首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Spreadsheet and short-cut methods have been developed for predicting evaporation rates and evaporation times for spills and constrained baths of chemical mixtures. Steady-state and time-varying predictions of evaporation rates can be made for six-component mixtures, including liquid-phase non-idealities as expressed through the UNIFAC method for activity coefficients. A group-contribution method is also used to estimate vapor-phase diffusion coefficients, which makes the method completely predictive. The predictions are estimates that require professional judgement in their application. One application that the evaporation time calculations suggest is a method for labeling chemical containers that allows one to quickly assess the time for complete evaporation of spills of both pure components and mixtures. The labeling would take the form of an evaporation time that depends on the local environment. For instance, evaporation time depends on indoor or outdoor conditions and the amount of each chemical among other parameters. This labeling would provide rapid information and an opportunity to premeditate a response before a spill occurs.  相似文献   

2.
The aim of this study was to analyze the impact of hydrodynamic forces on the multiplication of E. coli, and biofilm formation and dispersion. The experiments were provided in a flow chamber simulating a cleaning-in-place system. Biofilm biomass was measured using a crystal violet dye method. The results show that hydrodynamic forces affect not only biofilm formation and dispersion but the multiplication of E. coli in the first place. We found more biofilm biomass on the rough surface than on the smooth one. The results of the biofilm formation test show that laminar flow promotes the biofilm growth over 72 h, meanwhile turbulent flow after 48 h causes decrease in biomass. The results of the biofilm dispersion test, in contrast, show that laminar flow removed less biofilm from both materials that turbulent flow did. Therefore, taking into account these findings in cleaning-in-place technology can substantially reduce E. coli multiplication and biofilm formation.  相似文献   

3.
Analytical expressions for the work of breathing under conditions of laminar and turbulent flow have been derived. Helium-oxygen mixtures of greater viscosity but lower density than air, and sulfur ftexafiuoride-oxygen mixtures of greater density than air were used to test these expressions. The work of breathing was determined by measuring the oxygen consumption during quiet breathing and during hyperventilation produced by 7% carbon dioxide. Increased oxygen consumption per minute on hyperventilation with air was 55 ml, standard temperature and pressure, dry (STPD); on breathing helium-oxygen mixtures it was 57 ml STPD. Increased oxygen consumption per minute on hyperventilation with sulfur hexafluoride-oxygen mixtures was 249 ml STPD.

Increasing the viscosity of the inspired gas or decreasing its density did not significantly affect the work of breathing; a substantial increase in the density of the inspired gas lead to an increased work of breathing.  相似文献   

4.
Theoretical and computational fluid dynamical techniques are employed to predict the two-dimensional turbulent air flows which are created by an Aaberg slot exhaust hood, which is reinforced by a two-dimensional wall jet flow. The aim of the two-dimensional model is to numerically reveal the characteristics of the air flow in the central plane of the Aaberg workbench. A further development of the potential model is through the inclusion of the finite slot. We have found that the numerical results for the streamlines and the lines of constant speed produced by the potential flow model are in good agreement with those obtained when using the full turbulent flow model and the air velocity distribution predicted by both the potential and turbulent models agree very well with all the available experimental data. The comparison between the potential and the turbulent models reveals that the potential model has the advantage over the turbulent model in that there is much less uncertainty in the results obtained due to the more accurate specification of the boundary conditions on the open boundaries at large distances from the hood.  相似文献   

5.
Relatively small spills of volatile liquids can result in short-term, high-concentration exposures. Because of the transient nature of these exposures, air sampling may be precluded. As an alternative, exposure assessment can be done by mathematical modeling. The vapor emission rate from small spills is highest immediately following the spill and decreases as the surface area available for mass transfer decreases and evaporation cools the liquid. This decreasing emission rate is not described by any of the existing evaporation rate models. The authors present an evaporation rate model that describes the changing emissions as exponentially decreasing. The rate of decrease is governed by an evaporation rate parameter alpha, which has the unit of min(-1) and can be estimated based on experimental measurements. The authors measured alpha for a suite of compounds and different sizes of spill. They found that alpha can be estimated for hydrocarbons containing only C, H, and O with the equation: alpha=0.000524 VP + 0.0108 SA/Vol, where VP is the vapor pressure of the liquid and SA/Vol is the surface area to volume ratio. Next, the authors integrated the exponentially decreasing emission rate into a well-mixed room versus a near field/far field dispersion construct to predict vapor concentrations. A preliminary experiment was conducted in a test room to compare measured concentrations with the concentrations predicted by the models. The well-mixed room model performed well based on ANSI indoor air model evaluation criteria. The predicted near field concentrations showed a poor fit to the measured values based on the ANSI criteria, although overall they did capture the observed time profile.  相似文献   

6.
This study examines a method for estimating the dermal absorption of benzene contained in hydrocarbon liquids that contact the skin. This method applies to crude oil, gasoline, organic solvents, penetrants, and oils. The flux of benzene through occluded skin as a function of the percent vol/vol benzene in the liquid is derived by fitting a curve to experimental data; the function is supralinear at benzene concentrations < or = 5% vol/vol. When a liquid other than pure benzene is on nonoccluded skin, benzene may preferentially evaporate from the liquid, which thereby decreases the benzene flux. We present a time-averaging method here for estimating the reduced dermal flux during evaporation. Example calculations are presented for benzene at 2% vol/vol in gasoline, and for benzene at 0.1% vol/vol in a less volatile liquid. We also discuss other factors affecting dermal absorption.  相似文献   

7.
Occupational exposure to airborne volatile organic compounds is governed by the source strength and dispersion of the pollutant into workroom air. The purpose of the present test chamber study was to validate suggested models for the prediction of evaporation rates and concentration distributions. The study design was organized into different scenarios to simulate workplace conditions. Evaporation rates of organic compounds of different volatilities were recorded gravimetrically and the corresponding concentrations in air were measured at various locations equally distributed in the test chamber. The evaporation models generally showed a fair agreement with experiments but tended to underestimate the evaporation rate especially at low air velocity. Based on factorial experiments a new simple evaporation model was suggested. The performances of the concentration distribution models were of different quality. The model developed by Roach (Annals of Occupational Hygiene24, 105–132, 1981) cannot be used in predicting the concentration distribution in case of a convective air flow. If knowledge of the evaporation rate and pollutant concentration at some distances from the source were available, the model suggested by Scheff et al. (Applied Occupational and Environmental Hygiene7, 127–134, 1992) generated a concentration distribution in reasonable agreement with the observed data. The box-model (Sinden, Building and Environment13, 21–28, 1978) generally offered a fair performance but tended to underestimate the pollutant concentration in a region close to the source in the direction of the main air flow.  相似文献   

8.
BACKGROUND: Skeletal muscle (SM) is an important body-composition component that remains difficult and impractical to quantify by most investigators outside of specialized research centers. A large proportion of total-body SM is found in the extremities, and a large proportion of extremity lean soft tissue is SM. A strong link should thus exist between appendicular lean soft tissue (ALST) mass and total-body SM mass. OBJECTIVE: The objective was to develop prediction models linking ALST estimated by dual-energy X-ray absorptiometry (DXA) with total-body SM quantified by multislice magnetic resonance imaging in healthy adults. DESIGN: ALST and total-body SM were evaluated with a cross-sectional design in adults [body mass index (in kg/m(2)) < 35] with an SM-prediction model developed and validated in model-development and model-validation groups, respectively. The model-development and model-validation groups included 321 and 93 ethnically diverse adults, respectively. RESULTS: ALST alone was highly correlated with total-body SM (model 1: R(2) = 0.96, SEE = 1.63 kg, P < 0.001), although multiple regression analyses showed 2 additional predictor variables: age (model 2: 2-variable combined R(2) = 0.96, SEE = 1.58 kg, P < 0.001) and sex (model 3: 3-variable combined R(2) = 0.96, SEE = 1.58 kg, P < 0.001). All 3 models performed well in the validation group. An SM-prediction model based on the SM-ALST ratio was also developed, although this model had limitations when it was applied across all subjects. CONCLUSION: Total-body SM can be accurately predicted from DXA-estimated ALST, thus affording a practical means of quantifying the large and clinically important SM compartment.  相似文献   

9.
BACKGROUND: Skeletal muscle (SM) is a large body compartment of biological importance, but it remains difficult to quantify SM with affordable and practical methods that can be applied in clinical and field settings. OBJECTIVE: The objective of this study was to develop and cross-validate anthropometric SM mass prediction models in healthy adults. DESIGN: SM mass, measured by using whole-body multislice magnetic resonance imaging, was set as the dependent variable in prediction models. Independent variables were organized into 2 separate formulas. One formula included mainly limb circumferences and skinfold thicknesses [model 1: height (in m) and skinfold-corrected upperarm, thigh, and calf girths (CAG, CTG, and CCG, respectively; in cm)]. The other formula included mainly body weight (in kg) and height (model 2). The models were developed and cross-validated in nonobese adults [body mass index (in kg/m(2)) < 30]. RESULTS: Two SM (in kg) models for nonobese subjects (n = 244) were developed as follows: SM = Ht x (0.00744 x CAG(2) + 0.00088 x CTG(2) + 0.00441 x CCG(2)) + 2.4 x sex - 0.048 x age + race + 7.8, where R:(2) = 0.91, P: < 0.0001, and SEE = 2.2 kg; sex = 0 for female and 1 for male, race = -2.0 for Asian, 1.1 for African American, and 0 for white and Hispanic, and SM = 0.244 x BW + 7.80 x Ht + 6.6 x sex - 0.098 x age + race - 3.3, where R:(2) = 0.86, P: < 0.0001, and SEE = 2.8 kg; sex = 0 for female and 1 for male, race = -1.2 for Asian, 1.4 for African American, and 0 for white and Hispanic. CONCLUSION: These 2 anthropometric prediction models, the first developed in vivo by using state-of-the-art body-composition methods, are likely to prove useful in clinical evaluations and field studies of SM mass in nonobese adults.  相似文献   

10.
This study presents numerical simulations of push-pull ventilation systems. A push-pull system is a device commonly used in capturing pollutants from large tanks used in industrial chemical processes. An air jet is blown from one side of a tank and collected by an exhaust hood on the opposite side of the tank. In this study, a finite volume model coupled with the standard k -epsilon turbulent model is employed to describe the flow structures and characteristics. Moreover, the turbulence mass transfer equation is adopted to show the concentration distribution above the open surface tank. All the flow fields can be classified according to four dominant modes, i.e., dispersion, transition, encapsulation, and strong suction. The push and pull flow velocities should be adjusted into encapsulation and strong suction modes to ensure all pollutants can be captured by the exhaust hood. Other geometric parameters such as the flange size, pull-channel size, offset distance, etc., also influence the flow characteristics. For a variety of lengths of tanks and pollutant evaporation velocities, the push and pull flow velocity must be matched to achieve optimal operation. Furthermore, the flange size and other parameters are determined to enhance the capture efficiency of the push-pull system. Recommendations for design guidelines are introduced in this study.  相似文献   

11.
Abstract

This study examines a method for estimating the dermal absorption of benzene contained in hydrocarbon liquids that contact the skin. This method applies to crude oil, gasoline, organic solvents, penetrants, and oils. The flux of benzene through occluded skin as a function of the percent vol/vol benzene in the liquid is derived by fitting a curve to experimental data; the function is supralinear at benzene concentrations ≤ 5% vol/vol. When a liquid other than pure benzene is on nonoccluded skin, benzene may preferentially evaporate from the liquid, which thereby decreases the benzene flux. We present a time-averaging method here for estimating the reduced dermal flux during evaporation. Example calculations are presented for benzene at 2% vol/vol in gasoline, and for benzene at 0.1% vol/vol in a less volatile liquid. We also discuss other factors affecting dermal absorption.  相似文献   

12.
Digesta flow-behavior types in the intestinal lumen, such as turbulent and laminar flow, should define modes of digestion and absorption. This review presents a simulation of flow behavior in the intestinal lumen and discusses the behavior of nutrients and enzymes in the intestinal lumen under laminar-flow conditions. The significance of digesta viscosity for glucose and water absorption and digestion and fermentation in the intestine is also discussed.  相似文献   

13.
BACKGROUND: A substantial proportion of total body potassium (TBK) in humans is found in skeletal muscle (SM), thus affording a means of predicting total-body SM from whole-body counter-measured (40)K. There are now > 30 whole-body counters worldwide that have large cross-sectional and longitudinal TBK databases. OBJECTIVE: We explored 2 SM prediction approaches, one based on the assumption that the ratio of TBK to SM is stable in healthy adults and the other on a multiple regression TBK-SM prediction equation. DESIGN: Healthy subjects aged >or= 20 y were recruited for body-composition evaluation. TBK and SM were measured by whole-body (40)K counting and multislice magnetic resonance imaging, respectively. A conceptual model with empirically derived data was developed to link TBK and adipose tissue-free SM as the ratio of TBK to SM. RESULTS: A total of 300 subjects (139 men and 161 women) of various ethnicities with a mean (+/- SD) body mass index (in kg/m(2)) of 25.1 +/- 5.4 met the study entry criteria. The mean conceptual model-derived TBK-SM ratio was 122 mmol/kg, which was comparable to the measurement-derived TBK-SM ratios in men and women (119.9 +/- 6.7 and 118.7 +/- 8.4 mmol/kg, respectively), although the ratio tended to be lower in subjects aged >or= 70 y. A strong linear correlation was observed between TBK and SM (r = 0.98, P < 0.001), with sex, race, and age as small but significant prediction model covariates. CONCLUSIONS: Two different types of prediction models were developed that provide validated approaches for estimating SM mass from (40)K measurements by whole-body counting. These methods afford an opportunity to predict SM mass from TBK data collected in healthy adults.  相似文献   

14.
Environmental parameters dictate the conditions for both biofilm formation and deconstruction. The aim of this study is to analyse the impact of hydrodynamic and thermodynamic effects on bacterial detachment. Escherichia coli grown on two stainless steel metal surfaces with different roughness (brushed with roughness of 0.05 μm and electropolished with roughness of 0.29 μm) are exposed to laminar and turbulent (shower) flows of phosphate buffered saline media at temperatures of 8, 20 and 37 °C. Results show that the turbulent flow removes significantly more bacterial cells than laminar flow (p <0.05) on both materials. This indicates that the shear force determines the rate of detached bacteria. It is also observed that detachment of cells is more efficient on brushed than on electropolished contact surfaces because on the latter surface, fewer cells were attached before exposure. Moreover, we demonstrate that the temperature of the washing agent has an impact on bacterial detachment. At the same flow conditions, the exposure to higher temperature results in greater detachment rate.  相似文献   

15.
BACKGROUND: Skeletal muscle (SM) is an important compartment but is difficult to quantify in children and adolescents. OBJECTIVE: We investigated the potential of dual-energy X-ray absorptiometry (DXA) for measuring total-body SM in pediatric subjects. DESIGN: A previously published adult DXA SM prediction formula was evaluated in children and adolescents aged 5-17 y (n = 99) who varied in pubertal maturation stage. SM estimated by whole-body magnetic resonance imaging (MRI) was used as the reference. The adult SM model was not accurate for subjects below Tanner stage 5 (n = 65; aged 5-14 y). New pediatric SM prediction models were therefore developed and validated in a separate group (n = 18). RESULTS: The adult DXA SM prediction model was valid in subjects at Tanner stage 5 but significantly (P < 0.001) overestimated SM in subjects below Tanner stage 5. New SM prediction formulas were developed with appendicular lean soft tissue (ALST) estimates by DXA as the main predictor variable (eg, model 1, ALST alone: R(2) = 0.982, SEE = 0.565 kg, P < 0.001). The new models were validated by the leave-one-out method and were cross-validated in a separate validation group. CONCLUSIONS: A previously reported adult DXA SM prediction model is applicable in children and adolescents late in pubertal development (Tanner stage 5). A new DXA SM prediction model was developed for prepubertal and pubertal subjects (Tanner stage /=5 y. DXA thus provides an important opportunity for quantifying total-body SM mass across most of the human life span.  相似文献   

16.
The evaporation characteristics (evaporation rates and process) of a sessile drop of sulfur mustard on glass has been studied using a laboratory-sized wind tunnel, gas chromatograph mass spectrometry, and drop shape analysis. It showed that the evaporation rates of the droplet increased with temperature and air flow. The effect of temperature on the rates was more pronounced at lower air flow. Air flow was less effective at lower temperature. The contact angle of the droplet was initially observed as θ = 19.5° ± 0.7 and decreased linearly with time until it switched to a constant mode.  相似文献   

17.
In the U.S., most industrial hygiene practitioners continue to rely on the closed-face cassette (CFC) to assess worker exposures to hazardous dusts, primarily because ease of use, cost, and familiarity. However, mass concentrations measured with this classic sampler underestimate exposures to larger particles throughout the inhalable particulate mass (IPM) size range (up to aerodynamic diameters of 100 μm). To investigate whether the current 37-mm inlet cap can be redesigned to better meet the IPM sampling criterion, computational fluid dynamics (CFD) models were developed, and particle sampling efficiencies associated with various modifications to the CFC inlet cap were determined. Simulations of fluid flow (standard k-epsilon turbulent model) and particle transport (laminar trajectories, 1–116 μm) were conducted using sampling flow rates of 10 L min?1 in slow moving air (0.2 m s?1) in the facing-the-wind orientation. Combinations of seven inlet shapes and three inlet diameters were evaluated as candidates to replace the current 37-mm inlet cap. For a given inlet geometry, differences in sampler efficiency between inlet diameters averaged less than 1% for particles through 100 μm, but the largest opening was found to increase the efficiency for the 116 μm particles by 14% for the flat inlet cap. A substantial reduction in sampler efficiency was identified for sampler inlets with side walls extending beyond the dimension of the external lip of the current 37-mm CFC. The inlet cap based on the 37-mm CFC dimensions with an expanded 15-mm entry provided the best agreement with facing-the-wind human aspiration efficiency. The sampler efficiency was increased with a flat entry or with a thin central lip adjacent to the new enlarged entry. This work provides a substantial body of sampling efficiency estimates as a function of particle size and inlet geometry for personal aerosol samplers.  相似文献   

18.
Previous research on estimation of the progression of chronic disease, from the normal preclinical screen-detectable phase (PCDP) to the final clinical phase, has usually assumed constant transition rates and has rarely addressed how relevant covariates affect multi-state transitions. The present study proposes two non-homogeneous models using the Weibull distribution and piecewise exponential model, together with covariate functions of the proportional hazard form, to tackle these problems. We illustrate the models by application to a selective breast cancer screening programme. The results of the Weibull model yield estimates of scale and shape parameters for annual preclinical incidence rate as 0.0000058 (SE=0.0000019) and 2.4755 (SE=0.1153), the latter being significantly higher than 1. Annual transition rate was estimated as 0.3153 (SE=0.1385). Relative risks for the effects of late age at first pregnancy (AP) and high body mass index (BMI) on preclinical incidence rate were 1.98 and 2.59, respectively. The corresponding figures on the transition from the PCDP to clinical phase were 1.56 and 1.99, respectively. Non-homogeneous Markov models proposed in this study can be easily applied to rates of progression of chronic disease with increasing or decreasing rates with time and to model the effect of relevant covariates on multi-state transition rates.  相似文献   

19.
New two-box “well-mixed room” decreasing emission (DE) models are introduced for scenarios that involve local controls, such as some form of local exhaust or local exhaust with filtered return. In addition, these models allow for the recirculation of a filtered (or cleaned) portion of the general room ventilation.

?For each control device scenario, a steady state and transient near and far field model is presented. The transient equations predict the concentration at time t after the application of the substance. The steady state equations can be use to predict the steady, unvarying “average concentration per application” whenever there are continuous applications of a substance and sufficient time has elapsed. The steady state equations can also be used to calculate the TWA for a task (or a series of tasks) whenever the beginning and end concentrations for the task (or task series) are expected to be zero (or near zero). The transient equations should be used to predict TWA exposures whenever these criteria cannot be met, or it is necessary to predict short-term exposures or peak concentrations.

?A structured calibration procedure, based on a mass balance approach, is proposed for each model. Depending upon the model, one or more calibration measurements are collected. Rearranged versions of the steady state equations are used to calculate estimates of the mass applied during each application, the near field flowrate, and (depending upon the model) the various efficiencies (e.g., local exhaust capture efficiency and the recirculation filtration efficiency). The emission rate constant must be determined using either a published approximation algorithm or experimentally.  相似文献   

20.
《Value in health》2020,23(6):743-750
ObjectivesMarkov models characterize disease progression as specific health states based on clinical or biological measures. However, these measures are not always collected outside clinical trials. In this article, an alternative approach is presented that uses real-world data to define the health states and to model transitions between them, specific to a local setting, to estimate the cost-effectiveness of telemonitoring (TM) versus no TM for heart failure.MethodsThe incidence of hospitalization for usual care was estimated from hospital episode statistics (HES) data in the United Kingdom and converted into a monthly transition matrix with 5 health states (4 states are defined based on the number of hospitalizations in the previous year and death) to estimate the cost-effectiveness of TM in a local UK primary care trust (PCT) using probabilistic sensitivity analysis from a healthcare perspective.ResultsGeographical variation in hospitalization rates were present, which led to different health state transition matrices in different localities. In the PCT that was evaluated, TM accrued mean additional costs of £3610 and 0.075 additional quality-adjusted life-years (QALYs) compared with usual care per patient, resulting in a mean incremental cost effectiveness ratio of £48 172/QALY.ConclusionsThe use of administrative data to define health states and transition matrices based on health service events is feasible, and TM was not cost-effective in our analysis. Given the increasing emphasis on using real-world evidence, it is likely that these approaches will be used more in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号