首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anxiety disorders are highly prevalent in modern society and better treatments are required. Key brain areas and signaling systems underlying anxiety include prefrontal cortex, hippocampus, and amygdala, and monoaminergic and peptidergic systems, respectively. Hindbrain GABAergic projection neurons that express the peptide, relaxin‐3, broadly innervate the forebrain, particularly the septum and hippocampus, and relaxin‐3 acts via a Gi/o‐protein‐coupled receptor known as the relaxin‐family peptide 3 receptor (RXFP3). Thus, relaxin‐3/RXFP3 signaling is implicated in modulation of arousal, motivation, mood, memory, and anxiety. Ventral hippocampus (vHip) is central to affective and cognitive processing and displays a high density of relaxin‐3‐positive nerve fibers and RXFP3 binding sites, but the identity of target neurons and associated effects on behavior are unknown. Therefore, in adult, male rats, we assessed the neurochemical nature of hippocampal RXFP3 mRNA‐expressing neurons and anxiety‐like and social behavior following chronic RXFP3 activation in vHip by viral vector expression of an RXFP3‐selective agonist peptide, R3/I5. RXFP3 mRNA detected by fluorescent in situ hybridization was topographically distributed across the hippocampus in somatostatin‐ and parvalbumin‐mRNA expressing GABA neurons. Chronic RXFP3 activation in vHip increased anxiety‐like behavior in the light–dark box and elevated‐plus maze, but not the large open‐field test, and reduced social interaction with a conspecific stranger. Our data reveal disruptive effects of persistent RXFP3 signaling on hippocampal GABA networks important in anxiety; and identify a potential therapeutic target for anxiety disorders that warrants further investigation in relevant preclinical models.  相似文献   

2.
Relaxin‐3 (RLN3) and its native receptor, relaxin family peptide 3 receptor (RXFP3), constitute a newly identified neuropeptide system enriched in mammalian brain. The distribution of RLN3/RXFP3 networks in rat brain and recent experimental studies suggest a role for this system in modulation of arousal, stress, metabolism, and cognition. In order to facilitate exploration of the biology of RLN3/RXFP3 in complementary murine models, this study mapped the neuroanatomical distribution of the RLN3/RXFP3 system in mouse brain. Adult, male wildtype and RLN3 knock‐out (KO)/LacZ knock‐in (KI) mice were used to map the central distribution of RLN3 gene expression and RLN3‐like immunoreactivity (‐LI). The distribution of RXFP3 mRNA and protein was determined using [35S]‐oligonucleotide probes and a radiolabeled RXFP3‐selective agonist ([125I]‐R3/I5), respectively. High densities of neurons expressing RLN3 mRNA, RLN3‐associated β‐galactosidase activity and RLN3‐LI were detected in the nucleus incertus (or nucleus O), while smaller populations of positive neurons were observed in the pontine raphé, the periaqueductal gray and a region adjacent to the lateral substantia nigra. RLN3‐LI was observed in nerve fibers/terminals in nucleus incertus and broadly throughout the pons, midbrain, hypothalamus, thalamus, septum, hippocampus, and neocortex, but was absent in RLN3 KO/LacZ KI mice. This RLN3 neural network overlapped the regional distribution of RXFP3 mRNA and [125I]‐R3/I5 binding sites in wildtype and RLN3 KO/LacZ KI mice. These findings provide further evidence for the conserved nature of RLN3/RXFP3 systems in mammalian brain and the ability of RLN3/RXFP3 signaling to modulate “behavioral state” and an array of circuits involved in arousal, stress responses, affective state, and cognition. J. Comp. Neurol. 518:4016–4045, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
Relaxin‐3 (RLN3) is a highly conserved, ancestral member of the insulin/relaxin peptide family. RLN3 mRNA is highly expressed in rat, mouse, and human brain and molecular genetic and pharmacological studies suggest that RLN3 is the cognate ligand for the relaxin family peptide‐3 receptor (RXFP3). The distribution of RLN3/RXFP3 networks has been determined in rat and mouse brain, but not in higher species. In this study we describe the distribution of RLN3 neurons in the brain of macaque (Macaca fascicularis) using in situ hybridization histochemistry and immunohistochemistry. RLN3 mRNA and high levels of RLN3‐like immunoreactivity (‐LI) were observed in neurons within a ventromedial region of the central gray of the pons and medulla that appears to represent the primate analog of the nucleus incertus (NI) described in lower species. Nerve fibers and terminals containing RLN3‐LI were observed throughout brain regions identical to those known to receive afferents from the NI in the rat, including the septum, hippocampus, entorhinal cortex, lateral, dorsomedial and ventromedial hypothalamus, supramammillary and interpeduncular nuclei, anterodorsal, paraventricular and reuniens thalamic nuclei, lateral habenula, central gray, and dorsal raphe, solitary tract, and ambiguus nuclei. Experimental studies in the rat strongly implicate a role of this neuropeptide‐receptor system in arousal, feeding, and metabolism, learning and memory, and central responses to psychological stressors. These new anatomical findings support the proposition that the RLN3 system is similarly involved in the integration and modulation of behavioral activation and arousal and responses to stress in nonhuman primates and humans. J. Comp. Neurol. 517:856–872, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
Activation of prefrontal cortical (PFC), striatal, and hippocampal dopamine 1‐class receptors (D1R and D5R) is necessary for normal spatial information processing. Yet the precise role of the D1R versus the D5R in the aforementioned structures, and their specific contribution to the water‐maze spatial learning task remains unknown. D1R‐ and D5R‐specific in situ hybridization probes showed that forebrain restricted D1R and D5R KO mice (F‐D1R/D5R KO) displayed D1R mRNA deletion in the medial (m)PFC, dorsal and ventral striatum, and the dentate gyrus (DG) of the hippocampus. D5R mRNA deletion was limited to the mPFC, the CA1 and DG hippocampal subregions. F‐D1R/D5R KO mice were given water‐maze training and displayed subtle spatial latency differences between genotypes and spatial memory deficits during both regular and reversal training. To differentiate forebrain D1R from D5R activation, forebrain restricted D1R KO (F‐D1R KO) and D5R KO (F‐D5R KO) mice were trained on the water‐maze task. F‐D1R KO animals exhibited escape latency deficits throughout regular and reversal training as well as spatial memory deficits during reversal training. F‐D1R KO mice also showed perseverative behavior during the reversal spatial memory probe test. In contrast, F‐D5R KO animals did not present observable deficits on the water‐maze task. Because F‐D1R KO mice showed water‐maze deficits we tested the necessity of hippocampal D1R activation for spatial learning and memory. We trained DG restricted D1R KO (DG‐D1R KO) mice on the water‐maze task. DG‐D1R KO mice did not present detectable spatial memory deficit, but did show subtle deficits during specific days of training. Our data provides evidence that forebrain D5R activation plays a unique role in spatial learning and memory in conjunction with D1R activation. Moreover, these data suggest that mPFC and striatal, but not DG D1R activation are essential for spatial learning and memory. © 2015 Wiley Periodicals, Inc.  相似文献   

5.
Cholinergic and GABAergic neurons in the medial septum/vertical limb of the diagonal band of Broca (MS/vDB) projecting to the hippocampus, constitute the septohippocampal projection, which is important for hippocampal‐dependent learning and memory. There is also evidence for an extrinsic as well as an intrinsic glutamatergic network within the MS/vDB. GABAergic and cholinergic septohippocampal neurons express the serotonergic 5‐HT1A receptor and most likely also glutamatergic NMDA receptors. The aim of the present study was to examine whether septal 5‐HT1A receptors are important for hippocampal‐dependent long‐term memory and whether these receptors interact with glutamatergic NMDA receptor transmission in a manner important for hippocampal‐dependent spatial memory. Intraseptal infusion of the 5‐HT1A receptor agonist (R)‐8‐OH‐DPAT (1 or 4 μg/rat) did not affect spatial learning in the water maze task but impaired emotional memory in the passive avoidance task at the higher dose tested (4 μg/rat). While intraseptal administration of (R)‐8‐OH‐DPAT (4 μg) combined with a subthreshold dose of the NMDA receptor antagonist D‐AP5 (1 μg) only marginally affected spatial acquisition, it produced a profound impairment in spatial memory. In conclusion, septal 5‐HT1A receptors appears to play a more prominent role in emotional than in spatial memory. Importantly, septal 5‐HT1A and NMDA receptors appear to interact in a manner, which is particularly critical for the expression or retrieval of hippocampal‐dependent long‐term spatial memory. It is proposed that NMDA receptor hypofunction in the septal area may unmask a negative effect of 5‐HT1A receptor activation on memory, which may be clinically relevant. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
The cognitive role of melanin‐concentrating hormone (MCH) neurons, a neuronal population located in the mammalian postero‐lateral hypothalamus sending projections to all cortical areas, remains poorly understood. Mainly activated during paradoxical sleep (PS), MCH neurons have been implicated in sleep regulation. The genetic deletion of the only known MCH receptor in rodent leads to an impairment of hippocampal dependent forms of memory and to an alteration of hippocampal long‐term synaptic plasticity. By using MCH/ataxin3 mice, a genetic model characterized by a selective deletion of MCH neurons in the adult, we investigated the role of MCH neurons in hippocampal synaptic plasticity and hippocampal‐dependent forms of memory. MCH/ataxin3 mice exhibited a deficit in the early part of both long‐term potentiation and depression in the CA1 area of the hippocampus. Post‐tetanic potentiation (PTP) was diminished while synaptic depression induced by repetitive stimulation was enhanced suggesting an alteration of pre‐synaptic forms of short‐term plasticity in these mice. Behaviorally, MCH/ataxin3 mice spent more time and showed a higher level of hesitation as compared to their controls in performing a short‐term memory T‐maze task, displayed retardation in acquiring a reference memory task in a Morris water maze, and showed a habituation deficit in an open field task. Deletion of MCH neurons could thus alter spatial short‐term memory by impairing short‐term plasticity in the hippocampus. Altogether, these findings could provide a cellular mechanism by which PS may facilitate memory encoding. Via MCH neuron activation, PS could prepare the day's learning by increasing and modulating short‐term synaptic plasticity in the hippocampus. © 2015 Wiley Periodicals, Inc.  相似文献   

7.
Adult hippocampal neurogenesis has been suggested to play modulatory roles in learning and memory. Importantly, previous studies have shown that newborn neurons in the adult hippocampus are integrated into the dentate gyrus circuit and are recruited more efficiently into the hippocampal memory trace of mice when they become 3 weeks old. Interestingly, a single high‐dose treatment with the N‐methyl‐d ‐aspartate receptor antagonist memantine (MEM) has been shown to increase hippocampal neurogenesis dramatically by promoting cell proliferation. In the present study, to understand the impact of increased adult neurogenesis on memory performance, we examined the effects of a single treatment of MEM on hippocampus‐dependent memory in mice. Interestingly, mice treated with MEM showed an improvement of hippocampus‐dependent spatial and social recognition memories when they were trained and tested at 3–6 weeks, but not at 3 days or 4 months, after treatment with MEM. Importantly, we observed a significant positive correlation between the scores for spatial memory (probe trial in the Morris water maze task) and the number of young mature neurons (3 weeks old) in MEM‐treated mice, but not saline‐treated mice. We also observed that the young mature neurons generated by treatment with MEM were recruited into the trace of spatial memory similarly to those generated through endogenous neurogenesis. Taken together, our observations suggest that treatment with MEM temporally improves hippocampus‐dependent memory formation and that the newborn neurons increased by treatment with MEM contribute to this improvement when they become 3 weeks old. © 2014 The Authors. Hippocampus Published by Wiley Periodicals, Inc.  相似文献   

8.
Alterations of neuronal activity due to changes in GABAA receptors (GABAAR) mediating tonic inhibition influence different hippocampal functions. Gabra5‐null mice and α5 subunit(H105R) knock‐in mice exhibit signs of hippocampal dysfunction, but are capable of improved performance in several learning and memory tasks. Accordingly, alleviating abnormal GABAergic tonic inhibition in the hippocampal formation by selective α5‐GABAAR modulators represents a possible therapeutic approach for several intellectual deficit disorders. Adult neurogenesis in the dentate gyrus is an important facet of hippocampal plasticity; it is regulated by tonic GABAergic transmission, as shown by deficits in proliferation, migration and dendritic development of adult‐born neurons in Gabra4‐null mice. Here, we investigated the contribution of α5‐GABAARs to granule cell development, using retroviral vectors expressing eGFP for labeling precursor cells in the subgranular zone. Global α5‐GABAAR knockout (α5‐KO) mice showed no alterations in migration and morphological development of eGFP‐positive granule cells. However, upregulation of α1 subunit‐immunoreactivity was observed in the hippocampal formation and cerebral cortex. In contrast, partial gene inactivation in α5‐heterozygous (α5‐het) mice, as well as single‐cell deletion of Gabra5 in newborn granule cells from α5‐floxed mice, caused severe alterations of migration and dendrite development. In α5‐het mice, retrovirally mediated overexpression of Cdk5 resulted in normal migration and dendritic branching, suggesting that Cdk5 cooperates with α5‐GABAARs to regulate neuronal development. These results show that minor imbalance of α5‐GABAAR‐mediated transmission may have major consequences for neuronal plasticity; and call for caution upon chronic therapeutic use of negative allosteric modulators acting at these receptors.  相似文献   

9.
Episodic memory impairment due to aging has been linked to hippocampal dysfunction. Evidence exists for alterations in specific circuits within the hippocampal system that are closely coupled to individual differences in the presence and severity of such memory loss. Here, we used the newly developed Diversity Outbred (DO) mouse that was designed to model the genetic diversity in human populations. Young and aged DO mice were tested in a hippocampal‐dependent water maze task. Young mice showed higher proficiency and more robust memory compared to the overall performance of aged mice. A substantial number of the older mice, however, performed on par with the normative performance of the younger mice. Stereological quantification of somatostatin‐immunoreactive neurons in the dentate hilus showed that high‐performing young and unimpaired aged mice had similar numbers of somatostatin‐positive interneurons, while aged mice that were impaired in the spatial task had significantly fewer such neurons. These data in the DO model tie loss of hilar inhibitory network integrity to age‐related memory impairment, paralleling data in other rodent models. © 2014 Wiley Periodicals, Inc.  相似文献   

10.
In rats, learning and memory performance decline during aging, which makes this rodent species a suitable model to evaluate therapeutic strategies of potential value for correcting age‐related cognitive deficits. Some of these strategies involve neurotrophic factors like insulin‐like growth factor‐I (IGF‐I), a powerful neuroprotective molecule in the brain. Here, we implemented 18‐day long intracerebroventricular (ICV) IGF‐I gene therapy in 28 months old Sprague–Dawley female rats, and assessed spatial memory performance in the Barnes maze. We also studied hippocampal morphology using an unbiased stereological approach. Adenovectors expressing the gene for rat IGF‐I or the reporter DsRed were used. Cerebrospinal fluid (CSF) samples were taken and IGF‐I levels determined by radioimmunoassay. At the end of the study, IGF‐I levels in the CSF were significantly higher in the experimental group than in the DsRed controls. After treatment, the IGF‐I group showed a significant improvement in spatial memory accuracy as compared with DsRed counterparts. In the dentate gyrus (DG) of the hippocampus, the IGF‐I group showed a higher number of immature neurons than the DsRed controls. The treatment increased hippocampal astrocyte branching and reduced their number in the hippocampal stratum radiatum. We conclude that the ependymal route is an effective approach to increase CSF levels of IGF‐I and that this strategy improves the accuracy of spatial memory in aging rats. The favorable effect of the treatment on DG neurogenesis and astrocyte branching in the stratum radiatum may contribute to improving memory performance in aging rats.  相似文献   

11.
Rattin, a specific derivative of humanin in rats, shares the ability with HN to protect neurons against amyloid β (Aβ) peptide‐induced cellular toxicity. However, it is still unclear whether Rattin can protect against Aβ‐induced deficits in cognition and synaptic plasticity in rats. In the present study, we observed the effects of Rattin and Aβ31–35 on the spatial reference memory and in vivo hippocampal Long‐term potentiation of rats by using Morris water maze test and hippocampal field potential recording. Furthermore, the probable molecular mechanism underlying the neuroprotective roles of Rattin was investigated. We showed that intra‐hippocampal injection of Rattin effectively prevented the Aβ31–35‐induced spatial memory deficits and hippocampal LTP suppression in rats; the Aβ31–35‐induced activation of Caspase‐3 and inhibition of STAT3 in the hippocampus were also prevented by Rattin treatment. These findings indicate that Rattin treatment can protect spatial memory and synaptic plasticity of rats against Aβ31–35‐induced impairments, and the underlying protective mechanism of Rattin may be involved in STAT3 and Caspases‐3 pathways. Therefore, application of Rattin or activation of its signaling pathways in the brain might be beneficial to the prevention of Aβ‐related cognitive deficits. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
The hippocampal formation is involved in several important brain functions of animals, such as memory formation and pattern separation, and the synapses in the dentate gyrus (DG) play critical roles as the first step in the hippocampal circuit. Previous studies have reported that mice with genetic modifications of the PDZ1/2 domains of postsynaptic density (PSD)‐95 exhibit altered synaptic properties in the DG and impaired hippocampus‐dependent behaviors. Based on the involvement of the DG in the regulation of behaviors, these data suggest that the abnormal behavior of these knockin (KI) mice is due partly to altered DG function. Precise understanding of the phenotypes of these mutant mice requires characterization of the synaptic properties of the DG, and here we provide detailed studies of DG synapses. We have demonstrated global changes in the PSD membrane‐associated guanylate kinase expression pattern in the DG of mutant mice, and DG synapses in these mice exhibited increased long‐term potentiation under a wide range of stimulus intensities, although the N‐methyl‐d ‐aspartic acid receptor dependence of the long‐term potentiation was unchanged. Furthermore, our data also indicate increased silent synapses in the DG of the KI mice. These findings suggest that abnormal protein expression and physiological properties disrupt the function of DG neurons in these KI mice.  相似文献   

13.
Alzheimer's disease (AD), the most common neurodegenerative disease in the elderly population, is characterized by the hippocampal deposition of fibrils formed by amyloid β‐protein (Aβ), a 40‐ to 42‐amino‐acid peptide. The folding of Aβ into neurotoxic oligomeric, protofibrillar, and fibrillar assemblies is believed to mediate the key pathologic event in AD. The hippocampus is especially susceptible in AD and early degenerative symptoms include significant deficits in the performance of hippocampal‐dependent cognitive abilities such as spatial learning and memory. Transgenic mouse models of AD that express C‐terminal segments or mutant variants of amyloid precursor protein, the protein from which Aβ is derived, exhibit age‐dependent spatial memory impairment and attenuated long‐term potentiation (LTP) in the hippocampal CA1 and dentate gyrus (DG) regions. Recent experimental evidence suggests that Aβ disturbs N‐methyl‐D ‐aspartic acid (NMDA) receptor–dependent LTP induction in the CA1 and DG both in vivo and in vitro. Furthermore, these studies suggest that Aβ specifically interferes with several major signaling pathways downstream of the NMDA receptor, including the Ca2+‐dependent protein phosphatase calcineurin, Ca2+/calmodulin‐dependent protein kinase II (CaMKII), protein phosphatase 1, and cAMP response element–binding protein (CREB). The influence of Aβ on each of these downstream effectors of the NMDA receptor is reviewed in this article. Additionally, other mechanisms of LTP modulation, such as Aβ attenuation of α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid (AMPA) receptor currents, are briefly discussed. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
15.
The specific roles of hippocampal subfields in spatial information processing and encoding are, as yet, unclear. The parallel map theory postulates that whereas the CA1 processes discrete environmental features (positional cues used to generate a “sketch map”), the dentate gyrus (DG) processes large navigation‐relevant landmarks (directional cues used to generate a “bearing map”). Additionally, the two‐streams hypothesis suggests that hippocampal subfields engage in differentiated processing of information from the “where” and the “what” streams. We investigated these hypotheses by analyzing the effect of exploration of discrete “positional” features and large “directional” spatial landmarks on hippocampal neuronal activity in rats. As an indicator of neuronal activity we measured the mRNA induction of the immediate early genes (IEGs), Arc and Homer1a. We observed an increase of this IEG mRNA in CA1 neurons of the distal neuronal compartment and in proximal CA3, after novel spatial exploration of discrete positional cues, whereas novel exploration of directional cues led to increases in IEG mRNA in the lower blade of the DG and in proximal CA3. Strikingly, the CA1 did not respond to directional cues and the DG did not respond to positional cues. Our data provide evidence for both the parallel map theory and the two‐streams hypothesis and suggest a precise compartmentalization of the encoding and processing of “what” and “where” information occurs within the hippocampal subfields.  相似文献   

16.
Epigenetic processes, such as histone acetylation, are critical regulators of learning and memory processes. In the present study, we investigated whether training in either a spatial or a cued water maze task undergoes selective changes of histone H3 and H4 acetylation within the hippocampus and the dorsal striatum of C57BL/6 mice. We also attempted to provide new insights into the relationships between deregulation in histone acetylation and age‐associated memory deficits. In young mice, spatial training increased acetylation of histones H3 and H4 selectively in the dorsal hippocampal CA1 region and the dentate gyrus (DG) whereas cued training significantly enhanced acetylation of both histones selectively in the dorsal striatum. Our data also revealed age‐related differences in histone acetylation within the hippocampus and striatum according to task demands. Specifically, age‐related spatial memory deficits were associated with opposite changes of H3 (increase) and H4 (decrease) acetylation in CA1 and DG. After cued learning, both histone acetylation levels were reduced in the striatum of aged mice compared with corresponding young‐adults but remained well above those of cage‐controls. Collectively, our findings suggest an important role for histone acetylation in regulating the relative contributions of the hippocampus and striatum to learning spatial and cued memory tasks. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
It is believed that the impact of stress on interleukin‐1β (IL‐1β) depends on the ontogenetic age. This study examines the influence of acute or chronic exposure to forced‐swim (FS) stress or high‐light open‐field (HL‐OF) stimulation on the expression of IL‐1β. Double immunofluorescence staining was used to reveal the density of IL‐1β/NeuN (NeuN is a neuronal nuclear marker)‐immunoreactive (‐ir) cells in the hippocampal subfields CA1 and CA3, dentate gyrus (DG), and paraventricular nucleus (PVN) of the hypothalamus. Adult postnatal day 90 (P90) and aged (P720) rats were used in this experiment. The data showed a significant increase in the density of IL‐1β/NeuN‐ir cells in the CA1, CA3, DG, and PVN in P720 nonstressed rats in relation to P90 control animals. Neither FS nor HL‐OF acute stimulation caused alteration in the density of IL‐1β‐ir neurons in any of the investigated structures in P90 and P720 rats in comparison with control groups. However, chronic FS caused a significant increase in CA3 and DG of P720 rats, and chronic HL‐OF led to a significant increase in the density of IL‐1β‐ir neurons in the PVN of P90 rats and in all hippocampal subfields of P720 animals. These results indicate that chronic HL‐OF stimulation is a factor that induces changes in the number of IL‐1β‐ir neurons in the PVN of adult rats, whereas both chronic FS and HL‐OF are aggravating factors for the hippocampus of aged (P720) animals. © 2014 Wiley Periodicals, Inc.  相似文献   

18.
Prenatal morphine exposure induces neurobiological changes, including deficits in learning and memory, in juvenile rat offspring. However the effects of this exposure on hippocampal plasticity, which is critical for learning and memory processes, are not well understood. The present study investigates the alterations of spatial memory and in vivo hippocampal synaptic plasticity in juvenile rats prenatally exposed to morphine. On gestation days 11–18, pregnant rats were randomly chosen to be injected twice daily with morphine or saline. Each juvenile offspring (postnatal day 22–31) performed one two‐trial Y‐maze task to evaluate spatial memory. Afterwards, the in vivo field excitatory postsynaptic potential (fEPSP) and population spike (PS) were recorded in the perforant path dentate gyrus (DG) pathway in the hippocampus. Prenatal morphine exposure reduced depotentiation (DP), but not long‐term potentiation (LTP), of the EPSP slope. However, both LTP and DP of the EPSP slope were depressed in prenatal morphine‐exposed juvenile offspring. The morphine group also showed poorer performance for the Y‐maze task than the control group. Depressed PS LTP, but not EPSP LTP, in the morphine group suggested that prenatal morphine exposure changed GABAergic inhibition, which mediates EPSP‐spike potentiation. Then a loss of GABA‐containing neurons in the DG area of the morphine group was observed using immunohistochemistry. Taken together, our results suggest that prenatal morphine exposure impairs the juvenile offspring's dentate synaptic plasticity and spatial memory, and that decreased GABAergic inhibition may play a role in these effects. These findings might contribute to an explanation for the cognitive deficits in children whose mothers abuse opiates during pregnancy. © 2008 Wiley‐Liss, Inc.  相似文献   

19.
11β‐Hydroxysteroid dehydrogenase type 1 (11β‐HSD1) locally regenerates active glucocorticoids from their inert forms thereby amplifying intracellular levels within target tissues including the brain. We previously showed greater increases in intra‐hippocampal corticosterone (CORT) levels upon Y‐maze testing in aged wild‐type than in 11β‐HSD1?/? mice coinciding with impaired and intact spatial memory, respectively. Here we examined whether ageing influences 11β‐HSD1 regulation of CORT in the dorsal hippocampus under basal conditions during the diurnal cycle and following stress. Intra‐hippocampal CORT levels measured by in vivo microdialysis in freely behaving wild‐type mice displayed a diurnal variation with peak levels in the evening that were significantly elevated with ageing. In contrast, the diurnal rise in intra‐hippocampal CORT levels was greatly diminished in 11β‐HSD1?/? mice and there was no rise with ageing; basal intra‐hippocampal CORT levels were similar to wild‐type controls. Furthermore, a short (3 min) swim stress induced a longer lasting increase in intra‐hippocampal CORT levels in wild‐type mice than in 11β‐HSD1?/? mice despite no genotypic differences in elevation of plasma CORT. These data indicate that 11β‐HSD1 activity contributes substantially to diurnal and stress‐induced increases in hippocampal CORT levels. This contribution is even greater with ageing. Thus, 11β‐HSD1 inhibition may be an attractive target for treating cognitive impairments associated with stress or ageing.  相似文献   

20.
Iron is a necessary substrate for neuronal function throughout the lifespan, but particularly during development. Early life iron deficiency (ID) in humans (late gestation through 2–3 yr) results in persistent cognitive and behavioral abnormalities despite iron repletion. Animal models of early life ID generated using maternal dietary iron restriction also demonstrate persistent learning and memory deficits, suggesting a critical requirement for iron during hippocampal development. Precise definition of the temporal window for this requirement has been elusive due to anemia and total body and brain ID inherent to previous dietary restriction models. To circumvent these confounds, we developed transgenic mice that express tetracycline transactivator regulated, dominant negative transferrin receptor (DNTfR1) in hippocampal neurons, disrupting TfR1 mediated iron uptake specifically in CA1 pyramidal neurons. Normal iron status was restored by doxycycline administration. We manipulated the duration of ID using this inducible model to examine long‐term effects of early ID on Morris water maze learning, CA1 apical dendrite structure, and defining factors of critical periods including parvalbmin (PV) expression, perineuronal nets (PNN), and brain‐derived neurotrophic factor (BDNF) expression. Ongoing ID impaired spatial memory and resulted in disorganized apical dendrite structure accompanied by altered PV and PNN expression and reduced BDNF levels. Iron repletion at P21, near the end of hippocampal dendritogenesis, restored spatial memory, dendrite structure, and critical period markers in adult mice. However, mice that remained hippocampally iron deficient until P42 continued to have spatial memory deficits, impaired CA1 apical dendrite structure, and persistent alterations in PV and PNN expression and reduced BDNF despite iron repletion. Together, these findings demonstrate that hippocampal iron availability is necessary between P21 and P42 for development of normal spatial learning and memory, and that these effects may reflect disruption of critical period closure by early life ID. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号