adapted to environmental stresses induced by intensive treatment with TKIs.  相似文献   

10.
AimsPresently, three generations of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are approved against oncogene addicted EGFR-mutant non-small cell lung cancer (NSCLC). Patients with actionable EGFR mutations invariably develop resistance. This resistance can be intrinsic (primary) or acquired (secondary).Materials and methodsThis was a retrospective study carried out between January 2016 and April 2021 analysing 486 samples of NSCLC for primary and secondary resistance to first- (erlotinib, gefitinb), second- (afatinib) and/or third-generation (osimertinib) TKIs in EGFR-mutant NSCLCs by next generation sequencing (NGS). Tissue NGS was carried out using the Thermofischer Ion Torrent? Oncomine? Focus 52 gene assay; liquid biopsy NGS was carried out using the Oncomine Lung Cell-Free Total Nucleic Acid assay. All cases were previously tested for a single EGFR gene with the Therascreen® EGFR RGQ PCR kit.ResultsThe results were divided into four groups: (i) group 1: primary resistance to first- and/or second-generation TKIs. This group, with 21 cases, showed EGFR exon 20 insertions, dual, complex mutations and variant of unknown significance, de novo MET gene amplification besides other mutations. (ii) Group 2: primary resistance to third-generation TKIs. This group showed two cases, with one showing dual EGFR mutation (L858R and E709A) and EGFR gene amplification. (iii) Group 3: secondary resistance to first- and second-generation TKIs. This group had 27 cases, which were previously reported negative for EGFR T790M by single gene testing. Significant findings were MET gene amplification in four cases, with one also showing MET exon 14 skipping mutation. Three cases showed small cell change and one showed loss of primary mutation. (iv) Group 4: secondary resistance to third-generation TKIs. The latter group was further subgrouped into group 4A: secondary resistance to osimertinib (third-generation TKI) when offered as second-line therapy after first- and second-generation TKIs on detection of T790M mutation. This group had 15 cases. EGFR T790M mutation was lost in 10 (10/15; 67%) cases and was retained in five cases. Patients with T790M loss experienced early resistance (6.9 months versus 12.6 months mean, P = 0.0024) compared with cases that retained T790M. Two cases gained MET amplification as the resistance mechanisms. Other mutations that were found when EGFR T790M was lost were in FGFR3, KRAS, PIK3CA, CTNNB1, BRAF genes. One case had EML4-ALK translocation. Two cases showed driver EGFR deletion 19, retained T790M and C797S mutation in Cis form. Group 4B: secondary resistance to osimertinib (when given as first-line therapy) in EGFR-mutant NSCLC. This group had three cases. The duration of osimertinib treatment ranged from 11 to 17 months. Two patients showed additional C797S mutation along with primary EGFR mutation.ConclusionThis study shows the wide spectrum of primary and secondary EGFR resistance mechanisms to first, second and third generation of TKIs and helps us to identify newer therapeutic targets that could carry forward the initial advantage offered by EGFR TKIs.  相似文献   

11.
Even though lung cancer incidence began to decline in the majority of industrialized countries, is still belong to cancers with one of the highest incidence and mortality rates. In the Czech Republic, epidermal growth factor receptor (EGFR) kinase activity inhibitors erlotinib and gefitinib are approved for the use as the second- and third-line treatment of non-small-cell lung cancer. In a cohort of non-small-cell lung cancer patients, erlotinib administration led to tumour regression in less than 20% of patients. However, when used in patients with EGFR-activating mutations, e.g. L858R or delE746-A750, the response rate increased to 75-82% in several parallel clinical studies. Similarly, improved response rate was reported in patients bearing amplified wild-type EGFR gene. In contrary, patients with T790M, D761Y, L747S, and T854A mutations (and some other rare abberations) were found to be resistant to treatment with small-molecule inhibitors targeting the active site of the kinase domain. These mutations do not change the EGFR affinity to gefitinib or erlotinib but the mutated receptor is able to bind ATP into its active site even in the presence of erlotinib or gefitinib, similar to a wild-type receptor without an inhibitor. Besides that, when the EGFR molecule bears both the activating (e.g. L858R) and resistance-inducing mutation (e.g. T790M), the tumour acquires resistance to both erlotinib and gefitinib treatment. Currently, research focuses on a development of new strategies that would allow treatment of patients bearing mutations inducing resistance to the small-molecule inhibitors targeted on the active site of EGFR kinase domain. Contrary to the current guidelines for Czech oncologists, identification of EGFR with any of the above mentioned resistance-inducing somatic mutations should be considered as an explicit contraindication for non-small-cell cancer treatment using small-molecule EGFR kinase activity inhibitors erlotinib or gefitinib. This should also include patients in whom a resistance-inducing mutation is detected together with any of the activating mutations or deletions.  相似文献   

12.
The epidermal growth factor receptor (EGFR) has been implicated in the pathophysiology of various cancers, including non-small cell lung cancer (NSCLC). Inhibitors targeting the tyrosine kinase domain of this receptor have been seen to elicit favourable responses in a subset of NSCLC patients. Mutational analysis of the EGFR has revealed that the response to reversible tyrosine kinase inhibitors (TKIs) is a result of the presence of activating mutations present between exons 18 and 21, most frequently the exon 19 deletion and the L858R mutations. After a prolonged treatment with reversible TKIs, patients have been seen to develop resistance that results, in part, from the presence of the secondary T790M mutation in exon 20. Preclinical data suggest that second-generation TKIs may be able to overcome T790M resistance by virtue of their irreversible mode of binding. In addition to the predominant mutations in the EGFR gene, alternative genetic changes between exons 18 and 21 have been observed. Experimental models have demonstrated that TKIs exhibit differential efficacy depending on which mutations are present. Such information may result in the design of highly specific agents that target specific mutations, which could result in more efficacious treatments.  相似文献   

13.
《Clinical lung cancer》2014,15(6):411-417.e4
BackgroundThe purpose of this study was to evaluate the efficacy of afatinib in EGFR-mutant metastatic NSCLC patients with acquired resistance to erlotinib or gefitinib.Materials and MethodsWe retrospectively analyzed the outcome of patients with EGFR-mutant advanced NSCLC treated with afatinib after failure of chemotherapy and EGFR TKIs.ResultsA total of 96 individuals were included in the study. According to EGFR status, most patients (n = 63; 65.6%) harbored a deletion in exon 19, and de novo T790M mutation was detected in 2 cases (T790M and exon 19). Twenty-four (25%) patients underwent repeated biopsy immediately before starting afatinib and secondary T790M was detected in 8 (33%) samples. Among the 86 patients evaluable for efficacy, response rate was 11.6%, with a median progression free-survival (PFS) and overall survival (OS) of 3.9 and 7.3 months, respectively. No significant difference in PFS and OS was observed according to type of last therapy received before afatinib, type of EGFR mutation or adherence to Jackman criteria, and patients benefiting from afatinib therapy had longer PFS and OS (P < .001). Outcome results for repeated biopsy patients were similar to the whole population, with no evidence of response in T790M-positive patients. All patients were evaluable for toxicity, and 81% experienced an AE of any grade, with grade 3 to 4 AEs, mainly diarrhea and skin toxicity, occurring in 19 (20%) patients.ConclusionOur results showed that afatinib has only modest efficacy in a real life population of EGFR mutant NSCLC patients with acquired resistance to erlotinib or gefitinib.  相似文献   

14.
The epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), gefitinib and erlotinib, induce dramatic responses in certain patients with non-small cell lung cancer (NSCLC). As such, the drugs provide an unexpected tool to dissect clinically relevant molecular subsets of NSCLC. For example, using mutational profiling of tumor DNA from patients with sensitivity, primary resistance, and secondary resistance to these agents, we and others have demonstrated that somatic mutations in the tyrosine kinase domain of EGFR are associated with sensitivity to gefitinib and erlotinib, while mutations in KRAS, which encodes a GTPase downstream of EGFR, are associated with primary resistance. Furthermore, second site mutations in the EGFR kinase domain are commonly found in patients with acquired resistance. We are now using a variety of molecular and biological approaches to help further define molecular subsets of lung cancer that have relevance in the clinic.  相似文献   

15.
Bar J  Onn A 《Clinical lung cancer》2012,13(4):267-279
The epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) gefitinib and erlotinib have provided substantial benefits to patients with advanced non-small cell lung cancer (NSCLC). However resistance to these agents has emerged as a significant clinical issue; most patients who initially respond to treatment eventually experience relapse. The mechanisms underlying gefitinib and erlotinib resistance are multifactorial and several have been described. Clearly there is a need for novel and more effective therapies that can overcome resistance to the currently available TKIs. Several agents are in clinical development, including irreversible EGFR TKIs, inhibitors of the MET pathway, and others. In this review we discuss the various underlying mechanisms of gefitinib and erlotinib resistance and highlight the agents currently in clinical development that may have potential for overcoming this resistance.  相似文献   

16.
Somatic activating mutations in the epidermal growth factor receptor (EGFR) gene were first identified in 2004 from tumor tissues of non-small cell lung cancer (NSCLC) patients and pulmonary adenocarcinoma cell lines. Although pulmonary adenocarcinoma patients harboring EGFR mutations have increased sensitivity to EGFR tyrosine kinase inhibitors (TKIs), gefitinib and erlotinib, the primary and acquired resistant cases remain major clinical problems. Therapeutic strategies for such oncogene-driven carcinomas were intensively investigated at both the clinical and preclinical levels. In this review, we focused on one particular molecularly-defined subset of NSCLC that harbors activating mutations in the EGFR gene. We summarized the rational dissection of the mechanisms of drug sensitivity and resistance to EGFR-TKIs, and the promising molecular-centric strategies for further improving the outcomes of NSCLC patients with EGFR activating mutations.  相似文献   

17.
Mutations of the epidermal growth factor receptor (EGFR) gene have been identified in non-small cell lung cancer specimens from patients responding to anilinoquinazoline EGFR inhibitors. However, clinical resistance to EGFR inhibitor therapy is commonly observed. Previously, we showed that such resistance can be caused by a second mutation of the EGFR gene, leading to a T790M amino acid change in the EGFR tyrosine kinase domain and also found that CL-387,785, a specific and irreversible anilinoquinazoline EGFR inhibitor, was able to overcome this resistance on the biochemical level. Here, we present the successful establishment of a stable Ba/F3 cell line model system for the study of oncogenic EGFR signaling and the functional consequences of the EGFR T790M resistance mutation. We show the ability of gefitinib to induce growth arrest and apoptosis in cells transfected with wild-type or L858R EGFR, whereas the T790M mutation leads to high-level functional resistance against gefitinib and erlotinib. In addition, CL-387,785 is able to overcome resistance caused by the T790M mutation on a functional level, correlating with effective inhibition of downstream signaling pathways. Similar data was also obtained with the use of the gefitinib-resistant H1975 lung cancer cell line. The systems established by us should prove useful for the large-scale screening of alternative EGFR inhibitor compounds against the T790M or other EGFR mutations. These data also support the notion that clinical investigations of compounds similar to CL-387,785 may be useful as a treatment strategy for patients with resistance to EGFR inhibitor therapy caused by the T790M mutation.  相似文献   

18.
Epidermal growth factor receptor (EGFR)-mutant non-small-cell lung cancer (NSCLC) represents a distinct disease entity whose molecular phenotype predicts exquisite sensitivity to the reversible EGFR-tyrosine kinase inhibitors (TKIs) gefitinib or erlotinib. However, primary or acquired resistance to these agents remains a major clinical problem. Afatinib is a novel dual irreversible EGFR/HER2 TKI that has been shown in preclinical studies to potentially prevent, delay or overcome resistance to reversible EGFR-TKIs. On this basis, the LUX-Lung clinical trial program has been recently launched for testing this molecule in advanced NSCLC patients. Notably, early results from the randomized LUX-Lung 1 trial indicate that afatinib significantly prolongs progression-free survival compared with placebo in pretreated patients with clinically acquired resistance to gefitinib or erlotinib. On the other hand, the LUX-Lung 2 trial shows that afatinib is highly active in the EGFR-mutant subgroup of patients. While these preliminary data open a new exciting scenario for the future development of anti-EGFR therapies in NSCLC, ongoing afatinib trials will definitively establish a role for this molecule in the treatment of advanced NSCLC.  相似文献   

19.
PURPOSE: Non-small cell lung cancers carrying activating mutations in the gene for the epidermal growth factor receptor (EGFR) are highly sensitive to EGFR-specific tyrosine kinase inhibitors. However, most patients who initially respond subsequently experience disease progression while still on treatment. Part of this "acquired resistance" is attributable to a secondary mutation resulting in threonine to methionine at codon 790 (T790M) of EGFR. EXPERIMENTAL DESIGN: We sequenced exons 18 to 21 of the EGFR gene to look for secondary mutations in tumors with acquired resistance to gefitinib in 14 patients with adenocarcinomas. Subcloning or cycleave PCR was used in addition to normal sequencing to increase the sensitivity of the assay. We also looked for T790M in pretreatment samples from 52 patients who were treated with gefitinib. We also looked for secondary KRAS gene mutations because tumors with KRAS mutations are generally resistant to tyrosine kinase inhibitors. RESULTS: Seven of 14 tumors had a secondary T790M mutation. There were no other novel secondary mutations. We detected no T790M mutations in pretreatment specimens from available five tumors among these seven tumors. Patients with T790M tended to be women, never smokers, and carrying deletion mutations, but the T790M was not associated with the duration of gefitinib administration. None of the tumors had an acquired mutation in the KRAS gene. CONCLUSIONS: A secondary T790M mutation of EGFR accounted for half the tumors with acquired resistance to gefitinib in Japanese patients. Other drug-resistant secondary mutations are uncommon in the EGFR gene.  相似文献   

20.
First- and second-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are the evidence-based first-line treatment for metastatic non-small-cell lung cancers (NSCLCs) that harbor sensitizing EGFR mutations (i.e. exon 19 deletions or L858R). However, acquired resistance to EGFR TKI monotherapy occurs invariably within a median time frame of one year. The most common form of biological resistance is through the selection of tumor clones harboring the EGFR T790M mutation, present in >50% of repeat biopsies. The presence of the EGFR T790M mutation negates the inhibitory activity of gefitinib, erlotinib, and afatinib. A novel class of third-generation EGFR TKIs has been identified by probing a series of covalent pyrimidine EGFR inhibitors that bind to amino-acid residue C797 of EGFR and preferentially inhibit mutant forms of EGFR versus the wild-type receptor. We review the rapid clinical development and approval of the third-generation EGFR TKI osimertinib for treatment of NSCLCs with EGFR-T790M.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号