首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
G2A, T cell death-associated gene 8 (TDAG8), ovarian cancer G protein-coupled receptor 1 (OGR1), and G protein-coupled receptor 4 (GPR4) form a group of structurally related G protein-coupled receptors (GPCRs) originally proposed to bind proinflammatory lipids. More recent studies have challenged the identification of lipid agonists for these GPCRs and have suggested that they function primarily as proton sensors. We compared the ability of these four receptors to modulate pH-dependent responses by using transiently transfected cell lines. In accordance with previously published reports, OGR1 was found to evoke strong pH-dependent responses as measured by inositol phosphate accumulation. We also confirmed the pH-dependent cAMP production by GPR4 and TDAG8. However, we found the activity of the human G2A receptor and its mouse homolog to be significantly less sensitive to pH fluctuations as measured by inositol phosphate and cAMP accumulation. Sequence homology analysis indicated that, with one exception, the histidine residues that were previously shown to be important for pH sensing by OGR1, GPR4, and TDAG8 were not conserved in the G2A receptor. We further addressed the pH-sensing properties of G2A and TDAG8 in a cellular context where these receptors are coexpressed. In thymocytes and splenocytes explanted from receptor-deficient mice, TDAG8 was found to be critical for pH-dependent cAMP production. In contrast, G2A was found to be dispensable for this process. We conclude that members of this GPCR group exhibit differential sensitivity to extracellular protons, and that expression of TDAG8 by immune cells may regulate responses in acidic microenvironments.  相似文献   

2.
Tyramine, beta-phenylethylamine, tryptamine, and octopamine are biogenic amines present in trace levels in mammalian nervous systems. Although some "trace amines" have clearly defined roles as neurotransmitters in invertebrates, the extent to which they function as true neurotransmitters in vertebrates has remained speculative. Using a degenerate PCR approach, we have identified 15 G protein-coupled receptors (GPCR) from human and rodent tissues. Together with the orphan receptor PNR, these receptors form a subfamily of rhodopsin GPCRs distinct from, but related to the classical biogenic amine receptors. We have demonstrated that two of these receptors bind and/or are activated by trace amines. The cloning of mammalian GPCRs for trace amines supports a role for trace amines as neurotransmitters in vertebrates. Three of the four human receptors from this family are present in the amygdala, possibly linking trace amine receptors to affective disorders. The identification of this family of receptors should rekindle the investigation of the roles of trace amines in mammalian nervous systems and may potentially lead to the development of novel therapeutics for a variety of indications.  相似文献   

3.
Using fluorescence resonance energy transfer (FRET) microscopy, we investigate how heterotrimeric G proteins interact with G protein-coupled receptors (GPCRs). In the absence of receptor activation, the alpha2A adrenergic and muscarinic M4 receptors are present on the cell membrane as dimers. Furthermore, there is an interaction between the G protein subunits alpha o, beta1, and gamma2 and a number of GPCRs including M4, alpha2A, the adenosine A1 receptor, and the dopamine D2 receptor under resting conditions. The interaction between GPCRs and Galpha proteins shows specificity: there is interaction between the alpha2A receptor and Go, but little interaction between the alpha2A receptor and Gs. In contrast, the predominantly Gs-coupled prostacyclin receptor interacted with Gs, but there was little interaction between the prostacyclin receptor and Go. Inverse agonists did not change the FRET ratio, whereas the addition of agonist resulted in a modest fall. Our work suggests that GPCR dimers and the G protein heterotrimer are present at the cell membrane in the resting state in a pentameric complex.  相似文献   

4.
Rashid AJ  O'Dowd BF  George SR 《Endocrinology》2004,145(6):2645-2652
The transmission of signals by G protein-coupled receptors (GPCRs) that use peptides as ligands is critical for function of the gastrointestinal system. Molecular cloning has indicated that GPCRs constitute the most diverse transmembrane receptor family with many of these genes expressed in the gastrointestinal system. In addition to this molecular diversity, it has become clear that signaling through GPCRs is highly complex, with a wide variety of mechanisms that underlie different signaling responses and pathways through the same receptor. This minireview will summarize some of the emerging concepts of peptidergic GPCRs: signaling diversity including coupling to different G proteins, multiple endogenous ligands that can mediate different effects through binding to their cognate receptors, and homo- and hetero-oligomerization of receptors to enable cross talk or to produce novel signaling units.  相似文献   

5.
The glucagon-like peptide-1 incretin receptor (GLP-1R) of family B G protein-coupled receptors (GPCRs) is a major drug target in type-2-diabetes due to its regulatory effect on post-prandial blood-glucose levels. The mechanism(s) controlling GLP-1R mediated signaling are far from fully understood. A fundamental mechanism controlling the signaling capacity of GPCRs is the post-endocytic trafficking of receptors between recycling and degradative fates. Here, we combined microscopy with novel real-time assays to monitor both receptor trafficking and signaling in living cells. We find that the human GLP-1R internalizes rapidly and with similar kinetics in response to equipotent concentrations of GLP-1 and the stable GLP-1 analogues exendin-4 and liraglutide. Receptor internalization was confirmed in mouse pancreatic islets. GLP-1R is shown to be a recycling receptor with faster recycling rates mediated by GLP-1 as compared to exendin-4 and liraglutide. Furthermore, a prolonged cycling of ligand-activated GLP-1Rs was observed and is suggested to be correlated with a prolonged cAMP signal.  相似文献   

6.
7.
G protein‐coupled receptors (GPCRs) are the most abundant receptor family encoded by the human genome and are the targets of a high percentage of drugs currently in use or in clinical trials for the treatment of diseases such as diabetes and its associated complications. Thus, orphan GPCRs, for which the ligand is unknown, represent an important untapped source of therapeutic potential for the treatment of many diseases. We have identified the previously orphan GPCR, GPR146, as the putative receptor of proinsulin C‐peptide, which may prove to be an effective treatment for diabetes‐associated complications. For example, we have found a potential role of C‐peptide and GPR146 in regulating the function of the retinal pigment epithelium, a monolayer of cells in the retina that serves as part of the blood–retinal barrier and is disrupted in diabetic macular oedema. However, C‐peptide signalling in this cell type appears to depend at least in part on extracellular glucose concentration and its interaction with insulin. In this review, we discuss the therapeutic potential of orphan GPCRs with a special focus on C‐peptide and GPR146, including past and current strategies used to ‘deorphanize’ this diverse family of receptors, past successes and the inherent difficulties of this process.  相似文献   

8.
gamma-aminobutyric acid type B (GABA(B)) receptors, G protein-coupled receptors (GPCRs) for GABA, are obligate heterodimers of two homologous subunits, GB1 and GB2. Typical for family C GPCRs, the N termini of both GB1 and GB2 contain a domain with homology to bacterial periplasmic amino acid-binding proteins (PBPs), but only the GB1 PBP-like domain binds GABA. We found that both GB1 and GB2 extracellular N termini are required for normal coupling of GABA(B) receptors to their physiological effectors, G(i) and G protein-activated K(+) channels (GIRKs). Receptors with two GB2 N termini did not respond to GABA, whereas receptors with two GB1 N termini showed increased basal activity and responded to GABA with inhibition, rather than activation, of GIRK channels. This GABA-induced GIRK current inhibition depended on GABA binding to the chimeric GB(1/2) subunit (the GB1 N-terminal domain attached to the heptahelical domain of GB2), rather than the wild-type GB1 subunit. Interestingly, receptors with reciprocal exchange of N-terminal domains between the subunits were functionally indistinguishable from wild-type receptors. We also found that peptide linkers between GB1 and GB2 PBP-like domains and respective heptahelical domains could be altered without affecting receptor function. This finding suggests that other contacts between the PBP-like and heptahelical domains underlie ligand-induced signal transduction, a finding likely to be relevant for all family C GPCRs.  相似文献   

9.
There are approximately 350 non-odorant G protein-coupled receptors (GPCRs) encoded by the human genome, many of which are predicted to be potential therapeutic targets, but there are only two structures available to represent the whole of the family. We hypothesized that improving the detergent stability of these receptors and simultaneously locking them into one preferred conformation will greatly improve the chances of crystallization. We developed a generic strategy for the isolation of detergent-solubilized thermostable mutants of a GPCR, the beta1-adrenergic receptor. The most stable mutant receptor, betaAR-m23, contained six point mutations that led to an apparent T(m) 21 degrees C higher than the native protein, and, in the presence of bound antagonist, betaAR-m23 was as stable as bovine rhodopsin. In addition, betaAR-m23 was significantly more stable in a wide range of detergents ideal for crystallization and was preferentially in an antagonist conformation in the absence of ligand.  相似文献   

10.
G-protein–coupled receptors (GPCRs) are the largest family of transmembrane signaling proteins in the human genome. Events in the GPCR signaling cascade have been well characterized, but the receptor composition and its membrane distribution are still generally unknown. Although there is evidence that some members of the GPCR superfamily exist as constitutive dimers or higher oligomers, interpretation of the results has been disputed, and recent studies indicate that monomeric GPCRs may also be functional. Because there is controversy within the field, to address the issue we have used total internal reflection fluorescence microscopy (TIRFM) in living cells to visualize thousands of individual molecules of a model GPCR, the M1 muscarinic acetylcholine receptor. By tracking the position of individual receptors over time, their mobility, clustering, and dimerization kinetics could be directly determined with a resolution of ~30 ms and ~20 nm. In isolated CHO cells, receptors are randomly distributed over the plasma membrane. At any given time, ~30% of the receptor molecules exist as dimers, and we found no evidence for higher oligomers. Two-color TIRFM established the dynamic nature of dimer formation with M1 receptors undergoing interconversion between monomers and dimers on the timescale of seconds.  相似文献   

11.
G protein-coupled receptors (GPCRs) represent the largest family of membrane receptors and are responsible for regulating a wide variety of physiological processes. This is accomplished via ligand binding to GPCRs, activating associated heterotrimeric G proteins and intracellular signaling pathways. G protein-coupled receptor kinases (GRKs), in concert with β-arrestins, classically desensitize receptor signal transduction, thus preventing hyperactivation of GPCR second-messenger cascades. As changes in GRK expression have featured prominently in many cardiovascular pathologies, including heart failure, myocardial infarction, hypertension, and cardiac hypertrophy, GRKs have been intensively studied as potential diagnostic or therapeutic targets. Herein, we review our evolving understanding of the role of GRKs in cardiovascular pathophysiology.  相似文献   

12.
The G protein-coupled receptor repertoires of human and mouse   总被引:19,自引:0,他引:19  
Diverse members of the G protein-coupled receptor (GPCR) superfamily participate in a variety of physiological functions and are major targets of pharmaceutical drugs. Here we report that the repertoire of GPCRs for endogenous ligands consists of 367 receptors in humans and 392 in mice. Included here are 26 human and 83 mouse GPCRs not previously identified. A direct comparison of GPCRs in the two species reveals an unexpected level of orthology. The evolutionary preservation of these molecules argues against functional redundancy among highly related receptors. Phylogenetic analyses cluster 60% of GPCRs according to ligand preference, allowing prediction of ligand types for dozens of orphan receptors. Expression profiling of 100 GPCRs demonstrates that most are expressed in multiple tissues and that individual tissues express multiple GPCRs. Over 90% of GPCRs are expressed in the brain. Strikingly, however, the profiles of most GPCRs are unique, yielding thousands of tissue- and cell-specific receptor combinations for the modulation of physiological processes.  相似文献   

13.
About one decade ago has been demonstrated that G protein-coupled receptors (GPCRs) are able to utilize the epidermal growth factor (EGF) receptor (EGFR) as signalling intermediate. Thereby GPCRs are enabled to regulate cell growth, differentiation, and migration. A molecular mechanism for this process has been proposed that involves the activation of a distinct set of metalloproteases and the subsequent generation and release of particular members of the EGF peptide family which in turn activate the EGFR in an autocrine/paracrine manner. This model that allows GPCRs direct access to the signalling network of the EGFR family has emerged as a valid concept in a variety of cell types including cancer cells.  相似文献   

14.
G protein-coupled receptors (GPCRs) represent the largest family of signal-transducing molecules known. They convey signals for light and many extracellular regulatory molecules. GPCRs have been found to be dysfunctional/dysregulated in a growing number of human diseases and have been estimated to be the targets of more than 30% of the drugs used in clinical medicine today. Thus, understanding how GPCRs function at the molecular level is an important goal of biological research. In order to understand function at this level, it is necessary to delineate the 3D structure of these receptors. Recently, the 3D structure of rhodopsin has been resolved, but in the absence of experimentally determined 3D structures of other GPCRs, a powerful approach is to construct a theoretical model for the receptor and refine it based on experimental results. Computer-generated models for many GPCRs have been constructed. In this article, we will review these studies. We will place the greatest emphasis on an iterative, bi-directional approach in which models are used to generate hypotheses that are tested by experimentation and the experimental findings are, in turn, used to refine the model. The success of this approach is due to the synergistic interaction between theory and experiment.  相似文献   

15.
Two major bottlenecks in elucidating the structure and function of membrane proteins are the difficulty of producing large quantities of functional receptors, and stabilizing them for a sufficient period of time. Selecting the right surfactant is thus crucial. Here we report using peptide surfactants in commercial Escherichia coli cell-free systems to rapidly produce milligram quantities of soluble G protein-coupled receptors (GPCRs). These include the human formyl peptide receptor, human trace amine-associated receptor, and two olfactory receptors. The GPCRs expressed in the presence of the peptide surfactants were soluble and had α-helical secondary structures, suggesting that they were properly folded. Microscale thermophoresis measurements showed that one olfactory receptor expressed using peptide surfactants bound its known ligand heptanal (molecular weight 114.18). These short and simple peptide surfactants may be able to facilitate the rapid production of GPCRs, or even other membrane proteins, for structure and function studies.  相似文献   

16.
Thomas P  Pang Y  Filardo EJ  Dong J 《Endocrinology》2005,146(2):624-632
Although nonclassical estrogen actions initiated at the cell surface have been described in many tissues, the identities of the membrane estrogen receptors (mERs) mediating these actions remain unclear. Here we show that GPR30, an orphan receptor unrelated to nuclear estrogen receptors, has all the binding and signaling characteristics of a mER. A high-affinity (dissociation constant 2.7 nm), limited capacity, displaceable, single binding site specific for estrogens was detected in plasma membranes of SKBR3 breast cancer cells that express GPR30 but lack nuclear estrogen receptors. Progesterone-induced increases and small interfering RNA-induced decreases in GPR30 expression in SKBR3 cells were accompanied by parallel changes in specific estradiol-17beta (E2) binding. Plasma membranes of human embryonic kidney 293 cells transfected with GPR30, but not those of untransfected cells, and human placental tissues that express GPR30 also displayed high-affinity, specific estrogen binding typical of mERs. E2 treatment of transfected cell membranes caused activation of a stimulatory G protein that is directly coupled to the receptor, indicating GPR30 is a G protein-coupled receptor (GPCR), and also increased adenylyl cyclase activity. The finding that the antiestrogens tamoxifen and ICI 182,780, and an environmental estrogen, ortho,para-dichlorodiphenyldichloroethylene (o,p'-DDE), have high binding affinities to the receptor and mimic the actions of E2 has important implications for both the development and treatment of estrogen-dependent breast cancer. GPR30 is structurally unrelated to the recently discovered family of GPCR-like membrane progestin receptors. The identification of a second distinct class of GPCR-like steroid membrane receptors suggests a widespread role for GPCRs in nonclassical steroid hormone actions.  相似文献   

17.
Prediction of structure and function of G protein-coupled receptors   总被引:1,自引:0,他引:1  
G protein-coupled receptors (GPCRs) mediate our sense of vision, smell, taste, and pain. They are also involved in cell recognition and communication processes, and hence have emerged as a prominent superfamily for drug targets. Unfortunately, the atomic-level structure is available for only one GPCR (bovine rhodopsin), making it difficult to use structure-based methods to design drugs and mutation experiments. We have recently developed first principles methods (MembStruk and HierDock) for predicting structure of GPCRs, and for predicting the ligand binding sites and relative binding affinities. Comparing to the one case with structural data, bovine rhodopsin, we find good accuracy in both the structure of the protein and of the bound ligand. We report here the application of MembStruk and HierDock to beta1-adrenergic receptor, endothelial differential gene 6, mouse and rat I7 olfactory receptors, and human sweet receptor. We find that the predicted structure of beta1-adrenergic receptor leads to a binding site for epinephrine that agrees well with the mutation experiments. Similarly the predicted binding sites and affinities for endothelial differential gene 6, mouse and rat I7 olfactory receptors, and human sweet receptor are consistent with the available experimental data. These predicted structures and binding sites allow the design of mutation experiments to validate and improve the structure and function prediction methods. As these structures are validated they can be used as targets for the design of new receptor-selective antagonists or agonists for GPCRs.  相似文献   

18.
Poxviruses express a family of secreted proteins that bind with high affinity to chemokines and antagonize the interaction with their cognate G protein-coupled receptors (GPCRs). These viral inhibitors are novel in structure and, unlike cellular chemokine receptors, are able to specifically interact with most, if not all, CC-chemokines. We therefore sought to define the structural features of CC-chemokines that facilitate this broad-spectrum interaction. Here, we identify the residues present on human monocyte chemoattractant protein-1 (MCP-1) that are required for high-affinity interaction with the vaccinia virus 35-kDa CC-chemokine binding protein (VV-35kDa). Not only do these residues correspond to those required for interaction with the cognate receptor CCR2b but they are also conserved among many CC-chemokines. Thus, the results provide a structural basis for the ability of VV-35kDa to promiscuously recognize CC-chemokines and block binding to their receptors.  相似文献   

19.
20.
G protein coupled receptors (GPCRs) are a large superfamily of integral cell surface plasma membrane proteins that play key roles in transducing extracellular signals, including sensory stimuli, hormones, neurotransmitters, or paracrine factors into the intracellular environment through the activation of one or more heterotrimeric G proteins. Structural alterations provoked by mutations or variations in the genes coding for GPCRs may lead to misfolding, altered plasma membrane expression of the receptor protein and frequently to disease. A number of GPCRs regulate reproductive function at different levels; these receptors include the gonadotropin-releasing hormone receptor (GnRHR) and the gonadotropin receptors (follicle-stimulating hormone receptor and luteinizing hormone receptor), which regulate the function of the pituitary-gonadal axis. Loss-of-function mutations in these receptors may lead to hypogonadotropic or hypergonadotropic hypogonadism, which encompass a broad spectrum of clinical phenotypes. In this review we describe mutations that provoke misfolding and failure of these receptors to traffick from the endoplasmic reticulum to the plasma membrane. We also discuss some aspects related to the therapeutic potential of some target-specific drugs that selectively bind to and rescue function of misfolded mutant GnRHR and gonadotropin receptors, and that represent potentially valuable strategies to treat diseases caused by inactivating mutations of these receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号