首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Prostaglandin E(2) (PGE(2)) inhibits fibroblast proliferation and collagen production. Its synthesis by fibroblasts is induced by profibrotic mediators including transforming growth factor (TGF)-beta(1). However, in patients with pulmonary fibrosis, PGE(2) levels are decreased. In this study we examined the effect of TGF-beta(1) on PGE(2) synthesis, proliferation, collagen production, and cyclooxygenase (COX) mRNA levels in fibroblasts derived from fibrotic and nonfibrotic human lung. In addition, we examined the effect of bleomycin-induced pulmonary fibrosis in COX-2-deficient mice. We demonstrate that basal and TGF-beta(1)-induced PGE(2) synthesis is limited in fibroblasts from fibrotic lung. Functionally, this correlates with a loss of the anti-proliferative response to TGF-beta(1). This failure to induce PGE(2) synthesis is because of an inability to up-regulate COX-2 mRNA levels in these fibroblasts. Furthermore, mice deficient in COX-2 exhibit an enhanced response to bleomycin. We conclude that a decreased capacity to up-regulate COX-2 expression and COX-2-derived PGE(2) synthesis in the presence of increasing levels of profibrotic mediators such as TGF-beta(1) may lead to unopposed fibroblast proliferation and collagen synthesis and contribute to the pathogenesis of pulmonary fibrosis.  相似文献   

3.
Collagen deposition is observed in a diverse set of pulmonary diseases, and the unraveling of the molecular signaling pathways that facilitate collagen deposition represents an ongoing area of investigation. The stress-activated protein kinase, c-Jun N-terminal kinase 1 (JNK1), is activated by a large variety of cellular stresses and environmental insults. Recent work from our laboratory demonstrated the critical role of JNK1 in epithelial to mesenchymal transition. The goal of the present study was to examine the involvement of JNK1 in subepithelial collagen deposition in mice subjected to models of allergic airways disease and interstitial pulmonary fibrosis. Activation of JNK was slightly enhanced in lungs from mice subjected to sensitization and challenge with ovalbumin (Ova), and predominant localization of phospho-JNK was observed in the bronchial epithelium. While mice lacking JNK1 (JNK1-/- mice) displayed enhanced lung inflammation and cytokine production compared with wild-type (WT) mice, JNK1-/- mice accumulated less subepithelial collagen deposition in response to antigen, and showed decreased expression of profibrotic genes compared with WT animals. Furthermore, transforming growth factor (TGF)-beta1 content in the bronchoalveolar lavage was diminished in JNK1-/- mice compared with WT animals subjected to antigen. Finally, we demonstrated that mice lacking JNK1 were protected against TGF-beta1 and bleomycin-induced pro-fibrotic gene expression and pulmonary fibrosis. Collectively, these findings demonstrate an important requirement for JNK1 in promoting collagen deposition in multiple models of fibrosis.  相似文献   

4.
5.
PI3Kγ is central in signaling diverse arrays of cellular functions and inflammation. Pulmonary fibrosis is associated with pulmonary inflammation, angiogenesis, and deposition of collagen and is modeled by instillation of bleomycin. The role of PI3Kγ in mediating bleomycin-induced pulmonary inflammation and fibrosis in mice and potential mechanisms involved was investigated here. WT or PI3Kγ KO mice were instilled with bleomycin and leukocyte subtype influx, cytokine and chemokine levels, and angiogenesis and tissue fibrosis evaluated. The activation of lung-derived leukocytes and fibroblasts was evaluated in vitro. The relevance of PI3Kγ for endothelial cell function was evaluated in HUVECs. PI3Kγ KO mice had greater survival and weight recovery and less fibrosis than WT mice after bleomycin instillation. This was associated with decreased production of TGF-β(1) and CCL2 and increased production of IFN-γ and IL-10. There was reduced expression of collagen, fibronectin, α-SMA, and von Willebrand factor and decreased numbers and activation of leukocytes and phosphorylation of AKT and IκB-α. PI3Kγ KO mice had a reduced number and area of blood vessels in the lungs. In vitro, treatment of human endothelial cells with the PI3Kγ inhibitor AS605240 decreased proliferation, migration, and formation of capillary-like structures. AS605240 also decreased production of collagen by murine lung-derived fibroblasts. PI3Kγ deficiency confers protection against bleomycin-induced pulmonary injury, angiogenesis, and fibrosis through the modulation of leukocyte, fibroblast, and endothelial cell functions. Inhibitors of PI3Kγ may be beneficial for the treatment of pulmonary fibrosis.  相似文献   

6.
Pulmonary fibrosis is characterized by excessive deposition of extracellular matrix in the interstitium, resulting in impaired lung function and respiratory failure. Investigation of the differences in individual susceptibility to the development of fibrosis may help to detect patients that are at risk to fibrosis when exposed to fibrogenic stimuli. In this study we used adenoviral gene transfer to transiently expose a fibrosis-prone (C57BL/6) and a fibrosis-resistant (Balb/c) mouse strain to high levels of active transforming growth factor (TGF)-beta1, a key profibrotic cytokine. Balb/c mice developed significantly less fibrosis compared with C57BL/6 mice in response to active TGF-beta1 despite higher levels of the transgene protein in the lung. This was not due to a general unresponsiveness of cells to TGF-beta1, because primary fibroblasts of both strains increased collagen synthesis upon stimulation with TGF-beta1 in vitro to the same degree. However, TGF-beta1 induced a strong upregulation of tissue inhibitor of metalloprotease-1 gene in pulmonary fibroblasts as well as in lungs of C57BL/6 mice, in contrast to a weak induction in Balb/c mice. These findings suggest that the differences in susceptibility to pulmonary fibrosis are downstream from TGF-beta1 and that fibrosis-prone individuals may have an altered collagen metabolism in the lungs that is balanced toward a "nondegrading" environment.  相似文献   

7.
8.
Carbon nanotubes are gaining increasing attention due to possible health risks from occupational or environmental exposures. This study tested the hypothesis that inhaled multiwalled carbon nanotubes (MWCNT) would increase airway fibrosis in mice with allergic asthma. Normal and ovalbumin-sensitized mice were exposed to a MWCNT aerosol (100 mg/m(3)) or saline aerosol for 6 hours. Lung injury, inflammation, and fibrosis were examined by histopathology, clinical chemistry, ELISA, or RT-PCR for cytokines/chemokines, growth factors, and collagen at 1 and 14 days after inhalation. Inhaled MWCNT were distributed throughout the lung and found in macrophages by light microscopy, but were also evident in epithelial cells by electron microscopy. Quantitative morphometry showed significant airway fibrosis at 14 days in mice that received a combination of ovalbumin and MWCNT, but not in mice that received ovalbumin or MWCNT only. Ovalbumin-sensitized mice that did not inhale MWCNT had elevated levels IL-13 and transforming growth factor (TGF)-beta1 in lung lavage fluid, but not platelet-derived growth factor (PDGF)-AA. In contrast, unsensitized mice that inhaled MWCNT had elevated PDGF-AA, but not increased levels of TGF-beta1 and IL-13. This suggested that airway fibrosis resulting from combined ovalbumin sensitization and MWCNT inhalation requires PDGF, a potent fibroblast mitogen, and TGF-beta1, which stimulates collagen production. Combined ovalbumin sensitization and MWCNT inhalation also synergistically increased IL-5 mRNA levels, which could further contribute to airway fibrosis. These data indicate that inhaled MWCNT require pre-existing inflammation to cause airway fibrosis. Our findings suggest that individuals with pre-existing allergic inflammation may be susceptible to airway fibrosis from inhaled MWCNT.  相似文献   

9.
The emergence of the myofibroblast phenotype (characterized by alpha-smooth muscle actin expression) in wound healing and in tissues undergoing fibrosis is thought to be responsible for the increased contractility of the affected tissues. In bleomycin-induced pulmonary fibrosis, the myofibroblast is also responsible for the observed increase in collagen gene expression. To evaluate further these phenotypic changes in lung fibroblasts, contractile and other phenotypic properties of fibroblasts isolated from lungs of rats with bleomycin-induced fibrosis were compared with those of normal rats using in vitro models. Pulmonary fibrosis was induced in rats by endotracheal injection on day 0, and 7 and 14 days later the animals were sacrificed and lung fibroblasts isolated. Using immunofluorescence, < 10% of fibroblasts from control animals express alpha-smooth muscle actin when cultured as a monolayer. In contrast, 19% and 21% of cells from day 7 and day 14 bleomycin-treated animals, respectively, expressed this actin and with greater intensity than in control lung cells. This increase in actin expression was associated with enhanced contractility when evaluated using a three-dimensional cell culture model consisting of fibroblast-populated collagen gels. This enhanced contractility was abolished by treatment with antibody to transforming growth factor-beta (TGF-beta), whereas exogenous TGF-beta 1 and serum-stimulated contraction of control lung fibroblasts. TGF-beta 1 gene expression was greater in cells from bleomycin-treated animals than those from control lungs. These results show that cells with the myofibroblast phenotype are more abundant in fibrotic lung, and that these cells possess greater contractile capacity in vitro at least partly by virtue of their enhanced endogenous TGF-beta 1 gene expression.  相似文献   

10.
Induction of cardiac fibrosis by transforming growth factor-beta(1)   总被引:18,自引:0,他引:18  
The role of transforming growth factor-beta(1) (TGF-beta(1)) in the production and deposition of collagens and in the induction of gene expression in the myocardium in relation to the development of myocardial fibrosis will be discussed. Very low expression of TGF-beta(1) and collagen type I and III mRNA is seen in the normal rat heart. Both expressions are markedly increased in the infarcted heart and the levels of TGF-beta(1) mRNA precedes increases in mRNA levels for extracellular matrix (ECM) proteins, suggesting a possible role of TGF-beta(1) in remodeling processes in the myocardium. The TGF-beta(1) expression is normally only transient since continuous TGF-beta(1) overexpression seems to promote nonadaptive cardiac hypertrophy and myocardial fibrosis. In vitro, TGF-beta(1) induces an increase in collagen production and secretion and enhances the abundance of mRNA levels for collagen type I and III in rat cardiac fibroblasts in culture. TGF-beta(1) also stimulates in vivo the expression of ECM proteins and in vivo gene transfer of TGF-beta(1) can induce myocardial fibrosis. Increased myocardial TGF-beta(1) and ECM protein mRNA are found in myocardial fibrosis induced by angiotensin II infusion, by noradrenaline treatment, by isoprenaline infusion, and by long-term blockade of NO synthesis. In vivo antagonism of TGF-beta(1) by neutralizing anti-TGF-beta(1) antibodies or by proteoglycans prevents the increase in gene expression of ECM proteins and inhibits myocardial fibrosis, suggesting that the increases in matrix protein production and fibrosis are mediated by TGF-beta(1).  相似文献   

11.

OBJECTIVE:

To investigate the antifibrotic effects of crocetin in scleroderma fibroblasts and in sclerotic mice.

METHODS:

Skin fibroblasts that were isolated from three systemic scleroderma (SSc) patients and three healthy subjects were treated with crocetin (0.1, 1 or 10 μM). Cell proliferation was measured with an MTT assay. Alpha-smooth muscle actin was detected via an immunohistochemical method. Alpha 1 (I) procollagen (COL1A1), alpha 1 (III) procollagen (COL3A1), matrix metalloproteinase (MMP)-1 and tissue inhibitor of matrix metalloproteinase (TIMP)-1 mRNA levels were measured using real-time PCR. SSc mice were established by the subcutaneous injection of bleomycin. Crocetin (50 mg/kg/d) was injected intraperitoneally for 14 days. Dermal thickness and lung fibrosis were assessed with Masson''s trichrome staining. Plasma ET-1 was detected with an enzyme-linked immunosorbent assay (ELISA). Skin and lung ET-1 and COL1A1 mRNA levels were measured via real-time PCR.

RESULTS:

Crocetin inhibited the proliferation of SSc and normal fibroblasts, an effect that increased with crocetin concentration and incubation time. Crocetin decreased the expression of α-SMA and the levels of mRNA for COL1A1, COL3A1 and matrix metalloproteinase-1, while crocetin increased TIMP-1 mRNA levels in both SSc and normal fibroblasts. Skin and lung fibrosis was induced, and the levels of ET-1 in the plasma, skin and lungs were elevated in bleomycin-injected mice. Crocetin alleviated the thickening of the dermis and lung fibrosis; decreased COL1A1 mRNA levels in the skin and lung; and simultaneously decreased ET-1 concentrations in the plasma and ET-1 mRNA levels in the skin and lungs of the bleomycin-induced sclerotic mice, especially during the early phase (weeks 1-3).

CONCLUSION:

Crocetin inhibits cell proliferation, differentiation and collagen production in SSc fibroblasts. Crocetin alleviates skin and lung fibrosis in a bleomycin-induced SSc mouse model, in part due to a reduction in ET-1.  相似文献   

12.
Mice lacking aryl hydrocarbon (dioxin) receptor (AhR) had variable degree of hepatic fibrosis and altered liver architecture. Transforming growth factor-beta (TGF-beta), a major profibrogenic molecule in the liver, is localized to the extracellular matrix by its association to the latent TGF-beta-binding protein-1 (LTBP-1). Very recently, LTBP-1 has been shown to be negatively regulated by the AhR. Embryonic fibroblasts from AhR-null (AhR(-/-)) mice overexpress LTBP-1 and secrete four times more active TGF-beta than wild-type fibroblasts. To test whether TGF-beta and LTBP-1 overexpression colocalize within the fibrotic nodule of AhR(-/-) liver, we have characterized this hepatic portal fibrosis using collagen protein staining, immunohistochemistry and in situ hybridization. LTBP-1 mRNA and protein were overexpressed in the fibrotic region and colocalized with other indicators of fibrosis such as collagen and fibronectin and the fibroblast marker proteins alpha-actin and vimentin. TGF-beta protein also colocalized with fibrosis, although in contrast, TGF-beta mRNA expression, rather than restricted to the fibrotic compartment, was present throughout the hepatic parenchyma and exhibited similar levels in wild-type and AhR(-/-) mice. These results suggest that LTBP-1 targets TGF-beta to specific areas of the liver and that the AhR could be a negative regulator of liver fibrosis, possibly through the control of LTBP-1 and TGF-beta activities.  相似文献   

13.
14.
The role of gender and sex hormones is unclear in host response to lung injury, inflammation, and fibrosis. To examine gender influence on pulmonary fibrosis, male and female rats were given endotracheal injections of either saline or bleomycin. Female rats showed higher mortality rates and more severe fibrosis than did male rats, as indicated by higher levels of lung collagen deposition and fibrogenic cytokine expression. To clarify the potential role of female sex hormones in lung fibrosis, female rats were ovariectomized and treated with either estradiol or vehicle plus endotracheal injections of either saline or bleomycin. The results showed diminished fibrosis in the ovariectomized, bleomycin-treated rats without hormone replacement. Estradiol replacement restored the fibrotic response to that of the intact female mice in terms of lung collagen deposition and cytokine expression, which was accompanied by higher plasma estradiol levels. Furthermore, fibroblasts from bleomycin-treated rats exhibited increased responsiveness to estradiol treatment, causing dose-dependent increases in procollagen 1 and transforming growth factor-beta1 mRNA expression relative to untreated controls. Taken together these findings suggest that female mice may have an exaggerated response to lung injury relative to male mice because of female sex hormones, which have direct fibrogenic activity on lung fibroblasts. This may provide a mechanism for a hormonally mediated intensification of pulmonary fibrosis.  相似文献   

15.
16.
Transforming growth factor (TGF)-beta regulates many aspects of wound repair including inflammation, chemotaxis, and deposition of extracellular matrix. We previously showed that epithelialization of incisional wounds is accelerated in mice null for Smad3, a key cytoplasmic mediator of TGF-beta signaling. Here, we investigated the effects of loss of Smad3 on healing of wounds in skin previously exposed to ionizing radiation, in which scarring fibrosis complicates healing. Cutaneous wounds made in Smad3-null mice 6 weeks after irradiation showed decreased wound widths, enhanced epithelialization, and reduced numbers of neutrophils and myofibroblasts compared to wounds in irradiated wild-type littermates. Differences in breaking strength of wild-type and Smad3-null wounds were not significant. As shown previously for neutrophils, chemotaxis of primary dermal fibroblasts to TGF-beta required Smad3, but differentiation of fibroblasts to myofibroblasts by TGF-beta was independent of Smad3. Previous irradiation-enhanced induction of connective tissue growth factor mRNA in wild-type, but not Smad3-null fibroblasts, suggested that this may contribute to the heightened scarring in irradiated wild-type skin as demonstrated by Picrosirius red staining. Overall, the data suggest that attenuation of Smad3 signaling might improve the healing of wounds in previously irradiated skin commensurate with an inhibition of fibrosis.  相似文献   

17.
Fibroblasts consist of heterogeneous subpopulations that have distinct roles in fibrotic responses. Previously we reported enhanced proliferation in response to fibrogenic growth factors and selective activation of latent transforming growth factor (TGF)-beta in fibroblasts lacking cell surface expression of Thy-1 glycoprotein, suggesting that Thy-1 modulates the fibrogenic potential of fibroblasts. Here we report that compared to controls Thy-1-/- C57BL/6 mice displayed more severe histopathological lung fibrosis, greater accumulation of lung collagen, and increased TGF-beta activation in the lungs 14 days after intratracheal bleomycin. The majority of cells demonstrating TGF-beta activation and myofibroblast differentiation in bleomycin-induced lesions were Thy-1-negative. Histological sections from patients with idiopathic pulmonary fibrosis demonstrated absent Thy-1 staining within fibroblastic foci. Normal lung fibroblasts, in both mice and humans, were predominantly Thy-1-positive. The fibrogenic cytokines interleukin-1 and tumor necrosis factor-alpha induced loss of fibroblast Thy-1 surface expression in vitro, which was associated with Thy-1 shedding, Smad phosphorylation, and myofibroblast differentiation. These results suggest that fibrogenic injury promotes loss of lung fibroblast Thy-1 expression, resulting in enhanced fibrogenesis.  相似文献   

18.
Mice of the C57BL/6 strain were instilled with optimal doses (150 micrograms/day for 3 days/wk) of the thermophilic actinomycete Faeni rectivirgula (also known as Saccharopolyspora rectivirgula or Micropolyspora faeni) to induce a hypersensitivity pneumonitis inflammation that mimics the human disease affecting certain occupational groups. This mouse model was characterized by a very significant alveolitis (3-fold increase in bronchoalveolar lavage [BAL] cell number at 48 h and a 10-fold increase at 3 wk). Also, total lung transforming growth factor (TGF-beta) was shown to be elevated in treated mice as early as 1 wk after the first instillation and increased gradually to 2.5 micrograms/lung at 3 wk (approximately 0.3 microgram/lung in saline-instilled controls). Intranasal instillation with F. rectivirgula was also associated with very significant increases in lung fibroblast collagen synthesis, starting at 2 wk. BAL macrophages from mice instilled with F. rectivirgula were found to release significantly more TGF-beta upon in vitro stimulation with zymosan beads than did BAL macrophages from saline-instilled mice. Finally, we show that supernatants from activated BAL macrophages of mice given F. rectivirgula increased quite significantly collagen synthesis in normal mouse lung fibroblasts. This increase could be abrogated by treating conditioned medium with a rabbit antibody against TGF-beta. Collectively, these data suggest that TGF-beta is generated in the course of experimental mouse hypersensitivity pneumonitis and contributes significantly to collagen synthesis.  相似文献   

19.
20.
Bleomycin-induced pulmonary fibrosis is associated with increased lung transforming growth factor-beta (TGF-beta) gene expression, but cellular localization of the source of this expression has not been unequivocally established. In this study, lung fibrosis was induced in rats by endotracheal bleomycin injection on day 0 and, on selected days afterwards, lungs were harvested for in situ hybridization, immunohistochemical and histochemical analyses for TGF-beta 1 mRNA and protein expression, and cell identification. The results show that control lungs express essentially no detectable TGF-beta 1 mRNA or protein in the parenchyma. Before day 3 after bleomycin treatment, scattered bronchiolar epithelial cells, mononuclear cells, and eosinophils expressed elevated levels of TGF-beta 1. Between days 3 and 14, there was a major increase in the number of eosinophils, myofibroblasts, and fibroblasts strongly expressing TGF-beta 1 mRNA and protein. TGF-beta 1-producing cells were predominantly localized within areas of injury and active fibrosis. After day 14, the intensity and number of TGF-beta 1-expressing cells significantly declined and were predominantly found in fibroblasts in fibrotic areas. The expression of TGF-beta 1 protein was generally coincident with that for mRNA with the exception of bronchiolar epithelial cells in which strong protein expression was unaccompanied by a commensurate increase in mRNA. The study demonstrates that myofibroblasts, fibroblasts, and eosinophils represent the major sources of increased lung TGF-beta 1 expression in this model of pulmonary fibrosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号