首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study aimed to test the hypothesis that mild hypoxic preconditioning (MHPC)-induced NOS expression would attenuate the neuropathological changes in the nodose ganglion (NG) of severe hypoxic exposure (SHE) rats. Thus, the young adult rats were caged in the altitude chamber for 4 weeks prior to SHE for 4 h to gain hypoxic preconditioning. The altitude chamber was used to set the height at the level from 5500 m (0.50 atm; pO2=79 Torr) to 10,000 m (0.27 atm; pO2=43 Torr) for MHPC and SHE, respectively. The experimental animals were allowed to survive for 0, 7, 14, 30 and 60 successive days, respectively. Nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) histochemistry and neuronal nitric oxide synthase (nNOS) immunohistochemistry were used to detect NADPH-d/nNOS reactivity in the NG at various time points following hypoxic exposure. The present results showed that about 38% of the neurons in the NG displayed NADPH-d/nNOS positive [NADPH-d/nNOS(+)] in normoxic rats. In SHE rats, a peak in the percentage (71%) and staining intensity (230%) of NADPH-d/nNOS(+) nodose neurons at 0 day, which then gradually decreased at 7-60 days. About 25% of the nodose neurons died 60 days after SHE. However, in MHPC rats subjected to SHE, NADPH-d/nNOS(+) neurons peaked in the percentage (51%) and staining intensity (171%) at 0 day, which then decreased at 7-60 days. In addition, neuronal survival was markedly increased by MHPC. These results suggested that MHPC might have a neuroprotective effect that reduces the susceptibility of the nodose neurons to NOS mediated neuropathy subsequent to SHE.  相似文献   

2.
The degeneration of selective and specific types of neurons is a characteristic feature in several neurodegenerative disorders. N-methyl-D-aspartate receptor (NMDAR) agonist quinolinic acid (QUIN)-induced excitotoxicity has been implicated in neurodegeneration and mimics Huntington's disease (HD) by the loss of medium-sized spiny projection neurons while sparing medium-sized aspiny interneurons in the striatum. Previous work suggests that somatostatin/neuropeptide Y (SST/NPY)-containing neurons are selectively preserved in HD due to the presence of nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) and the lack of NMDAR. In the present study, the distribution of somatostatin (SST), neuropeptide Y (NPY), nitric oxide synthase (nNOS), NMDA receptor type-1 (NR1), and the enzyme NADPH-d was determined in cultured striatal neurons with the effect of QUIN and N-methyl-D-aspartate (NMDA). SST/NPY-positive neurons, which constitute approximately 8-10% of striatal neurons, are selectively spared in QUIN/NMDA-treated cultures. nNOS and NADPH-d-positive neurons, comprising 3.8% of the neuronal population, also exhibit selective resistance to excitotoxicity. Most NR1-positive neurons, which constitute >80% of the total neuronal population, are lost in majority upon treatment with QUIN and NMDA. SST and NADPH-d-positive neurons also colocalize with Cu/Zn superoxide dismutase (Cu/Zn SOD). In conclusion, our results thus demonstrate that SST/NPY/nNOS-positive neurons are selectively spared in NMDA agonist-induced excitotoxicity, which could be attributed to the presence of Cu/Zn SOD and NADPH-d in addition to the low abundance of NMDAR on these neurons.  相似文献   

3.
Our previous studies showed a differential distribution of the glutamatergic terminals in cytochrome oxidase-rich and -poor regions of the visual cortex. The NMDA type of glutamate receptors have been proposed to be involved in the activation of nitric oxide synthase to produce nitric oxide, the neurotransmitter. In the present study, we hypothesized that the expressions of glutamate receptor, NMDA receptors (NMDAR1) and neuronal nitric oxide synthase (nNOS) were colocalized and were also correlated with that of cytochrome oxidase (CO) in a subset of neurons. We used primary cultures of postnatal rat visual cortical neurons as a model system, so that we could examine both the somatic and dendritic expressions of these neurochemicals in individual neurons. We found a difference in the sequence of developmental expressions of NMDAR1, nNOS, CO, and Na+/K+ ATPase. Triple labeling showed that all nNOS-positive neurons were immunoreactive for NMDAR1, and a subpopulation of them had high CO activity. The expression of NMDAR1 was positively correlated with CO activity. This is consistent with our previous finding that CO activity is strongly governed by excitatory glutamatergic synapses. After 40 hours of depolarizing potassium chloride treatment, CO activity was increased, and NMDAR1and nNOS levels were up-regulated in parallel. One week of tetrodotoxin significantly decreased the expression of NMDAR1, nNOS, and CO activity. Our results demonstrate that NMDA receptors and nNOS do co-exist in a subset of neurons that have high CO activity and their expressions are under the control of neuronal activity.  相似文献   

4.
目的:观察急性缺氧小鼠海马CAl区一氧化氮合酶(NOS)和神经元型一氧化氮合酶(nNOS) 阳性神经元的时程变化,探讨NO在脑缺氧中的作用并为抗脑缺氧提供依据。方法:复制小鼠急性缺氧模型,采用NADPH-d组织化学和nNOS免疫组织化学方法,研究急性缺氧后不同时程点小鼠海马CAl区NADPH-d 和nNOS阳性神经元数量的变化。结果:与正常对照组相比较,急性缺氧后0.5h组小鼠海马CAl区NADPH-d 和nNOS阳性神经元的数量无明显变化,差异无显著性(P>0.05),3h、6h和12h组逐渐增多并于12h升高达到最高峰,差异有显著性(P<0.05),而于24h后开始降低,48h恢复正常。结论:急性缺氧后早期海马CAl区NOS和nNOS水平明显增多,NO在缺氧所致早期脑损伤中起重要作用。  相似文献   

5.
In this study, we investigated the expression of neuronal nitric oxide synthase (nNOS) and nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d), two specific enzymes for nitric oxide (NO) synthesis, in the development of liver fibrosis induced by chronic bile duct ligation (BDL) in the rabbit. We specifically studied the liver-innervated nitroxidergic neurons that originate in the nodose ganglion (NG), nucleus of the solitary tract (NTS) and dorsal motor vagal nucleus (DMV). Our data showed that BDL resulted in overexpression of NADPH-d/nNOS in the NG, NTS and DMV neurons. Using densitometric analysis, we found a significant increase in NADPH-d expression as a result of BDL in the NG, NTS and DMV (72.6, 79.4 and 57.4% increase, respectively). These findings were corroborated by serum biochemistry and hepatic histopathological examination, which were influenced by NADPH-d/nNOS-generated NO in the liver following BDL. Upregulation of NADPH-d/nNOS expression may have important implications, including (1) facilitation of extrahepatic biliary parasympathetic tone that promotes gallbladder emptying of excess stagnant bile; (2) relaxation of smooth muscles of bile canaliculi thus participating in the pathogenesis of cholestasis; (3) dilation of hepatic sinusoids to counter BDL-induced intrahepatic portal hypertension in which endothelia may be damaged, and (4) alterations in hepatic metabolism, such as glycogenesis, bile formation and secretion, and bilirubin clearance.  相似文献   

6.
We previously showed that most neuronal nitric oxide synthase (nNOS)-containing neurons in the nucleus tractus solitarii (NTS) contain NMDAR1, the fundamental subunit for functional N-methyl-D-aspartate (NMDA) receptors. Likewise, we found that almost all nNOS-containing neurons in the NTS contain GluR1, the calcium permeable AMPA receptor subunit. These data suggest that AMPA and NMDA receptors may colocalize in NTS neurons that contain nNOS. However, other investigators have suggested that non-NMDA receptors are located primarily on second-order neurons and NMDA receptors are located predominantly on higher-order neurons in NTS. We now seek to test the hypothesis that NMDA receptors, AMPA receptors and nNOS are colocalized in NTS cells. We performed triple fluorescent immunohistochemical staining of nNOS, NMDAR1 and GluR1, and performed confocal laser scanning microscopic analysis of the NTS. The distributions of nNOS immunoreactivity (IR), NMDAR1-IR and GluR1-IR in the NTS were similar to those we reported earlier. Superimposed images revealed that almost all NMDAR1-IR cells contained GluR1-IR and almost all GluR1-IR cells contained NMDAR1-IR. Some double-labeled cells were additionally labeled for nNOS-IR. All nNOS-IR neurons contained both GluR1-IR and NMDAR1-IR. These studies support our hypothesis that NMDA and AMPA receptors are colocalized in NTS neurons and are consistent with a role of both types of ionotropic receptors in transmission of afferent signals in NTS. In addition, these data provide support for an anatomical link between ionotropic glutamate receptors and nitric oxide in the NTS.  相似文献   

7.
Excessive production of nitric oxide (NO) might have detrimental effects on the hypoxia-related neuropathology. This study aimed to test if mild hypoxic preconditioning (MHPC) would attenuate the pathological changes in the brainstem motoneurons having a different functional component after peripheral nerve crush injury (PNCI). Prior to PNCI treatment, young adult rats were caged in the mild hypoxic altitude chamber with 79Torr of the partial oxygen concentration ( pO(2)) (i.e., 0.5atm at 5500m in height) for 4 weeks to adapt the environmental changes. After that, all the animals having successfully crushed both the hypoglossal and vagus nerves (left-side) were allowed to survive for 3, 7, 14, 30 and 60 successive days in normoxic condition. Nicotinamine adenine dinucleotide phosphate-diaphorase (NADPH-d) histochemistry and neuronal nitric oxide synthase (nNOS) immunohistochemistry revealed that MHPC reduces NADPH-d/nNOS expression in the hypoglossal nucleus (HN) and the dorsal motor nucleus of the vagus (DMN) at different time points after PNCI. The morphological findings were further ascertained by Western blot analysis of nNOS and nitrite assay for NO production. Both the morphological and quantitative results peaked at 7 days in HN, whereas for those in DMN were progressively increased up to 60 days following PNCI. The staining intensity of NADPH-d/nNOS(+) neurons, expression of nNOS protein, NO production levels as well as the neuronal loss in HN and DMN of MHPC rats following PNCI were attenuated, especially for those having a longer survival period over 14 days. The MHPC treatment might induce minute amounts of NO to alter the state of milieu of the experimental animals to protect against the PNCI.  相似文献   

8.
为探讨孕鼠宫内缺氧对新生小鼠发育时期额叶皮质神经元内nNOS表达及对成年小鼠学习记忆能力的影响,本研究采用Tapanainen建立的缺氧模型致胎龄13、15、17d小鼠宫内缺氧,然后采用Nissl染色观察新生鼠发育时期P1、P7、P14、P28、P90额叶皮质内神经元的数量和形态变化;免疫组织化学染色方法观察新生鼠发育时期P1、P7、P14、P28、P90脑组织内nNOS阳性神经元的表达;Morris水迷宫实验检测P90小鼠的学习和记忆能力。结果显示:与正常组比较,宫内缺氧组小鼠额叶皮质神经元数量明显减少,额叶皮质神经元内nNOS的表达明显减弱。宫内缺氧组小鼠逃避潜伏期延长及穿环次数明显减少。以上结果提示宫内缺氧可导致新生鼠额叶皮质神经元数量明显减少及nNOS的表达也明显减弱,并引起成年小鼠学习记忆能力降低。  相似文献   

9.
Aluminium (Al) impairs the glutamate-nitric oxide-cGMP pathway and reduces the number of nitroxidergic neurons in the rat somatosensory cortex. To understand better the effect of the time of exposure, we monitored the effect of aluminium administration on nitroxidergic neurons, identified by NADPH-diaphorase (NADPH-d) or by nitric oxide synthase (NOS) staining, after 0.5, 1, 2, 3, 6 and 12 months of aluminium administration. Since neuropeptide Y (NPY) is known to be colocalised with nitric oxide synthase in cortical neurons, the aim of this work was to study the effects of Al administration on the cortical expression of NADPH-d, nNOS, and NPY. NADPH-d or NOS positive neurons were found scattered in the cortex where they constituted about 1% of all neurons. Double staining using NADPH-d and NPY showed that almost all nitroxidergic neurons were co-localised with NPY neurons (NADPH-d/NPY double stained neurons) whereas some neurons were stained only with NPY (NPY single stained neurons) ; these were more numerous than NADPH-d/NPY double stained neurons. Al significantly reduced NADPH-d and nNOS positive neurons in the cerebral cortex time dependently, with the greatest effect appearing after 3 months. Also measured was the integrated optical density (IOD) of nNOS positive neurons showing a significant decrease of NOS immunostaining even in the remaining NOS positive neurons. The double staining experiment exhibited a decrease in NADPH-d/NPY double stained neurons with an apparent increase in NPY single stained neurons; these then decreased after 6-12 months. On the whole, the results confirm that Al impairs nitroxidergic pathways time dependently; moreover, the transient increase in NPY single stained neurons from 1 to 3 months suggests that there is an intraneuronal down-regulation of NOS, without affecting neuronal viability. In addition, the decrease in the NPY system found at 6 and 12 months may indicate that Al affected nitroxidergic and NPY systems at different times.  相似文献   

10.
目的探讨孕鼠宫内缺氧对生后小鼠发育时期顶叶皮质神经元内神经性一氧化氮合酶(nNOS)表达及对成年小鼠学习记忆能力的影响。方法用低张性缺氧模型致胎龄13d、15d、17d小鼠宫内缺氧,将新生后P1、P7、P14、P28、P90鼠脑组织作Nissl染色及nNOS免疫组织化学反应,观察顶叶皮质神经元数量、形态及nNOS神经元表达,P90小鼠行Morris水迷宫实验。结果与正常组比较,宫内缺氧组小鼠顶叶皮质神经元数量明显减少(P<0.05),顶叶皮质神经元内nNOS表达明显减弱(P1,P<0.01;P7,P<0.05;P14,P<0.05;P28,P<0.01;P90,P<0.01)。宫内缺氧组小鼠逃避潜伏期延长(1d、2d,P<0.05;3d、4d,P<0.01)及穿环次数明显减少(P<0.05)。结论宫内缺氧导致生后小鼠发育时期顶叶皮质神经元数量明显减少,顶叶皮质神经元内nNOS表达明显减弱;宫内缺氧引起成年小鼠学习记忆能力降低。  相似文献   

11.
12.
Immunohistochemistry for neuronal nitric oxide synthase (nNOS) and vasoactive intestinal peptide (VIP), and NADPH diaphorase histochemistry, were applied to investigate neurons in the choroid and the ciliary ganglion of the muscovy duck Anis carina. Up to 1000 neurons in the choroid stained for NADPH diaphorase and showed virtually complete colocalization for nNOS immunoreactivity. Almost all of them co-stained for VIP, while about 90% of VIP immunoreactive cell bodies showed colocalization for nNOS. Two-thirds of the neurons were located, mostly singly, at nodes of a widemeshed nerve plexus in the suprachoroid and were only rarely grouped in ganglia of up to 3 neurons. Numerous varicose nNOS/NADPH-diaphorase-positive nerve fibers were seen around large arterial blood vessels. These fibers derived mainly from paravascular cell bodies that represented about one-third of all choroidal neurons and also displayed costaining for nitrergic markers and VIP. Colocalization of nNOS/NADPH-d and VIP could be demonstrated in most of the perivascular fibers, while slightly more VIP-positive axons in the suprachoroid plexus did not costain for nNOS/NADPH-d. Small-caliber blood vessels and those localized in the choriocapillaris were not endowed with VIP/nNOS/NADPH-diaphorase-positive fibers. A few reactive neuronal cell bodies were also found in ciliary nerves, while most ciliary axons were unstained. In the ciliary ganglion a small subpopulation of neurons showed VIP/nNOS/NADPH-diaphorase colocalization. There were also nNOS/ NADPH-d-positive cap-like terminals on ciliary ganglion cells. The presence of VIP/nNOS/NADPH-diaphorase positive neurons and nerve fibers in both the choroid and ciliary ganglion, and in the choroidal perivascular plexus, indicates peripheral nitrergic and VIPergic control of blood flow in the choroid of the duck.  相似文献   

13.
Immunohistochemistry for neuronal nitric oxide synthase (nNOS) and vasoactive intestinal peptide (VIP), and NADPH diaphorase histochemistry, were applied to investigate neurons in the choroid and the ciliary ganglion of the muscovy duck Anis carina. Up to 1000 neurons in the choroid stained for NADPH diaphorase and showed virtually complete colocalization for nNOS immunoreactivity. Almost all of them co-stained for VIP, while about 90% of VIP immunoreactive cell bodies showed colocalization for nNOS. Two-thirds of the neurons were located, mostly singly, at nodes of a widemeshed nerve plexus in the suprachoroid and were only rarely grouped in ganglia of up to 3 neurons. Numerous varicose nNOS/NADPH-diaphorase-positive nerve fibers were seen around large arterial blood vessels. These fibers derived mainly from paravascular cell bodies that represented about one-third of all choroidal neurons and also displayed costaining for nitrergic markers and VIP. Colocalization of nNOS/NADPH-d and VIP could be demonstrated in most of the perivascular fibers, while slightly more VIP-positive axons in the suprachoroid plexus did not costain for nNOS/NADPH-d. Small-caliber blood vessels and those localized in the choriocapillaris were not endowed with VIP/nNOS/NADPH-diaphorase-positive fibers. A few reactive neuronal cell bodies were also found in ciliary nerves, while most ciliary axons were unstained. In the ciliary ganglion a small subpopulation of neurons showed VIP/nNOS/NADPH-diaphorase colocalization. There were also nNOS/ NADPH-d-positive cap-like terminals on ciliary ganglion cells. The presence of VIP/nNOS/NADPH-diaphorase positive neurons and nerve fibers in both the choroid and ciliary ganglion, and in the choroidal perivascular plexus, indicates peripheral nitrergic and VIPergic control of blood flow in the choroid of the duck.  相似文献   

14.
NMDA receptor regulation of nNOS phosphorylation and induction of neuron death   总被引:10,自引:0,他引:10  
Stimulation of NMDA receptors activates neuronal nitric oxide synthase (nNOS) and the production of nitric oxide (NO). Dephosphorylation of nNOS increases nNOS enzymatic activity. We have examined the regulation of nNOS phosphorylation in rat cortical neurons following NMDA receptor activation. We show that nNOS is constitutively phosphorylated and that NMDA receptor activation decreases the level of nNOS phosphorylation by a mechanism that is blocked specifically by NMDA receptor antagonists and inhibitors of the Ca2+-regulated phosphatases calcineurin and PP1/PP2A. Using quantitative digital microscopy, we show that NMDA receptor activation induces the accumulation of nitrotyrosine, a measure of nNOS activity, and TdT-mediated fluorescein-dUTP nick end labeling (TUNEL) positivity, a measure of cell death. A calcineurin inhibitor blocked the increase in both TUNEL and nitrotyrosine positivity. Notably, TUNEL was increased in those neurons that were most strongly positive for nitrotyrosine. We conclude that NMDA receptor activation induces death of neurons by a cell autonomous pathway involving nNOS dephosphorylation by a calcineurin-dependent mechanism.  相似文献   

15.
The anatomical distribution and quantitative relations of cell bodies containing neuronal nitric oxide synthase (nNOS), 8-arginine vasopressin (AVP) and oxytocin (OT) were examined throughout the supraoptic nucleus (SON) of the female rat by means of immunocytochemical and NADPH-diaphorase (NADPH-d) histochemical techniques using a triple labelling methodology. Seven chemically defined populations of neurons containing all combinations of either nNOS, AVP or OT were identified. nNOS-containing (NADPH-d positive) neurons, amounting to about 40% of all neurons counted, were most frequent in central and dorsal regions, and were evenly distributed along the rostro-caudal axis. Two small nNOS-positive neuronal populations were preferentially located dorso-centrally in the nucleus: nNOS-positive neurons containing both AVP- and OT-immunoreactivity, and neurons only containing nNOS. Slightly less than half of all nNOS-positive neurons contained AVP, and a similar share of nNOS-positive neurons contained OT. The occurrence of nNOS-positive/ AVP-containing neurons was highest in the caudal half, whereas that of nNOS-positive/OT-neurons was highest in the rostral half of SON. The data demonstrate new findings concerning the anatomical organization and co-localization patterns of nNOS-, AVP- and OT-containing neuronal populations in SON. We conclude that the absolute and relative occurrence of the identified neuronal populations vary markedly in different parts of SON. This is important to take into consideration when performing, and evaluating experimental investigations concerned with neurochemical changes in SON. Accepted: 29 December 2000  相似文献   

16.
This study describes calbindin-D28k (CB), neuronal nitric oxide synthase (nNOS), and nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) expression in the lateral nucleus of the sheep amygdaloid complex. Double immunofluorescence protocol was used in order to determine whether there is colocalization of CB and nNOS. The CB-immunoreactive (IR) neuronal population was composed especially of non-pyramidal neurons, but a few pyramidal cells were also present. The non-pyramidal neurons showed a multipolar and, occasionally, a fusiform morphology. The comparison between single-labeled CB-IR non-pyramidal neurons and cells belonging to CB-IR neuronal population showed they were identical for morphology, mean size, and distribution. The single-labeled CB-IR non-pyramidal neurons were only the 17.8% of the total non-pyramidal neurons counted. The nNOS-IR neuronal population was represented by non-pyramidal multipolar and fusiform neurons. Single-labeled nNOS-IR non-pyramidal neurons had the same morphology, mean area, and distribution as cells belonging to nNOS-IR neuronal population. Single-labeled nNOS-IR non-pyramidal neurons were more numerous than single-labeled CB-IR, and represented the 73.7% of total non-pyramidal neurons counted. NADPH-d-positive cells had the same morphology and distribution as the nNOS-IR neurons. Double immunolabeling (CB/nNOS) was found mostly in non-pyramidal multipolar neurons and only in a few non-pyramidal fusiform cells. These neurons had a mean perikaryal area significantly higher and significantly smaller than that of single-labeled nNOS and single-labeled CB-IR non-pyramidal neurons, respectively. CB and nNOS coexist only in a minority of non-pyramidal neurons (8.5%). The 32.4% of all CB-IR non-pyramidal neurons were nNOS-positive; only 10.4% of nNOS-IR non-pyramidal neurons were CB-positive. These results indicate that CB and nNOS are expressed by selective neurons and that the majority of nNOS-IR non-pyramidal neurons are lacking in CB.  相似文献   

17.
Luo Y  Kaur C  Ling EA 《Neuroscience letters》2000,296(2-3):145-148
This study examined the effects of high altitude exposure on neurons in the paraventricular nucleus (PVN) and supraoptic nucleus (SON) of the hypothalamus in adult and neonatal rats. In adult control rats, occasional Fos-like immunoreactive neurons were localized in both the hypothalamic nuclei. A marked increase in Fos positive cells was induced at 1-4 h following altitude exposure but it was reduced to levels comparable to the controls at 24 h. The expression of neuronal nitric oxide synthase (nNOS) immunoreactivity in the PVN and SON followed a similar temporal pattern. The nNOS immunoreactivity, which was constitutively expressed in the hypothalamic neurons in the control rats, was noticeably augmented at 1-4 h, but it was comparable to the controls at 24 h following altitude exposure. In postnatal rats, Fos expression was not detected in the hypothalamic neurons of the controls. Induction of Fos expression was observed in some neurons at 1-4 h following altitude exposure but it was diminished at 24 h. There was no noticeable change in nNOS expression in both the control and altitude exposed postnatal rats; in both instances, it was barely detectable. It is concluded that both the PVN and SON of the adult rats are activated at high altitude exposure and that they may be involved in the regulation of neuroendocrine, cardiovascular and respiratory functions in hypobaric hypoxia. This study has also shown the differential response of the hypothalamus neurons between the two age groups to the hypoxic insult. Our results suggest that the adult neurons are probably more sensitive to the reduced oxygen levels in hypobaric hypoxia, as reflected by the upregulated NOS expression in this age group but not in the postnatal rats.  相似文献   

18.
19.
This study examined NADPH-d and nNOS expression in the SCG of hamsters. By light microscopy, numerous NADPH-d/NOS positive processes were widely distributed in the ganglion. Ultrastructurally, the NADPH-d reaction product was associated with the membranous organelles of neuronal soma, dendrites, myelinated fibres, small granular cells, and axon profiles bearing agranular vesicles. The NOS immunoreaction product, on the other hand, was localised in the cytoplasm of principal neurons and dendrites. Some of the NADPH-d/NOS labelled processes formed junctional contacts including synapses or zonulae adherentia. Compared with the neurons, the nonneuronal cells in the ganglion, namely, macrophages, satellite cells and endothelial cells were labelled by NADPH-d but devoid of nNOS immunoreaction product. The results suggest that the NADPH-d/NOS positive fibres in the SCG originate not only from the projecting fibres of the lateral horns of thoracic spinal cord, but also from the principal neurons and small granular cells; some may represent visceral afferent fibres. Electron microscopic morphometry has shown that about 67% of the principal neurons contain NADPH-d reaction product, and that the majority were small to medium sized neurons based on cross-sectional areas in image analysis. On the basis of the present morphological study, it is concluded NO is produced by some local neurons and possibly some nonneuronal cells in the SCG as well as some fibres of extrinsic origin. In this connection, NO may serve either as a neurotransmitter or neuromodulator.  相似文献   

20.
王鹏  徐健  单娜娜  崔颖 《解剖科学进展》2013,(2):153-155,158
目的观察银杏叶提取物(EGB)金纳多对血管性痴呆(VD)小鼠海马结构神经元型一氧化氮合酶(nNOS)表达的影响,探讨银杏叶提取物对血管性痴呆的治疗作用。方法复制VD小鼠模型,利用Y-迷宫检测VD模型小鼠学习记忆能力及不同剂量EGB治疗组的改善作用,实时定量PCR方法检测不同剂量EGB对VD小鼠海马结构中NOSmRNA转录水平的影响,组织化学和免疫组化方法研究其对NOS和nNOS蛋白表达的影响。结果行为学结果显示VD模型组和各治疗组小鼠均比对照组小鼠Y-迷宫学习记忆训练次数明显增多(<0.05),高低两个剂量EGB治疗组迷宫学会次数与模型组相比明显减少(<0.05),有剂量依赖性。实时定量PCR结果显示在背侧海马VD模型组nNOS mRNA转录水平显著提高,而高低EGB治疗组的nNOS mRNA转录水平显著降低(<0.05)。组织化学和免疫组化结果显示在海马结构CA1区VD模型组比对照组NOS和nNOS阳性神经元的数量明显增多(<0.05),高低两个EGB治疗组与VD模型组相比阳性神经元数量明显减少(<0.05)。结论银杏叶提取物对VD小鼠神经元有保护作用,可能与减少海马结构NOS的表达相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号