首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To study the physiological responses induced by immersing in cold water various areas of the upper limb, 20 subjects immersed either the index finger (T1), hand (T2) or forearm and hand (T3) for 30?min in 5°C water followed by a 15-min recovery period. Skin temperature of the index finger, skin blood flow (Qsk) measured by laser Doppler flowmetry, as well as heart rate (HR) and mean arterial blood pressure (¯BPa) were all monitored during the test. Cutaneous vascular conductance (CVC) was calculated as Qsk?/?¯BPa. Cold induced vasodilatation (CIVD) indices were calculated from index finger skin temperature and CVC time courses. The results showed that no differences in temperature, CVC or cardiovascular changes were observed between T2 and T3. During T1, CIVD appeared earlier compared to T2 and T3 [5.90 (SEM 0.32) min in T1 vs 7.95 (SEM 0.86) min in T2 and 9.26 (SEM 0.78) min in T3, P??1 in T2 and +15 (SEM 3) beats?·?min?1 in T3, P??1 in T2, and ?15 (SEM 3) beats?·?min?1 in T3, P?aincreased at the beginning of T1 but was lower than in T2 and T3 [+9.3 (SEM 2.5) mmHg in T1, P?P?相似文献   

2.
The present study aimed at investigating the spatial variability of skin temperature (T sk) measured at various points on the hand during convective and cold contact exposure. A group of 8 subjects participated in a study of convective cooling of the hand (60 min) and 20 subjects to contact cooling of the finger pad (5 min). Experiments were carried out in a small climatic chamber into which the hand was inserted. For convective cold exposure,T sk was measured at seven points on the palmar surface of the fingers of the left hand, one on the palmar surface and one on the dorsal surface of the hand. The air temperature inside the mini-chamber was 0, 4, 10 and 16°C. With the contact cold exposure, the subjects touched at constant pressures an aluminium cube cooled to temperatures of –7, 0 and 7°C in the same mini-chamber. ContactT sk was measured on the finger pad of the index finger of the left hand. TheT sk of the proximal phalanx of the index finger (on both palm and back sides), and of the middle phalanx of the little finger was also measured. The variation ofT sk between the proximal and the distal phalanx of the index finger was between 1.5 to 10°C during the convective cold exposure to an air temperature of 0°C. Considerable gradients persisted between the hand and fingers (from 2 to 17°C at 0°C air temperature) and between the phalanges of the finger (from 0.5 to 11.4°C at 0°C air temperature). The onset of cold induced vasodilatation (CIVD) on different fingers varied from about 5 to 15 min and it did not always appear in every finger. For contact cold exposure, whenT sk on the contact skin cooled down to nearly 0°C, the temperature at the area close to the contact skin could still be 30°C. Some cases of CIVD were observed in the contact skin area, but not on other measuring points of the same finger. These results indicated that local thermal stimuli were the main determinents of CIVD. Representative hand skin temperature may require five or more measuring points. Our results strongly emphasised a need to consider the large spatial and individual variations in the prediction and modelling of extremity cooling.  相似文献   

3.
The purpose of this study was to examine the cardiovascular responses at the onset of passive leg cycle exercise (PLCE) in paraplegics with spinal cord injury (PSCI) to investigate the increase in venous return from the paralyzed lower limbs during PLCE. Six male PSCI having lesions at levels ranging from T8 to L1 and five male able-bodied subjects (ABS) participated in this study. The subjects performed PLCE at pedalling frequencies of 40 rpm for 6 min. Cardiac output ( c), stroke volume (SV) and heart rate (f c) were measured before and during PLCE. In the steady state (4th and 5th min) of PLCE, both PSCI and ABS showed a significant increase in c. At the onset of PLCE, however, clear differences in the cardiovascular response were found between PSCI and ABS. The ABS showed a rapid and marked increase in f c and consequently c within 20 s of the onset of PLCE. On the other hand, in PSCI, the c increased more slowly, compared with that in ABS, because of a smaller increase in f c and a delayed increase in SV. The observed delay in the increases of c and SV at the onset of PLCE in PSCI was presumably due to the absence of afferent reflexes from the lower limbs, and to the additional time needed for venous return to arrive at the heart from the passively moved muscles. Accepted: 23 September 1999  相似文献   

4.
The objectives of this study were to evaluate the reliability and accuracy of a new impedance cardiograph device, the Physio Flow, at rest and during a steady-state dynamic leg exercise (work intensity ranging from 10 to 50 W) performed in the supine position. We compared cardiac output determined simultaneously by two methods, the Physio Flow ( cPF) and the direct Fick ( cFick) methods. Forty patients referred for right cardiac catheterisation, 14 with sleep apnoea syndrome and 26 with chronic obstructive pulmonary disease, took part in this study. The subjects' oxygen consumption values ranged from 0.14 to 1.19 l · min−1. The mean difference between the two methods ( cFick cPF) was 0.04 l · min−1 at rest and 0.29 l · min−1 during exercise. The limits of agreement, defined as mean difference ± 2SD, were −1.34, +1.41 l · min−1 at rest and −2.34, +2.92 l · min−1 during exercise. The difference between the two methods exceeded 20% in only 2.5% of the cases at rest, and 9.3% of the cases during exercise. Thoracic hyperinflation did not alter cPF. We conclude that the Physio Flow provides a clinically acceptable and non-invasive evaluation of cardiac output under these conditions. This new impedance cardiograph device deserves further study using other populations and situations. Accepted: 3 April 2000  相似文献   

5.
Seven healthy men performed steady-state dynamic leg exercise at 50 W in supine and upright postures, before (control) and repeatedly after 42 days of strict head-down tilt (HDT) (−6°) bedrest. Steady-state heart rate (f c), mean arterial blood pressure, cardiac output ( c), and stroke volume (SV) were recorded. The following data changed significantly from control values. The f c was elevated in both postures at least until 12 days, but not at 32 days after bedrest. Immediately after HDT, SV and c were decreased by 25 (SEM 3)% and 19 (SEM 3)% in supine, and by 33 (SEM 5)% and 20 (SEM 3)% in upright postures, respectively. Within 2 days there was a partial recovery of SV in the upright but not in the supine posture. The SV and c during supine exercise remained significantly decreased for at least a month. Submaximal oxygen uptake did not change after HDT. We concluded that the cardiovascular response to exercise after prolonged bedrest was impaired for so long that it suggested that structural cardiac changes had developed during the HDT period. Accepted: 6 June 2000  相似文献   

6.
Cardiovascular responses were examined in seven healthy male subjects during 10 min of recovery in the upright or supine position following 5 min of upright cycle exercise at 80% peak oxygen uptake. An initial rapid decrease in heart rate (f c) during the early phase of recovery followed by much slower decrease was observed for both the upright and supine positions. The average f c at the 10th min of recovery was significantly lower (P < 0.05) in the supine position than in the upright position, while they were both significantly greater than the corresponding pre-exercise levels (each P < 0.05). Accordingly, the amplitude of the high frequency (HF) component of R-R interval variability (by spectrum analysis) in both positions was reduced with a decrease in mean R-R interval, the relationship being expressed by a regression line – mean R-R interval = 0.006 × HF amplitude + 0.570 (r = 0.905, n = 28, P < 0.001). These results would suggest that the slower reduction in f c following the initial rapid reduction in both positions is partly attributable to a retardation in the restoration of the activity of the cardiac parasympathetic nervous system. Post-exercise upright stroke volume (SV, by impedance cardiography) decreased gradually to just below the pre-exercise level, whereas post-exercise supine SV increased markedly to a level similar to that at rest before exercise. The resultant cardiac output ( c) and the total peripheral vascular resistance (TPR) in the upright and supine positions returned gradually to their respective pre-exercise levels in the corresponding positions. At the 10th min of recovery, both average SV and c were significantly greater (each P < 0.005) in the supine than in the upright position, while average TPR was significantly lower (P < 0.05) in the supine than in the upright position. In contrast, immediately after exercise, mean blood pressure dropped markedly in both the supine and upright positions, and their levels at the 10th min of recovery were similar. Therefore we concluded that arterial blood pressure is maintained relatively constant through various compensatory mechanisms associated with f c, SV, c, and TPR during rest and recovery in different body positions. Accepted: 4 September 1999  相似文献   

7.
The objectives of this investigation were to study the effects of thigh cuffs (bracelets) on cardiovascular adaptation and deconditioning in 0 g. The cardiovascular parameters of six cosmonauts were measured by echocardiography, Doppler, and plethysmography, during three 6-month MIR spaceflights. Measurements were made at rest during preflight (−30 days), inflight (1, 3–4, and 5–5.5 months) without cuffs (morning) and after 5 h with cuffs, and during postflight (+3 and +7 days). Lower-body negative pressure (LBNP) measurements were performed 1 day after each resting session. Inflight values of left ventricle end-diastolic volume and stroke volume measured without the thigh cuffs (−8 to −24% and −10 to −16%, respectively, both P < 0.05) were lower than corresponding preflight values. The jugular and femoral vein cross-sectional areas (A jv and A fv, respectively) were enlarged (A jv: by 23–30%, P < 0.001; A fv: by 33–70% P < 0.01). The renal and femoral vascular resistances (R ra and R fa, respectively) decreased (R ra: by −15 to −16%, P < 0.01; R fa: by −5 to −11%, P < 0.01). Inflight, the thigh cuffs reduced the A jv (by −12 to −20%, P < 0.02), but enlarged the A fv (A fv: by 9–20%, P < 0.02) and increased the vascular resistance (R ra: by 8–13%, P < 0.05; R fa: by 10–16%, P < 0.01) compared to corresponding inflight, without-cuffs values. During LBNP (−45 mmHg, where 1 mmHg=133.3 N/m2), R fa and the ratio between cerebral and femoral blood flow ( ca/ fa) increased less inflight and postflight (+25% for R fa and +30% for ca/ fa) than during preflight (60% for R fa and 75% for ca/ fa, P < 0.01). This reduced vasoconstrictive response and less efficient flow redistribution toward the brain was associated with orthostatic intolerance during postflight stand tests in all of the cosmonauts. The calf circumference increased less inflight and postflight (6% P < 0.05) than preflight (9% P < 0.05). The vascular response to LBNP remained similarly altered throughout the flight. The thigh cuffs compensated partially for the cardiovascular changes induced by exposure to 0 g, but did not interfere with 0 g deconditioning. Accepted: 5 November 1999  相似文献   

8.
To examine the mechanisms and regional differences in the age-related decrement of skin blood flow, 11 young (age 20–25 years) and 10 older (age 64–76 years) men were exposed to a mild heat stress by immersing their feet and lower legs in water at 42°C for 60 min, while they were sitting in near thermoneutral conditions [25°C and 45% relative humidity (rh)]. During the equilibrium period (25°C and 45% rh) before the heat test, no group differences were observed in rectal (T re) and mean skin (T sk) temperatures or mean arterial pressure (MAP). During passive heating, T sk was significantly lower in the older men 20 min after commencing exposure (P < 0.001), although there were similar increases in T re in both groups. Exposure time and age did not affect MAP. The local sweating rate ( sw) and the percentage change in skin blood flow by laser Doppler flowmetry (%LDF) relative to baseline values on the chest, back, forearm and thigh were significantly lower in the older men (P < 0.001), especially on the thigh. After starting the heat exposure, three temporal phases were observed in the relationship between %LDF and sw at most sites in each subject. In phase A, %LDF increased but with no increase in sw. In phase B, sw increased but with no secondary increase in %LDF. Finally, in phase C, there were proportional increases in %LDF and sw. The increase in %LDF in phase A was significantly lower on the forearm and thigh (P < 0.05) for the older men, but not on the chest and back. In phase C, the slopes of the regression lines between %LDF and sw were lower for the older men on the back (P < 0.03), forearm (P = 0.08) and thigh (P < 0.03), but not on the chest. These results would suggest that the age-related decrement in skin blood flow in response to passive heating may be due in part to a smaller release of vasoconstrictor tone and to less active vasodilatation once sweating begins. Regional differences exist in the impaired vasoconstriction and active vasodilatation systems. Accepted: 29 May 1998  相似文献   

9.
The aim of the study was to examine to what extent prior high- or low-intensity cycling, yielding the same amount of external work, influenced the oxygen uptake (O2) slow component of subsequent high-intensity cycling. The 12 subjects cycled in two protocols consisting of an initial 3 min period of unloaded cycling followed by two periods of constant-load exercise separated by 3 min of rest and 3 min of unloaded cycling. In protocol 1 both periods of exercise consisted of 6 min cycling at a work rate corresponding to 90% peak oxygen uptake (O2peak). Protocol 2 differed from protocol 1 in that the first period of exercise consisted of a mean of 12.1 (SD 0.8) min cycling at a work rate corresponding to 50% O2peak. The difference between the 3rd min O2 and the end O2O2(6−3)) was used as an index of the O2 slow component. Prior high-intensity exercise significantly reduced ΔO2(6−3). The ΔO2(6−3) was also reduced by prior low-intensity exercise despite an unchanged plasma lactate concentration at the start of the second period of exercise. The reduction was more pronounced after prior high- than after prior low-intensity exercise (59% and 28%, respectively). The results of this study show that prior exercise of high as well as low intensity reduces the O2 slow component and indicate that a metabolic acidosis is not a necessary condition to elicit a reduction in ΔO2(6−3). Accepted: 8 July 2000  相似文献   

10.
The aim of the present study was to determine the effects of 40 km of cycling on the biomechanical and cardiorespiratory responses measured during the running segment of a classic triathlon, with particular emphasis on the time course of these responses. Seven male triathletes underwent four successive laboratory trials: (1) 40 km of cycling followed by a 10-km triathlon run (TR), (2) a 10-km control run (CR) at the same speed as TR, (3) an incremental treadmill test, and (4) an incremental cycle test. The following ventilatory data were collected every minute using an automated breath-by-breath system: pulmonary ventilation ( E, l · min−1), oxygen uptake (O2, ml · min−1 · kg−1), carbon dioxide output (ml · min−1), respiratory equivalents for oxygen ( E/O2) and carbon dioxide ( E/CO2), respiratory exchange ratio (R) respiratory frequency (f, breaths · min−1), and tidal volume (ml). Heart rate (HR, beats · min−1) was monitored using a telemetric system. Biomechanical variables included stride length (SL) and stride frequency (SF) recorded on a video tape. The results showed that the following variables were significantly higher (analysis of variance, P < 0.05) for TR than for CR: O2 [51.7 (3.4) vs 48.3 (3.9) ml · kg−1 · min−1, respectively], E [100.4 (1.4) l · min−1 vs 84.4 (7.0) l · min−1], E/O2 [24.2 (2.6) vs 21.5 (2.7)] E/CO2 [25.2 (2.6) vs 22.4 (2.6)], f [55.8 (11.6) vs 49.0 (12.4) breaths · min−1] and HR [175 (7) vs 168 (9) beats · min−1]. Moreover, the time needed to reach steady-state was shorter for HR and O2 (1 min and 2 min, respectively) and longer for E (7 min). In contrast, the biomechanical parameters, i.e. SL and SF, remained unchanged throughout TR versus CR. We conclude that the first minutes of the run segment after cycling in an experimental triathlon were specific in terms of O2 and cardiorespiratory variables, and nonspecific in terms of biomechanical variables. Accepted: 7 July 1997  相似文献   

11.
The aim of the present study was to investigate whether the changes in breathing pattern that frequently occur towards the end of exhaustive exercise (i.e., increased breathing frequency, f b, with or without decreased tidal volume) may be caused by the respiratory work itself rather than by leg muscle work. Eight healthy, trained subjects performed the following three sessions in random order: (A) two sequential cycling endurance tests at 78% peak O2 consumption (O2peak) to exhaustion (A1, A2); (B) isolated, isocapnic hyperpnea (B1) at a minute ventilation ( E) and an exercise duration similar to that attained during a preliminary cycling endurance test at 78% O2peak, followed by a cycling endurance test at 78% O2peak (B2); (C) isolated, isocapnic hyperpnea (C1) at a E at least 20% higher than that of the preliminary cycling test and the same exercise duration as the preliminary cycling test, followed by a cycling endurance test at 78% O2peak (C2). Neither of the two isocapnic hyperventilation tasks (B1 or C1) affected either the breathing pattern or the endurance times of the subsequent cycling tests. Only cycling test A2 was significantly shorter [mean (SD) 26.5 (8.3) min] than tests A1 [41.0 (9.0) min], B2 [41.9 (6.0) min], and C2 [42.0 (7.5) min]. In addition, compared to test A1, only the breathing pattern of test A2 was significantly different [i.e., E: +10.5 (7.6) l min−1, and f b: +12.1 (8.5) breaths min−1], in contrast to the breathing patterns of cycling tests B2 [ E: −2.5 (6.2) l min−1, f b: +0.2 (3.6) breaths min−1] and C2 [ E: −3.0 (7.0) l min−1, f b: +0.6 (6.1) breaths min−1]. In summary, these results suggest that the changes in breathing pattern that occur towards the end of an exhaustive exercise test are a result of changes in the leg muscles rather than in the respiratory muscles themselves. Accepted: 7 October 1999  相似文献   

12.
There have been many studies on the effects of isokinetic exercise on muscle performance in training and rehabilitative programmes. On the other hand, the cardiovascular and metabolic responses elicited by this type of exercise have been poorly investigated. This study was specifically designed to describe the relationships, if any, between metabolic and cardiorespiratory responses and power output during maximal intermittent knee isokinetic exercise when a steady state is reached. A group of 18 healthy subjects (10 men and 8 women, age range 25–30 years) were requested to perform at maximal concentric isokinetic knee extensions/flexions 60° · s−1 and 180° · s−1 for 5 min, with a 5-s pause interposed between consecutive repetitions. The power output () was calculated; before and during the tasks heart rate (f c) and arterial blood pressure (APa) were continuously monitored. Pulmonary ventilation ( E) and oxygen uptake (O2) were measured at the 4th and at the 5th min of exercise and blood lactate concentration at rest and at the 3rd min of recovery. From the 4th to the 5th min only a slight decrease in was observed, both at 60° · s−1 and 180° · s−1. The O2, E, f c and APa showed similar values in the last 2 min of exercise, suggesting that a steady state had been reached. The O2 increased linearly as a function of , showing a significantly steeper slope at 60° · s−1 than at 180° · s−1. The f c, in spite of a large interindividual variation, was linearly related to metabolic demand, and was not affected by angular velocity. Systolic and diastolic APa were not related either to O2 or to angular velocity. In conclusion it would appear that the metabolic response to maximal intermittent knee isokinetic exercise resembles that of dynamic exercise. Conversely, the cardiocirculatory responses would seem to reflect a relevant role of the isometric postural component, the importance of which should be carefully evaluated in each subject. Accepted: 21 September 1999  相似文献   

13.
The purpose of this study was to characterise the relationship between running velocity and the time for which a subject can run at maximal oxygen uptake (O2 max), (t lim O2 max). Seven physical education students ran in an incremental test (3-min stages) to determine O2 max and the minimal velocity at which it was elicited (νO2 max). They then performed four all-out running tests on a 200-m indoor track every 2 days in random order. The mean times to exhaustion t lim at 90%, 100%, 120% and 140% νO2 max were 13 min 22 s (SD 4 min 30 s), 5 min 47 s (SD 1 min 50 s), 2 min 11 s (SD 38 s) and 1 min 12 s (SD 18 s), respectively. Five subjects did not reach O2 max in the 90% νO2 max test. All the subjects reached O2 max in the runs at 100% νO2 max. All the subjects, except one, reached O2 max in the runs at 120%νO2 max. Four subjects did not reach O2 max in the 140% νO2 max test. Time to achieve O2 max was always about 50% of the time to exhaustion irrespective of the intensity. The time to exhaustion-velocity relationship was better fitted by a 3- than by a 2-parameter critical power model for running at 90%, 100%, 120%, 140% νO2 max as determined in the previous incremental test. In conclusion, t lim O2 max depended on a balance between the time to attain O2 max and the time to exhaustion t lim. The time to reach O2 max decreased as velocity increased. The t lim O2 max was a bi-phasic function of velocity, with a peak at 100% νO2 max. Accepted: 2 February 2000  相似文献   

14.
Previous findings of a narcosis-induced reduction in heat production during cold water immersion, as reflected in oxygen uptake (O2), have been attributed to the attenuation of the shivering response. The possibility of reduced oxygen utilization (O2) by the muscles could not, however, be excluded. Accordingly, the present study tested the hypothesis that mild narcosis, induced by inhalation of a normoxic gas mixture containing 30% nitrous oxide (N2O), would affect O2. Nine male subjects participated in both maximal and submaximal exercise trials, inspiring either room air (AIR) or a normoxic mixture containing 30% N2O. In the submaximal trials, the subjects exercised at 50% of maximal exercise intensity ( max ) as determined in the maximal AIR trial. Though the subjects attained the same max in the AIR and N2O trials, maximal O2 was significantly higher (P < 0.05) during the N2O condition [58.9 (SEM 3.1) ml · kg−1 · min−l] compared to the AIR condition [55.0 (SEM 2.4) ml · kg−1 · min−l]. However, the O2-relative exercise intensity relationship was similar during both maximal AIR and maximal N2O at submaximal exercise intensities. There were no significant differences in the responses of oesophageal temperature, sweating rate, heart rate and ventilation between AIR and N2O in the maximal and submaximal tests. It was concluded that the previously reported narcosis-induced reductions in O2 observed during cold water immersion can be attributed solely to a reduction in the shivering response rather than to decreased oxygen utilization by the muscles. Accepted: 6 February 2000  相似文献   

15.
This study investigated the effects on running economy (RE) of ingesting either no fluid or an electrolyte solution with or without 6% carbohydrate (counterbalanced design) during 60-min running bouts at 80% maximal oxygen consumption (O2max). Tests were undertaken in either a thermoneutral (22–23°C; 56–62% relative humidity, RH) or a hot and humid natural environment (Singapore: 25–35°C; 66–77% RH). The subjects were 15 young adult male Singaporeans [O2max = 55.5 (4.4 SD) ml kg−1 min−1]. The RE was measured at 3 m s−1 [65 (6)% O2max] before (RE1) and after each prolonged run (RE2). Fluids were administered every 2 min, at an individual rate determined from prior tests, to maintain body mass (group mean = 17.4 ml min−1). The O2 during RE2 was higher (P < 0.05) than that during the RE1 test for all treatments, with no differences between treatments (ANOVA). The mean increase in O2 from RE1 to RE2 ranged from 3.4 to 4.7 ml kg−1 min−1 across treatments. In conclusion, the deterioration in RE at 3 m s−1 (65% O2max) after 60 min of running at 80% O2max appears to occur independently of whether fluid is ingested and regardless of whether the fluid contains carbohydrates or electrolytes, in both a thermoneutral and in a hot, humid environment. Accepted: 30 October 1997  相似文献   

16.
Eight female games players (GP) and eight female endurance athletes (EA) ran intermittently at high-intensity and for prolonged periods in hot (30°C) and moderate (16°C) ambient temperatures. The subjects performed a two-part (A, B) test based on repeated 20-m shuttle runs. Part A comprised 60 m of walking, a maximal 15-m sprint, 60 m of cruising (90% maximal oxygen uptake, O2max) and 60 m of jogging (45% O2max) repeated for 75 min with a 3-min rest every 15 min. Part B involved an exercise and rest pattern of 60-s running at 100% O2max and 60-s rest which was continued until fatigue. Although the GP and EA did not respond differently in terms of distances completed, performance was 25 (SEM 4)% less (main effect trial, P < 0.01) in the hot (HT) compared with the moderate trial (MT). Sprints of 15 m took longer to complete in the heat (main effect, trial, P < 0.01), and sprint performance declined during HT but not MT (interaction, trial × time, P < 0.01). A very high correlation was found between the rate of rise in rectal temperature in HT and the distance completed [GP, r =−0.94, P < 0.01; EA (n = 7), r = −0.93, P < 0.01]. Blood lactate [La ]b and plasma ammonia [NH3]p1 concentrations were higher for GP than EA, but were similar in HT and MT [La ]b, HT: GP vs EA, 8.0 (SEM 0.9) vs 4.9 (SEM 1.1) mmol · l−1; MT: GP vs EA, 8.0 (SEM 1.3) vs 4.4 (SEM 1.2) mmol · l−1; interaction, group × time, P < 0.01; [NH3]p1, HT: GP vs EA, 70.1 (SEM 12.7) vs 43.2 (SEM 6.1) mmol · l−1; MT: GP vs EA, 76.8 (SEM 8.8) vs 32.5 (SEM 3.8) μmol · l−1; interaction, group × time, P < 0.01. Ad libitum water consumption was higher in HT [HT: GP vs EA, 18.9 (SEM 2.9) vs 13.5 (SEM 1.7) ml · kg−1 · h−1; MT: GP vs EA, 12.7 (SEM 3.7) vs 8.5 (SEM 1.5) ml · kg−1 · h−1; main effect, group, n.s.; main effect, trial, P < 0.01]. These results would suggest that elevated body temperature is probably the key factor limiting performance of prolonged, intermittent, high-intensity running when the ambient temperature is high, but not because of its effect on the metabolic responses to exercise. Accepted: 19 July 1999  相似文献   

17.
The conventional method used to estimate the change in mean body temperature (dMBT) is by taking X% of a body core temperature and (1−X)% of weighted mean skin temperature, the value of X being dependent upon ambient temperature. This technique is used widely, despite opposition from calorimetrists. In the present paper we attempt to provide a better method. Minute-by-minute changes in dMBT, as assessed using calorimetry, and 21 (20 if esophageal temperature was unavailable) various regional temperatures (dRBTs), as assessed using thermometry, including 6 subcutaneous measures, were collected from 7 young male adults at 6 calorimeter temperatures. Since a calorimeter measures only changes in heat storage, which can be converted to dMBT, all body temperatures are expressed as changes from the reasonably constant pre-exposure temperatures. The following three aspects were investigated. (1) The prediction of dMBT from the 21 (or 20) dRBTs with multi-linear regression analysis (MLR). This yields two results, model A with rectal temperature (dT re) alone, and model B with dT re and esophageal temperature (dT es). (2) The prediction of dMBT from dT re with or without dT es and 13 skin surface temperatures combined to one weighted mean skin temperature (d sk), using MLR. This results in models C and D. Six more models (E–J) were added, representing the above two sets in various combinations with four factors. (3) The conventional method calculated with four values for X. Model A predicted better than 0.3 °C in 70% of the cases. Model I was the best amongst the models with 13 weighted skin temperatures (better than 0.3 °C in 60% of the cases). The conventional method was erratic. Accepted: 14 January 2000  相似文献   

18.
 The primary aim of this study was to examine any change in performance caused by a fatiguing interval training session (TS). A secondary aim of this study was to examine the change in oxygen uptake (O2) during moderate and severe intensity running, and the relationship with the change in performance. Seven male runners [mean age 24 (SD 6) years, height 1.79 (SD 0.06) m, body mass 67.9 (SD 7.6) kg, maximal oxygen uptake (O2max) 4.14 (SD 0.49) l · min−1] were studied. The O2 during moderate and severe intensity running and running performance were studied immediately prior to, 1 h following, and 72 h following TS. The TS was performed on a treadmill, and consisted of six bouts of 800 m at 1 km · h−1 below the velocity at O2max (v O2max), with 3-min rest intervals. Performance was also assessed at 1 km · h−1 below v O2max, in the form of time to exhaustion (t lim). The O2 and heart rate (f c) were assessed both during the severe intensity performance trial, and the moderate intensity run at 50% v O2max. Whilst a significant change was observed in running performance and the O2 during both moderate and severe intensity running prior to and following TS, no relationship was observed between the magnitude of change in these variables. At 1 h following TS, t lim had decreased by 24%, O2 during moderate intensity running had increased by 2%, and the difference in O2 between 2 min 45 s and the end of severe intensity running had increased by 91% compared with values recorded prior to TS. At 1 h following TS, ƒc had also increased significantly during moderate intensity running by 5% compared to the value recorded prior to TS. These findings demonstrated that TS resulted in a reduction in performance, and that the relationship between running performance and O2 during running may be altered under conditions of prolonged fatigue. Accepted: 16 September 1999  相似文献   

19.
The objective of this study was to evaluate the viability of using a single test in which cardiorespiratory variables are measured, to establish training guidelines in running and/or cycling training activities. Six triathletes (two females and four males), six runners (two females and four males) and six males cyclists, all with 5.5 years of serious training and still involved in racing, were tested on a treadmill and cycle ergometer. Cardiorespiratory variables [e.g., heart rate (HR), minute ventilation, carbon dioxide output (CO2)] were calculated relative to fixed percentages of maximal oxygen uptake (O2max; from 50 to 100%). The entire group of subjects had significantly (P < 0.05) higher values of O2max on the treadmill compared with the cycle ergometer [mean (SEM) 4.7 (0.8) and 4.4 (0.9) l · min−1, respectively], and differences between tests averaged 10.5% for runners, 6.1% for triathletes and 2.8% for cyclists. A three-way analysis of variance using a 3 × 2 × 6 design (groups × tests × intensities) demonstrated that all factors yielded highly significant F-ratios (P < 0.05) for all variables between tests, even though differences in HR were only 4 beats · min−1. When HR was plotted against a fixed percentage of O2max, a high correlation was found between tests. These results demonstrate that for triathletes, cyclists and runners, the relationship between HR and percentage of O2max, obtained in either a treadmill or a cycle ergometer test, may be used independently of absolute O2max to obtain reference HR values that can be used to monitor their running and/or cycling training bouts. Received: 3 November 1998 / Accepted: 29 July 1999  相似文献   

20.
The transient response of oxygen uptake (O2) to submaximal exercise, known to be abnormal in patients with cardiovascular disorders, can be useful in assessing the functional status of the cardiocirculatory system, however, a method for evaluating it accurately has not yet been established. As an alternative approach to the conventional test at constant exercise intensity, we applied a random stimulus technique that has been shown to provide relatively noise immune responses of system being investigated. In 27 patients with heart failure and 24 age-matched control subjects, we imposed cycle exercise at 50 W intermittently according to a pseudo-random binary (exercise-rest) sequence, while measuring breath-by-breath O2. After determining the transfer function relating exercise intensity () to O2 and attenuating the high frequency ranges (>6 exercise-rest cycles · min−1), we computed the high resolution band-limited (0–6 cycles · min−1) O2 response (0–120 s) to a hypothetical step exercise. The O2 response showed a longer time constant in the patients than in the control subjects [47 (SD 37) and 31 (SD 8) s, respectively, P < 0.05]. Furthermore, the amplitude of the O2 response after the initial response was shown to be significantly smaller in the patients than in the control subjects [176 (SD 50) and 267 (SD 54) ml · min−1 at 120 s]. The average amplitude over 120 s correlated well with peak O2 (r = 0.73) and ΔO2 (r = 0.70), both of which are well-established indexes of exercise tolerance. The data indicated that our band-limited V˙O2 step response using random exercise was more markedly attenuated and delayed in the patients with heart failure than in the normal controls and that it could be useful in quantifying the overall functional status of the cardiocirculatory system. Accepted: 6 January 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号