首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During apoptosis, hundreds of proteins are cleaved by caspases, most of them by the executioner caspase-3. However, caspase-7, which shares the same substrate primary sequence preference as caspase-3, is better at cleaving poly(ADP ribose) polymerase 1 (PARP) and Hsp90 cochaperone p23, despite a lower intrinsic activity. Here, we identified key lysine residues (K(38)KKK) within the N-terminal domain of caspase-7 as critical elements for the efficient proteolysis of these two substrates. Caspase-7's N-terminal domain binds PARP and improves its cleavage by a chimeric caspase-3 by ~30-fold. Cellular expression of caspase-7 lacking the critical lysine residues resulted in less-efficient PARP and p23 cleavage compared with cells expressing the wild-type peptidase. We further showed, using a series of caspase chimeras, the positioning of p23 on the enzyme providing us with a mechanistic insight into the binding of the exosite. In summary, we have uncovered a role for the N-terminal domain (NTD) and the N-terminal peptide of caspase-7 in promoting key substrate proteolysis.  相似文献   

2.
Cell differentiation and the behaviour of poly-(ADP-ribose)-synthesis after treatment with methoxybenzamide and procaine was examined in chondrocytes of cell cultures from albino rats. In this study an increase in cell differentiation was connected with a higher level of poly(ADP-ribose)-synthesis. On the basis of an increase in poly(ADP-ribose)-synthesis in chondrocytes an improved scheme of treatment of some rheumatic diseases could be developed.  相似文献   

3.
During ischemia-reperfusion, reactive oxygen species are generated along the mitochondrial respiratory chain and induce lipid peroxidation, protein oxidation and DNA damage. Single-strand DNA breaks are the most potent activators of poly(ADP-ribose) polymerase (PARP); prolonged action of PARP culminates in intracellular oxidized nicotinamide adenine dinucleotide (NAD+) and ATP depletion. The integrity of cellular components and the myocardial energy metabolism can be preserved by using PARP inhibitors under conditions of ischemia and reperfusion. Oxidative stress is capable of activating the phosphoinositol-3-kinase–Akt/protein kinase B signalling pathway, which is further enhanced if treated with PARP inhibitors. Akt, in turn, promotes the survival of cardiomyocytes by inhibiting apoptotis, and causing metabolic adjustment and vasodilation in the jeopardized myocardium.  相似文献   

4.
5.
Poly(ADP-ribose) polymerase (PARP) is implicated in the maintenance of genomic integrity, given that inhibition or depletion of this enzyme increases genomic instability in cells exposed to genotoxic agents. We previously showed that immortalized fibroblasts derived from PARP(-/-) mice exhibit an unstable tetraploid population, and partial chromosomal gains and losses in PARP(-/-) mice and immortalized fibroblasts are accompanied by changes in the expression of p53, Rb, and c-Jun, as well as other proteins. A tetraploid population has also now been detected in primary fibroblasts derived from PARP(-/-) mice. Oligonucleotide microarray analysis was applied to characterize more comprehensively the differences in gene expression between asynchronously dividing primary fibroblasts derived from PARP(-/-) mice and their wild-type littermates. Of the 11,000 genes monitored, 91 differentially expressed genes were identified. The loss of PARP results in down-regulation of the expression of several genes involved in regulation of cell cycle progression or mitosis, DNA replication, or chromosomal processing or assembly. PARP deficiency also up-regulates genes that encode extracellular matrix or cytoskeletal proteins that are implicated in cancer initiation or progression or in normal or premature aging. These results provide insight into the mechanism by which PARP deficiency impairs mitotic function, thereby resulting in the genomic alterations and chromosomal abnormalities as well as in altered expression of genes that may contribute to genomic instability, cancer, and aging.  相似文献   

6.
H2O2, in concentrations achieved in the proximity of stimulated leukocytes, induces injury and lysis of target cells. This may be an important aspect of inflammatory injury of tissues. Cell lysis in two target cells, the murine macrophage-like tumor cell line P388D1 and human peripheral lymphocytes, was found to be associated with activation of poly(ADP-ribose) polymerase (EC 2.4.2.30), a nuclear enzyme. This enzyme is activated under various conditions of DNA damage. Poly(ADP-ribose) polymerase utilizes nicotinamide adenine dinucleotide (NAD) as substrate and has been previously shown to consume NAD during exposure of cells to oxidants that was associated with inhibition of glycolysis, a decrease in cellular ATP, and cell death. In the current studies, inhibition of poly(ADP-ribose) polymerase by 3-aminobenzamide, nicotinamide, or theophylline in cells exposed to lethal concentrations of H2O2 prevented the sequence of events that eventually led to cell lysis--i.e., the decrease in NAD, followed by depletion of ATP, influx of extracellular Ca2+, actin polymerization and, finally, cell death. DNA damage, the initial stimulus for poly(ADP-ribose) polymerase activation, occurred despite the inhibition of this enzyme. Cells exposed to oxidant in the presence of the poly(ADP-ribose) polymerase inhibitor 3-aminobenzamide failed to demonstrate repair of DNA strand breaks.  相似文献   

7.

Objective

To investigate the association of the poly(ADP‐ribose) polymerase 1 (PARP‐1) gene promoter polymorphism with rheumatoid arthritis (RA) predisposition.

Methods

An association study with 213 Spanish RA patients and 242 healthy subjects was carried out to investigate the association of all known PARP‐1 gene promoter polymorphisms, i.e., a CA microsatellite repeat, a poly(A)n, and 3 single point mutations (C410T, C1362T, and G1672A), with disease susceptibility. Additionally, we analyzed the distribution of PARP‐1 polymorphisms in 58 Spanish families with 1 or more affected members.

Results

Upon complete genotyping of the panel of 455 samples, strong linkage disequilibrium was observed among the 5 PARP‐1 polymorphisms. Only 2 PARP‐1 haplotypes were detected: haplotype A (410T–[A]10–[CA]10–12–1362C, which includes short PARP‐1 CA alleles) and haplotype B (410C–[A]11–[CA]13–20–1362T, always paired with long PARP‐1 CA variants). Regarding the G1672A variation, although linkage disequilibrium was detected, it did not seem to be part of the conserved haplotypes described. Haplotype B was statistically overrepresented in the RA patient group compared with the healthy subjects (odds ratio 1.42, 95% confidence interval 1.06–1.91, P = 0.019). In addition, a significant dose effect of PARP‐1 haplotype carriage on disease predisposition was observed. Of note, within haplotype B, the PARP‐1 CA 97‐bp allele was found to be the RA‐predisposing marker (odds ratio 2.17, 95% confidence interval 1.27–3.72, P = 0.003, corrected P < 0.05).

Conclusion

Our results demonstrate the existence of 2 unique PARP‐1 haplotypes in the Spanish population and provide the first evidence that PARP‐1 haplotypes play a role in susceptibility to RA.
  相似文献   

8.
Highly purified poly(A) polymerase (polynucleotide adenylyltransferase, EC 2.7.7.19), which synthesizes poly(A) from ATP substrate, can also catalyze hydrolysis of poly(A). The enzyme, designated as poly(A) hydrolase, requires either Mn2+ or Mg2+ for activity. Although AMP is the predominant product of the reaction, ADP and ATP are also formed. The enzyme is a 3'-exonuclease that does not degrade poly(A) associated with poly(A) poly(U) helical structure. AMP, ADP, and ATP inhibit the hydrolytic reaction. These data suggest that (i) the levels of adenine nucleotides regulate synthesis and degradation of poly(A), (ii) poly(A) itself is a storage form of adenine nucleotides, (iii) the hydrolytic reaction is responsible for poly(A) shortening or turnover observed in vivo, and (iv) the synthetic and hydrolytic activities are functions of the same protein molecule.  相似文献   

9.
Boros LG  Steinkamp MP  Fleming JC  Lee WN  Cascante M  Neufeld EJ 《Blood》2003,102(10):3556-3561
Fibroblasts from patients with thiamine-responsive megaloblastic anemia (TRMA) syndrome with diabetes and deafness undergo apoptotic cell death in the absence of supplemental thiamine in their cultures. The basis of megaloblastosis in these patients has not been determined. Here we use the stable [1,2-13C2]glucose isotope-based dynamic metabolic profiling technique to demonstrate that defective high-affinity thiamine transport primarily affects the synthesis of nucleic acid ribose via the nonoxidative branch of the pentose cycle. RNA ribose isolated from TRMA fibroblasts in thiamine-depleted cultures shows a time-dependent decrease in the fraction of ribose derived via transketolase, a thiamine-dependent enzyme in the pentose cycle. The fractional rate of de novo ribose synthesis from glucose is decreased several fold 2 to 4 days after removal of thiamine from the culture medium. No such metabolic changes are observed in wild-type fibroblasts or in TRMA mutant cells in thiamine-containing medium. Fluxes through glycolysis are similar in TRMA versus control fibroblasts in the pentose and TCA cycles. We conclude that reduced nucleic acid production through impaired transketolase catalysis is the underlying biochemical disturbance that likely induces cell cycle arrest or apoptosis in bone marrow cells and leads to the TRMA syndrome in patients with defective high-affinity thiamine transport.  相似文献   

10.
a1-1 cells, a transformant line obtained by transfection of NIH 3T3 cells with human c-Ha-rasT24 (hc-Ha-rasT24), were converted to morphologically normal flat cells following a 2-week culture in the presence of benzamide (BA), an inhibitor of poly(ADP-ribose) polymerase [ADP-ribosyltransferase (polymerizing); EC 2.4.2.30]. Concomitant with these morphological changes was the loss of the exogenous hc-Ha-rasT24 sequence. When cells were cultured without transfer, multiple clusters of flat revertant cells surrounded by transformed cells within single colonies of a1-1 cells were observed. This, together with the slow growth rate of flat cells in the presence of BA, indicated that flat revertants were induced rather than selected by BA. Flat cells isolated from mixed colonies completely lost the exogenous and amplified hc-Ha-rasT24 gene. In contrast, the endogenous mouse c-Ha-ras in flat revertant cells was not lost during culture with BA. Similarly, the endogenous hc-Ha-rasT24 in human bladder carcinoma T24 cells was not affected by BA. By using various chemicals, it was suggested that inhibition of poly(ADP-ribose) polymerase induces an efficient and specific loss of the exogenous transforming genes including Ki-ras, N-ras, c-raf, and ret-II.  相似文献   

11.
12.
Poly(ADP-ribose) polymerase (EC 2.4.2.30) is a zinc-binding protein that specifically binds to a DNA strand break in a zinc-dependent manner. We describe here the cloning and expression in Escherichia coli of a cDNA fragment encoding the two putative zinc fingers (FI and FII) domain of the human poly(ADP-ribose) polymerase. Using site-directed mutagenesis, we identified the amino acids involved in metal coordination and analyzed the consequence of altering the proposed zinc-finger structures on DNA binding. Disruption of the metal binding ability of the second zinc finger, FII, dramatically reduced target DNA binding. In contrast, when the postulated Zn(II) ligands of FI were mutated, the DNA binding activity was only slightly affected. DNase I protection studies showed that the FII is involved in the specific recognition of a DNA strand break. These results demonstrate that poly(ADP-ribose) polymerase contains a type of zinc finger that differs from previously recognized classes in terms of both structure and function.  相似文献   

13.
目的:探讨1型多聚二磷酸腺苷核糖合成酶(PARP-1)对去甲肾上腺素(NE)诱导培养的大鼠心脏成纤维细胞基质金属蛋白酶(MMP)-1,MMP-9及金属蛋白酶组织抑制剂(TIMP)-1表达的调节作用及其机制。方法:①培养乳鼠心脏成纤维细胞,10μmol/LNE刺激细胞24h,使用实时定量PCR法检测MMP-1、MMP-9及TIMP-1的基因表达水平;使用PARP抑制剂3-氨基苯甲酰胺(3-aminobenzamide,3AB)后,观察PARP-1对上述基因表达的影响。②检测心脏成纤维细胞内活性氧(ROS)水平、PARP酶活性的变化。③采用凝胶阻滞实验检测心脏成纤维细胞内转录因子AP-1的DNA结合能力,研究PARP-1对AP-1DNA结合能力的影响。结果:NE诱导心脏成纤维细胞内MMP-1,MMP-9及TIMP-1的基因表达水平明显增加。细胞内ROS产生增加,PARP酶被激活。核内转录因子AP-1的DNA结合能力明显增强。PARP抑制剂3AB可明显减少NE诱导的MMP-1、MMP-9及TIMP-1的基因表达水平,同时显著抑制AP-1的DNA结合能力。使用抗氧化剂vitC减少ROS产生,抑制了NE诱导的PARP-1活性增加及AP-1的DNA结合,进而显著降低了NE诱导的MMP-1、MMP-9及TIMP-1的基因表达水平。结论:NE刺激心脏成纤维细胞内ROS产生明显增多,大量的ROS激活了PARP使其酶活性显著增高,PARP通过调节转录因子AP-1的DNA结合调控了MMP-1,MMP-9及TIMP-1的基因表达。PARP可能是心脏纤维化过程中的重要调节机制之一。  相似文献   

14.
DNA polymerase (deoxynucleosidetriphosphate: DNA nucleotidyltransferase, EC 2.7.7.7 or DNA nucleotidyltransferase) activity, isolated from late and early passage cells of the diploid human fibroblast line, MRC-5, was compared. The level of activity dropped with increasing passage. In addition, when the fidelity of polymerization was monitored with four synthetic templates under a variety of conditions, it was observed that the enzyme from late passage cells was more error-prone. The possible relation of these observations to "senescence" of the fibroblasts is discussed.  相似文献   

15.
In HL-60 cells, a human promyelocytic leukemia cell line, the human c-myc gene, designated MYC, is amplified about 16-fold. On differentiation of the HL-60 cells into granulocytes induced by several inhibitors of poly(ADP-ribose) polymerase [NAD+ poly(adenosine diphosphate D-ribose)ADP-D-ribosyltransferase, EC 2.4.2.30] including benzamide, nicotinamide, coumarin, and 4-hydroxyquinazoline or dimethyl sulfoxide, some MYC loss was observed. In contrast, benzoic acid, a noninhibitory analogue of benzamide, did not induce either granulocytic differentiation or loss of MYC. Loss of MYC seems to be associated with granulocytic differentiation because the time course of its loss was similar to that of appearance of nitroblue tetrazolium-positive cells, mature granulocytes, and its loss was not observed on differentiation of HL-60 cells into macrophages induced by phorbol 12-myristate 13-acetate or teleocidin. The loss of MYC is not the reason for the down regulation of MYC expression observed within 1 hr after addition of inducers, since the loss of MYC was not detected by 1-day treatment with inducers.  相似文献   

16.
Reperfusion of the ischemic myocardium results in the generation of oxygen-derived free radicals, NO, and presumably peroxynitrite. These, in turn, may cause strand breaks in DNA, which activate the nuclear enzyme poly(ADP ribose) synthetase (PARS). This results in a rapid depletion of intracellular NAD and ATP. When this reaction is excessive, there is ultimately cell death. Here we demonstrate that 3-aminobenzamide (and several other, chemically distinct, inhibitors of PARS activity) reduces the infarct size caused by ischemia and reperfusion of the heart or skeletal muscle of the rabbit. Inhibition of PARS activity also attenuates the myocardial dysfunction caused by global ischemia and reperfusion in the isolated, perfused heart of the rabbit. In skeletal muscle, inhibition of the activity of neuronal NO synthase reduces infarct size, indicating that the formation of NO contributes to the activation of PARS there. There is no significant neuronal NO synthase activity in the heart, and hence NO synthase inhibitors did not reduce myocardial infarct size. Thus, activation of PARS contributes to the cell death caused by ischemia–reperfusion, and PARS inhibitors may constitute a novel therapy for ischemia–reperfusion injury.  相似文献   

17.
Inactivation of the DNA mismatch repair pathway manifests as microsatellite instability, an accumulation of mutations that drives carcinogenesis. Here, we determined whether microsatellite instability in acute myeloid leukemia and myelodysplastic syndrome correlated with chromosomal instability and poly (ADP-ribose) polymerase (PARP) inhibitor sensitivity through disruption of DNA repair function. Acute myeloid leukemia cell lines (n=12) and primary cell samples (n=18), and bone marrow mononuclear cells from high-risk myelodysplastic syndrome patients (n=63) were profiled for microsatellite instability using fluorescent fragment polymerase chain reaction. PARP inhibitor sensitivity was performed using cell survival, annexin V staining and cell cycle analysis. Homologous recombination was studied using immunocytochemical analysis. SNP karyotyping was used to study chromosomal instability. RNA silencing, Western blotting and gene expression analysis was used to study the functional consequences of mutations. Acute myeloid leukemia cell lines (4 of 12, 33%) and primary samples (2 of 18, 11%) exhibited microsatellite instability with mono-allelic mutations in CtIP and MRE11. These changes were associated with reduced expression of mismatch repair pathway components, MSH2, MSH6 and MLH1. Both microsatellite instability positive primary acute myeloid leukemia samples and cell lines demonstrated a downregulation of homologous recombination DNA repair conferring marked sensitivity to PARP inhibitors. Similarly, bone marrow mononuclear cells from 11 of 56 (20%) patients with de novo high-risk myelodysplastic syndrome exhibited microsatellite instability. Significantly, all 11 patients with microsatellite instability had cytogenetic abnormalities with 4 of them (36%) possessing a mono-allelic microsatellite mutation in CtIP. Furthermore, 50% reduction in CtIP expression by RNA silencing also down-regulated homologous recombination DNA repair responses conferring PARP inhibitor sensitivity, whilst CtIP differentially regulated the expression of homologous recombination modulating RecQ helicases, WRN and BLM. In conclusion, microsatellite instability dependent mutations in DNA repair genes, CtIP and MRE11 are detected in myeloid malignancies conferring hypersensitivity to PARP inhibitors. Microsatellite instability is significantly correlated with chromosomal instability in myeloid malignancies.  相似文献   

18.
In response to high levels of DNA damage, catalytic activation of the nuclear enzyme poly(ADP-ribose) polymerase (PARP) triggers necrotic death because of rapid consumption of its substrate beta-nicotinamide adenine dinucleotide and consequent depletion of ATP. We examined whether there are other consequences of PARP activation that could contribute to cell death. Here, we show that PARP activation reaction in vitro becomes acidic with release of protons during hydrolysis of beta-nicotinamide adenine dinucleotide. In the cellular context, we show that Molt 3 cells respond to DNA damage by the alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) with a dose-dependent acidification within 30 min. Whereas acidification by 0.15 pH units induced by 10 microM MNNG is reversed within 1 h, 100 , microinduced acidification by 0.5-0.6 pH units is persistent up to 7 h. Acidification is a general DNA damage response because H(2)O(2) exposure also acidifies Molt 3 cells, and MNNG causes acidification in Jurkat, U937, or HL-60 leukemia cells and in PARP(+/+) fibroblasts. Acidification is significantly decreased in the presence of PARP inhibitors or in PARP(-/-) fibroblasts, suggesting a major role for PARP activation in acidification. Inhibition of proton export through ATP-dependent Na(+)/H(+) exchanger is another major cause of acidification. Using the pH clamp method to either suppress or introduce changes in cellular pH, we show that brief acidification by 0.5-0.6 pH units may be a negative regulator of apoptosis while permitting necrotic death of cells with extensively damaged DNA.  相似文献   

19.
cDNAs encoding poly(ADP-ribose) polymerase from a human hepatoma lambda gt11 cDNA library were isolated by immunological screening. One insert of 1.3 kilobases (kb) consistently hybridized on RNA gel blots to an mRNA species of 3.6-3.7 kb, which is consistent with the size of RNA necessary to code for the polymerase protein (116 kDa). This insert was subsequently used in both in vitro hybrid selection and hybrid-arrested translation studies. An mRNA species from HeLa cells of 3.6-3.7 kb was selected that was translated into a 116-kDa protein, which was selectively immunoprecipitated with anti-poly (ADP-ribose) polymerase. To confirm that the 1.3-kb insert from lambda gt11 encodes for poly(ADP-ribose) polymerase, the insert was used to screen a 3- to 4-kb subset of a transformed human fibroblast cDNA library in the Okayama-Berg vector. One of these vectors [pcD-p(ADPR)P; 3.6 kb] was tested in transient transfection experiments in COS cells. This cDNA insert contained the complete coding sequence for polymerase as indicated by the following criteria: A 3-fold increase in in vitro activity was noted in extracts from transfected cells compared to mock or pSV2-CAT transfected cells. A 6-fold increase in polymerase activity in pcD-p(ADPR)P transfected cell extracts compared to controls was observed by "activity gel" analysis on gels of electrophoretically separated proteins at 116 kDa. A 10- to 15-fold increase in newly synthesized polymerase was detected by immunoprecipitation of labeled transfected cell extracts. Using pcD-p(ADPR)P as probe, it was observed that the level of poly(ADP-ribose) polymerase mRNA was elevated at 5 and 7 hr of S phase of the HeLa cell cycle, but was unaltered when artificial DNA strand breaks are introduced in HeLa cells by alkylating agents.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号